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Abstract

Background: The Integrase (IN) strand transfer inhibitor (INSTI), Dolutegravir (DTG), has been given the green light
to form part of first-line combination antiretroviral therapy (cART) by the World Health Organization (WHO). DTG
containing regimens have shown a high genetic barrier against HIV-1 isolates carrying specific resistance mutations
when compared with other class of regimens.

Methods: We evaluated the HIV-1 CRF02_AG IN gene sequences from Cameroon for the presence of resistance-
associated mutations (RAMs) against INSTIs and naturally occurring polymorphisms (NOPs), using study sequences
(n = 20) and (n = 287) sequences data derived from HIV Los Alamos National Laboratory database. The possible
impact of NOPs on protein structure caused by HIV-1 CRF02_AG variations was addressed within the context of a
3D model of the HIV-1 IN complex and interaction analysis was performed using PyMol to validate DTG binding to
the Wild type and seven mutant structures.

Results: We observed 12.8% (37/287) sequences to contain RAMs, with only 1.0% (3/287) of the sequences having
major INSTI RAMs: T66A, Q148H, R263K and N155H. Of these,11.8% (34/287) of the sequences contained five
different IN accessory mutations; namely Q95K, T97A, G149A, E157Q and D232N. NOPs occurred at a frequency of
66% on the central core domain (CCD) position, 44% on the C-terminal domain (CTD) position and 35% of the N-
terminal domain (NTD) position. The interaction analysis revealed that DTG bound to DNA, 2MG ions and DDE
motif residues for T66A, T97A, Q148H, N155H and R263K comparable to the WT structure. Except for accessory
mutant structure E157Q, only one MG contact was made with DTG, while DTG had no MG ion contacts and no
DDE motif residue contacts for structure D232N.
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Conclusions: Our analysis indicated that all RAM’s that resulted in a change in the number of interactions with
encompassing residues does not affect DTG binding, while accessory mutations E157Q and D232N could affect
DTG binding leading to possible DTG resistance. However, further experimental validation is required to validate the
in silico findings of our study.

Keywords: Cameroon, Integrase, CRF02_AG, Molecular modelling, Interaction analysis

Background
Sub-Saharan Africa (SSA) remains one of the regions
highly burdened by HIV infection at 70% of the global
epidemic. SSA has a particularly high HIV-1 genetic di-
versity and it is documented that diverse subtypes may
affect the clinical treatment outcome in patient manage-
ment [1]. The HIV-1 CRF02_AG strain continues to be
the predominant subtype causing majority of infections
in Cameroon, while other strains, including groups N, O
and P, account for a minor proportion of infections [2–
4]. Furthermore, different mutational pathways account
for subtype specific differences in drug resistance [5–7].
Additionally, other studies have also reported that nat-
ural occurring polymorphisms (NOP) which are associ-
ated with the occurrence of resistance to Integrase (IN)
strand-transfer inhibitors (INSTIs) and IN activity, are
subtype-dependent [6–8]. These subtype-specific poly-
morphic mutations in the IN gene have been shown to
affect IN DNA binding affinity, in the presence of
resistance-associated mutations (RAMs) [6–8]. Compu-
tational modelling of RAMs against INSTIs, across dif-
ferent HIV-1 subtypes compared to subtype B, showed
that the presence of M50I in subtypes A and C, L74I in
subtypes A and CRF02_AG, G163R in CRF01_AE, and
V165I in subtypes F and CRF01_AE are associated with
a lower genetic barrier to resistance in non-B clades [9].
Cameroon has seen a substantial reduction of HIV infec-
tion, since the introduction of combination antiretroviral
therapy (cART), especially with the rolling-out of pro-
grammes like prevention of mother-to-child transmis-
sion (PMTCT) and the implementation 90–90-90
strategy to end the AIDS pandemic by 2030 [10]. The
ability of the HIV-1 virus to mutate during therapy, can
lead to the emergence of HIV-1 drug resistance and this
necessitates the need for more effective cART regimens
with higher genetic barriers [1]. In Cameroon, the HIV-
1 drug resistance rates among cART-initiators stand at
approximately, 10% of the Cameroon infected popula-
tion [11, 12].
The United States of America (USA) Food and Drug

Administration (FDA) has approved four HIV-1 INSTIs,
including raltegravir (RAL), elvitegravir (EVG), dolute-
gravir (DTG) and bictegravir (BIC) [13]. However, the
high cost of INSTIs, has resulted in restricted access to
this class of drugs in resource-limited countries [14].

Despite the cost, the World Health Organization
(WHO) has given the green light to include DTG to an
alternative 1st-line regimen [14, 15]. The strand transfer
reaction catalyzed by HIV-1-expressed IN enzyme is
blocked by the activity of INSTIs which bind to the cata-
lytic site in the catalytic core domain (CCD) of the IN
protein [16, 17]. Mutations that confer resistance to
INSTIs (for example G140S, Q148H and N155H) have
been structurally mapped in close proximity to the IN
catalytic active site [18, 19]. Primary resistance to INST
Is, along with residues associated with catalytic activity
among different subtypes are highly conserved. HIV-1
sequence and structure-based analyses have shown that
polymorphic residues can cause subtype-specific effects,
which significantly affect the native protein structure,
function and activity important for drug-mediated inhib-
ition of enzyme activity [9]. There is limited information
available on the IN structure of CRF02_AG [9, 20] and
even less on the effect of mutations on the protein struc-
ture. There is therefore a need to continue monitoring
patients to identify additional RAMs and polymorphic
mutations that might affect the genetic barrier to the de-
velopment of RAMs against INSTI [9]. The goals of this
study was to analyse the Cameroonian CRF02_AG IN
gene sequences obtained from the Los Alamos National
Laboratory (http://www.hiv.lanl.gov/) HIV-1 database to
assess the occurrence of mutations and natural occur-
ring polymorphisms (NOPs). NOPs are categorized
under secondary mutations which on their own play a
limited role in resistance [14]. However, their pre-
existence might favour a more rapid evolution towards
resistance when additional mutations are selected under
therapy [21]. In this study, the possible impact caused by
statistically enriched NOPs found in CRF02_AG subtype
was modelled within the context of a three-dimensional
(3D) protein structure of the HIV-1CRF02-DNA-MG-
DTG IN complex. Subsequently, stability predictions
was performed using the mutation cut-off scanning
matrix server (mCSM) to assess change in Gibbs free en-
ergy of mutations on the protein structure followed by
interaction analysis to assesses the loss or gain of DTG
interactions to Wild type and six mutated HIV-1CRF02-
DNA_MG IN structures. Molecular modelling of HIV-1
CRF02 integrase sequences and DTG interaction analysis
will help determine which mutations could affect the
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genetic barrier to the emergence of DTG drug
resistance.

Methods
Generation of consensus HIV-1CRF02_AG Integrase
sequence
To compare our study CRF02_AG treatment naïve se-
quences (n = 20) available in GenBank under the follow-
ing accession numbers: MN816445- MN816488 [2], with
INSTIs treatment naïve CRF02_AG IN sequences from
Cameroon between 1994 and 2010. We performed a
search on the HIV Los Alamos National Laboratory
database (LANL) database for additional (n = 287) INSTI
treatment Naïve patients’ sequences (https://www.hiv.
lanl.gov/components/sequence/ HIVsearch.com), com-
pleted on 01 February 2020. All Cameroonian HIV-1
subtype CRF02_AG IN sequences for treatment naïve
patients, were included in our search criteria [14]. We
selected one sequence per patient and every problematic
sequence were excluded from further analyses. The con-
sensus sequence was generated using the database-
derived HIV-1 CRF02_AG sequences (n = 287) and
CRF02_AG cohort sequences from our previous study
(n = 20) [20]. An online quality control program that is
available on the HIVLANL database (https://www.hiv.
lanl.gov/content/sequence/QC/index.htm) was employed
to screen nucleotide sequences for quality and to verify
for stop codons, insertions and/or deletions. The MAFF
T version 7 sequence alignment tool, was used to per-
form a multiple sequence alignment from which the
consensus sequence was derived [22]. In an effort to
eliminate possible contamination, which was part of our
quality control measure, each of the viral sequences were
inferred on a phylogenetic tree.

HIV-1 subtyping using online programs
HIV-1 subtyping based on IN sequences was performed
using two online available programs; REGA version 3
(http://www.bioafrica.net/subtypetool/html/subtypinghiv.
html) and COMET-HIV (https://comet.lih.lu/).

Drug resistance analysis
Mutations associated with resistance to INSTIs were
identified using the Stanford University genotypic resist-
ance interpretation algorithm, HIVdb version 8.3 (http://
hivdb.stanford.edu/). All drug resistance mutations re-
sults were classified as either major or minor mutations,
last accessed 01 April 2020.

Homology modelling and quality assessment
The crystal structure of the HIV-1B intasome (nucleo-
protein complex: containing viral DNA ends and the
viral integrase protein) (PDBID: 5U1C) was used as a
homologous template to generate a three-dimensional

tetrameric structure of HIV-1CRF02_AG IN using the
consensus sequence of recombinant subtype CRF02_AG
sequence that we generated. The SWISSMODEL web-
server was used for model construction by first con-
structing a pairwise sequence-structure alignment
between HIV-1C wild-type (WT) amino acid sequence
and template 5U1C [22]. The quality of the resulting
model was assessed using SWISSMODEL quality assess-
ment scores; the Qualitative model energy analysis
(QMEAN) and Global model quality estimate (GMQE)
scores. The QMEAN score is a composite scoring func-
tion assessing the major geometrical aspects of protein
structures by comparing the predicted protein model to
experimental structures of similar size, scores close to
zero suggest high compatibility to experimental struc-
tures. The GMQE score estimates the quality of the pre-
dicted model using the properties from the target-
template alignment and the template structure. Values
are between 1 and 0, with higher values indicating more
reliable models [23]. The Root mean square deviation
(RMSD) analysis was done to compare the predicted
model to the homologous template (PDBID: 5U1C) and
to determine if there were any structural similarity be-
tween the two structures, lower RMSD values suggest
very little deviation in terms of the backbone between
the two structures. We also used publicly available algo-
rithms located at the SAVES webserver (https://
servicesn.mbi.ucla.edu/SAVES/) namely; ERRAT [24]
VERIFY3D [25] and PROCHECK [26] to assess the qual-
ity of the predicted protein model. ERRAT statistically
interrogated the nonbonded atomic interactions of the
given target against the interactions of refined structures,
with higher scores above 50 indicating higher quality in
the protein model. VERIFY3D determines the compati-
bility of a structure (3D) to its own amino acid sequence
(1D), higher values for VERIFY3D indicates high com-
patibility. PROCHECK on the other hand generates an
Ramachandran plot that assesses the stereochemical pa-
rameters in a protein structure and if the percentage of
phi and psi dihedral angles within the protein structure
is more than 90% then the protein model has favourable
residue conformations.

Change in free energy predictions and interaction
analysis
The predicted 3D structure of HIV-1 CRF02_AG IN was
energy minimized using GROMACS software [27] and
the resulting structure was used to introduce resistance
associated and accessory mutations identified from the
Stanford University HIVdb using PyMol mutagenesis
wizard. The WT structure and a text file specifying sin-
gle mutations was used as input to the program, muta-
tion cut-off scanning matrix (mCSM). The change in
energy after introduction of a mutation was calculated
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using mCSM. mCSM uses graph-based distance patterns
of neighbouring residues and calculates a Delta-delta G-
score for the impact of the mutation on the protein net-
work and provides a phenotypic assessment by annotat-
ing a mutation as either being destabilizing (negative
value) or stabilizing (positive value). The loss or gain of
interactions between the WT and mutant neighbouring
residues was calculated using Pymol find polar contacts
option. To determine the effect of the mutation on DTG
drug binding to the IN structure we energy minimized
the WT CRF02-AG-DNA_MG_DTG and mutant com-
plexes using GROMACS. Afterwards, we only selected
the mutant structures that showed changes in the num-
ber of polar contacts with neighbouring residues and
calculated DTG interactions with CRF02-DNA-MG
complex IN structures using the PyMol find polar con-
tacts option.

Results
HIV-1 subtyping
HIV-1 subtyping was done using HIV-1 subtyping
online-automated tools and all sequences were verified
using phylogenetic tree as HIV-1 subtype CRF02_AG
(Fig. 1).

Database derived IN sequence resistance analyses
After excluding multiple sequences from a patient to
avoid overestimation of the variant calling and problem-
atic sequences, we used 287 sequences collected between
1994 and 2010. These sequences were subsequently
screened for the presence of RAMs. We identified 12.8%
(37/287) sequences to contain RAMs, with only 1.0% (3/
287) having major INSTI RAMs: T66A, Q148H, R263K
and N155H. Two mutations, Q148H and R263K, oc-
curred together in one sequence (0.3%), whereas T66A
and N155H were present individually in one sequence
each. A total of 11.8% (34/287) of the sequences con-
tained five different IN accessory mutations, namely
Q95K, T97A, G149A, E157Q and D232N. Mutations
G149A and D232N occurred together in one sequence
(0.3%). Notably, one sequence dating back from 2010
had two major mutations; Q148H and R263K in com-
bination with two other minor mutations G149A and
D232N.

Generation of the consensus sequence for Cameroonian’s
HIV-1 CRF02_AG subtype
The consensus sequences generated using the database-
derived HIV-1 CRF02_AG sequences (n = 287) and co-
hort sequences (n = 20), identified 20 naturally occurring
polymorphisms (NOPS): E11D,K14R, V31I, M50I, I72V,
L74MVI, L101I, T112V, T124A, G134N, I135V, K136K/
Q, V201I, T206S, T218I, L234I, A265V, R269K, S283G
(Fig. 2). Three of these (E11D, K14R and V31I) belong

to the NTD, whereas M50I belongs to the loop region
connecting the NTD and CTD. Eleven NOPs (I72V,
L74MVI, L101I, T112V, T124A, T124A, G134N, I135V,
K136K/Q, V201I and T206S) are part of the CCD, and
the remaining five (T218I, L234I, A265V, R269K and
S283G) belong to the CTD.

Molecular modelling and structural quality assessment
The sequence identity between the amino acid se-
quences of HIV-1 CRF02_AG sequence and the homolo-
gous template 5U1C was very high, approximately 93%
and the sequence similarity was found to be 60% be-
tween the two sequences. The high sequence identity
and coverage provides confidence in modelled regions of
the protein structure and reduces the occurrence of any
problematic or unresolved regions within the final pro-
tein model. Figure 3a, shows the 3D tetrameric structure
for HIV-1 CRF02_AG IN that consist of 288 amino
acids, 10 alpha helices, 9 beta sheets and 19 coil regions.
The internal assessment scores calculated for the pre-
dicted model of HIV-1 CRF02_AG had an GMQE score
of 0.10 and a QMEAN4 score of − 2.23, both scores con-
firming reliability of the modelled regions within the
protein structure. Furthermore, the homology model
passed most of the external 3D quality validation checks.
The Verify3D score for the model was predicted to be
71.1% (acceptable for crude structures before energy
minimization), while ERRAT score for all the chains was
86.0% and higher, the PROCHECK analysis indicated
that 98.0% of residues occurred in most favoured and
allowed regions of the Ramachandran plot, and the
Prosa Z-score was − 6.18 which is in range with proteins
of a similar size. Superimposing the template 5U1C onto
the energy minimized structure of HIV-1 CRF02_AG in-
dicated an RMSD value of 0.212 Å, suggesting very little
backbone deviation in main chain atoms (Fig. 3b). Figure
3c, shows the locations of the 15 mutations relative to
the active site.

Gibbs free energy change and interaction analysis
The mCSM predictions indicated that 14 of the 15 mu-
tations (10 RAM’s and five accessory mutations), i.e. the
M50I, T66A, L74I, L74M, T97A, G118S, S119R, P145S,
Q148H, G149A, N155H, E157Q, D232N and R263K
substitutions resulted in destabilizing effects of − 0.582,
− 0.703 -1.069, − 0.93, − 1.051, − 0.492, − 0.091, − 0.485,
− 0.133, − 0.421, − 0.975, − 1.111, − 0.512 and − 0.455
Kcal/Mol each, respectively. Only substitution Q95K re-
sulted in a slightly stabilizing effect of 0.146Kcal/Mol.
Interaction analysis of the single amino acid changes in-
dicated differences in the number and type of interaction
between neighbouring residues and the DNA. The T97A
showed four polar contacts for T97 compared to the
three of A97 (Table 1). This suggests a loss of stable
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contacts in this region that could destabilize the protein
structure. Moreover, T66A, Q148H, N155H, D232N and
R263K mutations all indicated a loss of interactions with
neighbouring residues after the introduction of substitu-
tions, while only the N155H mutation gained an add-
itional interaction with the 3′ terminal viral DNA
Adenine21 (Table 1). Inspection of the E157 residue
showed four contacts with neighbouring residues while
Q157 revealed five polar contacts of which two were
with the 3′ terminal viral DNA (Table 1). In addition,
the remaining other six substitutions; M50I, L74I, L74M,
Q95K, G118S and P145S showed no changes in the
number or type of interactions, implying no strong effect
on the protein structure and function (Table 1). Protein
drug interaction analysis of energy minimized complexes
revealed interesting findings as accessory mutation
E157Q made only one MG ion interaction and D232N
none, while substitutions T66A, T97A, Q148H, R263K
and N155H all had ionic interactions with two MG ions
as well as with DDE motif active site residues and the 3′
terminal viral DNA nucleotides (Table 2) and (Figs. 4a-
h). Most importantly is to note that MG ions are crucial
for DTG coordination to displace viral DNA and thereby
preventing HIV viral integration into host DNA.

Discussion
Despite INSTIs having an increased genetic barrier
against resistance, studies performed from high-income
countries shows that the occurrence of RAMS against
INSTIs can happen, via acquired drug resistance muta-
tions (DRM) and/or transmitted DRM, leading to re-
duced susceptibility to INSTIS and possible treatment
failure [22, 28]. The IN mutations usually associated
with reduced INSTIs susceptibility include both poly-
morphic mutations and non-polymorphic mutations [29,
30]. Other studies have reported that several NOPs can
affect structural stability and flexibility of the IN protein
structure [31, 32]. Previous researchers have reported
low rates of IN mutations against INSTIs in Cameroon

Fig. 1 HIV-1 Integrase phylogenetic analysis inferred by ML. The
Phylogenetic tree inferred in MEGA contains (n = 20) patient derived
sequences in red box and (n = 287) online database sequence
indicated in black box. HIV-1 reference sequences were acquired
from the HIV-1 LANL database, using the 2010 data set. An ML tree
was constructed using Mega version 7.0, with the Kimura 2
parameter. The alignment was based on HXB2 position 4351–5069,
of approximately 700 bp in length. The percentage of replicate trees
in which the associated taxa clustered together in the bootstrap test
(1000 replicates) are shown next to the branches. The bootstrap
values are above 70 indicating significant support for the branches
simulated. The reference sequences are the unboxed sequences. All
of the sequence’s clusters with HIV-1 subtype CRF02_AG. LANL, Los
Alamos National Laboratory; MEGA, Molecular Evolutionary Genetics
Analysis; ML, maximum likelihood
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[15, 20]. The WHO has recommended the utilization of
DTG as part of first-line regimens [16]. With the ap-
proval of INSTIs usage worldwide, it is predicted that
approximately 57% of people living with HIV will be re-
ceiving DTG based regimens, including new-borns and
children [33]. It is therefore imperative to screen for the
presence of mutations against INSTIs which can affect
treatment outcomes. Currently, there is limited data
available for INSTI RAMs from studies that focuses on
the SSA region, where over two-thirds of the presently
infected individuals reside [34, 35]. In our previous stud-
ies we found low level of RAMSs against INSTIs [3].
In a recent study on CRF02_AG IN, we reported that

accessory mutations can impact the binding of DTG
with or without combination of primary resistance mu-
tations [32, 36]. In this study we analysed the CRF02_
AG IN gene sequences for the presence of polymorphic
and non-polymorphic mutations. Four major INSTIs
mutations were found within the database sequences:
T66A, Q148H, N155H and R263K. R263K displayed
moderate level resistance against EVG (12-fold) [37] and
seems to confer low-level resistance against DTG. Struc-
tural analyses have suggested that DTG shares a similar
interfacial mechanism of inhibition with EVG and RAL,
but is able to make more intimate contacts with the viral
DNA [38]. In addition, DTG can adapt its position and
conformation in response to structural changes within
the active site of EVG- or RAL resistant IN enzymes and
in doing so avoid cross-resistance as a result of slower
dissociation rates [39, 40]. Two principal mutation path-
ways identified from our study that reduces susceptibility
to RAL are Q148H/K/R and N155H. These mutations
are located in close proximity to the Integrase’s active
site and each mutation significantly reduces viral fitness
by 92-fold for Q148R, 30-fold for N155H [41]. Q148H
and N155H mutations are thought to trigger

conformational changes within the catalytic pocket that
result in lower binding affinity of INSTIs to IN [42]. The
variant T66A which is normally selected by EVG treat-
ment, was detected in 0.3% of our sequence cohort. This
variant is associated with 5-fold reduced susceptibility to
EVG, however, T66A also bears cross-resistance to DTG
and is selected by RAL [41]. Abraham et al., 2013,
showed that the T66A mutant occurs within the two
distal sheet from the DDE triad motif. The close proxim-
ity of the T66A/I/K variants to the viral DNA 3′ end
and mutation N155H, could sterically hamper viral DNA
binding and/or metal ion coordination with DTG [41].
The fact that only 1.0% of sequences analysed contained
INSTI primary RAMs suggest that mutations against
INSTIs will need to be monitored carefully against
Cameroonians living with HIV. This result is in agree-
ment with other studies done in Africa [20, 43–45] Asia
[46, 47], Europe [48, 49] and South America [50] where
studies showed a low frequency of INSTI primary
RAMs.
In our study, we observed five IN accessory RAMs;

namely Q95K, T97A, G149A, E157Q and D232N. T97A
mutation can reduce EVG susceptibility by 3-fold [41]
and combination of T97A mutation with other INSTI
RAMs lead to reduced susceptibility to RAL [51, 52] and
DTG [53, 54]. E157Q acts as a compensatory mutation
and individually has a negligible effect on the susceptibil-
ity to INSTIs; however, a combination of E157Q with
other INSTI RAMs may lead to reduced susceptibility to
INSTIs [55, 56]. Individuals containing E157Q mutation
in combination with other IN RAMs showed reduced
susceptibility to DTG. Moreover, another rare nonpoly-
morphic accessory resistance mutation Q95K confers lit-
tle if any effect on drug susceptibility to INSTIs [57]. A
study by Axel Fun et al., 2010, showed that this second-
ary mutation enhances N155H-mediated resistance and

Fig. 2 Prevalence of NOPs in IN genes from CRF02_AG subtypes. The figure shows the distribution of variants among the 287 and 20 CRF02_AG
full length integrase sequences. Divided into: N-terminal domain (NTD) (residues 1–50), catalytic core domain (CCD) (residues 50–212) and C-
terminal domain (CTD) composes of amino acids 213–288
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partially restores the reduced replication caused by
N155H [58]. In our study, we detected L74M mutations
at a frequency > 20%, which is not surprising since,
nearly 10% of ARV-Naïve patients infected with CRF02_
AG viruses harbours L74M mutations [59]. This L74M
mutation has minimal if any effect against susceptibly of
INSTIs, but in combination with mutations at positions

140 and 148, it reduces susceptibility of DTG [38, 60,
61]. Within the IN CCD, we observed 11 of the reported
INSTI NOPs. This IN region is important for recogni-
tion of DNA, binding and chromosomal integration of
the newly synthesized double-stranded viral DNA into
the host genomic DNA [62–64]. It contains the endo-
nuclease and polynucleotide transferase site [62–64].

Fig. 3 3D tetrameric structure for HIV-1 CRF02_AG IN. a Three-dimensional tetrameric structure predicted for HIV-1 CRF_02 AG IN in complex
with magnesium ions. Chain A: green, Chain B: cyan, Chain C: Magenta, Chain D: yellow, Magnesium ions shown as spheres coloured in green
and Dolutegravir shown as sticks coloured in red. No DNA shown. b Structural superimposition of HIV-1 AG IN onto HIV-1 B (5U1C) in complex
with MG ions. CRF02_AG IN: green, 5U1C: blue, MG ions shown as magenta spheres. c Locations of stabilizing and destabilizing mutations on
HIV-1 integrase CRF02_AG structure. Mutations that affect the protein structure are labelled and shown as red sticks and mutations with no
effects are also labelled and shown as blue sticks. Magnesium ions shown as spheres coloured in green and Dolutegravir shown as sticks
coloured by atom type
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While in the CTD, a region that helps stabilize the inte-
grase–viral DNA complex, five other NOP mutations
were observed [65]. All of the afore mentioned muta-
tions in either the CCD and/or CTD regions have the
potential to affect the IN protein function and interfere
with INSTIs binding [65].
We further analysed the effect of NOPs on the stability

of the structures and neighbouring residues. Most of the
variants noted in our study were shown to destabilise
the protein structure, except for one mutation Q95K,
that showed to exert a slightly stabilising effect on the
protein structure and no changes in the number of polar
contacts with neighbouring residues making it unlikely
to affect the IN protein structure. It is known that desta-
bilising effects of mutations on the protein structure
might reduce drug binding. This was further explored by
performing interaction analysis between the drug DTG
and energy minimized structures of the WT and mu-
tants T66A, T97A, Q148H, N155H, E157Q, R263K and
D232N. The findings revealed accessory mutations
E157Q and D232N had the potential to reduce and or
prevent DTG binding to HIV-1 CRF02_AG IN structure
based on the loss of MG ion interactions, while known
RAM’s does not seem to influence DTG drug binding.
However, the effect of RAM’s on DTG drug binding
needs to be validated using molecular dynamic simula-
tions to calculate the change in free energy of binding

Table 1 The number of polar contacts observed between WT residue and neighbouring residues before and after the introduction
of the RAM’s and Accessory Mutations

# RAM’s # Polar contacts

WT Mutant

1 M50I None None

2 T66A 2 (His67, Ile73) 1 (Ile73)

3 L74M 1 (Glu87) 1 (Glu87)

4 L74I 1 (Glu87) 1 (Glu87)

5 G118S None None

6 S119R 3 (Thy29, Asn120, Thr122) 3 (Thy29, Glu92, Thr122)

7 P145S 1 (Gln148) 1 (Gln148)

8 Q148H 3 (Pro145, Ser147, Val151) 1 (Pro145)

9 R263K 2 (Thy17, Cys56) 1 (Cys56)

10 N155H 4 (Val151, Glu152, Leu158, Lys159) 5 (Ade21, Val151, Glu152, Leu158, Lys159)

# Accessory Mutations WT Mutant

1 Q95K 2 (Ala98, Tyr99) 2 (Ala98, Tyr99)

2 T97A 4 (Thr93, Gly94, I101) 3 (Thr93, Gly94, Ile101)

3 G149A 4 (Gua18, Gln146, Glu152, Ser153) 4 (Gua18, Gln146, Glu152, Ser153)

4 E157Q 4 (Ser153, Met154, Lys156, Ile161) 5 (Thy20, Ade21, Ser153, Met154, Ile161)

5 D232N 3 (Asp229, Ile234, Lys236) 2 (Asp229, Ile234)

The number in front of brackets is the total amount of interactions. Abbreviations used: Ade Adenine, Ala (A) Alanine, Asp (D) Aspartic acid, Glu (E) Glutamic acid,
Gly (G) Glycine, Gua Guanine, His (H) Histidine, Ile (I) Isoleucine, Leu (L) Leucine, Lys (K) Lysine, Met (M) Methionine, Asn (N) Asparagine, Gln (Q) Glutamine, Arg (R)
Arginine, RAM’s Resistance associated mutations, Ser (S) Serine, Thr (T) Threonine, Thy Thymidine, Tyr (Y) Tyrosine, WT Wild type. Bold indicates a change in amino
acid and nucleotide. Three letter codes for IN protein residues and terminal end viral DNA nucleotides after 3′ processing are given

Table 2 Summary of all interactions observed between DTG
and CRF_02AG IN for the WT and seven mutant structures

# RAM’s/
Accessory
Mutations

CRF_02_AG IN

Hydrogen bonds Ionic contact

1 WT 4 (Ade21, Gua22, Asp64, Asp116) 2 (MG)

2 T66A 2 (Gua22, Glu152) 2 (MG)

3 T97A 3 (Gua22, Asp116, Glu152) 2 (MG)

4 Q148H 3 (Thy11, Gua22, Glu152) 2 (MG)

5 N155H 5 (Thy11, Gua22, Asp64, Cys65, Glu152) 2 (MG)

6 E157Q 3 (Thy11, Gua22, Glu152) 1 (MG)

7 D232N 2 (Thy11, Gua22) None

8 R263K 2 (Gua22, Asp116) 2 (MG)

Number outside bracket indicates total number of interactions. Abbreviations
used: Ade Adenine, Ala (A) Alanine, Asp (D) Aspartic acid, Cys (C) Cysteine, DTG
Dolutegravir, Glu (E) Glutamic acid, Gly (G) Glycine, Gua Guanine, His (H)
Histidine, Lys (K) Lysine, MG Magnesium ions, Asn (N) Asparagine, Gln (Q)
Glutamine, Arg (R) Arginine, RAM’s Resistance associated mutations, Thr (T)
Threonine, Thy Thymidine, WT Wild type. In bold are the two accessory
mutations that lost MG interactions crucial for DTG Binding. Three letter codes
for IN protein residues and terminal end viral DNA nucleotides after 3′
processing are given
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between DTG and HIV-1 CRF02_AG IN. Interestingly, the mu-
tation E157Q occurred within the stable alpha-helix secondary
structure element and made more contacts with DNA (stabiliz-
ing viral DNA complex), while the D232N mutation occurred
within the stable Beta-sheet secondary structure element and in
close proximity to the flexible G140’s loop region suggesting that
these changes can affect the protein conformation and thereby
interfere with drug binding leading to resistance.
A limitation of the study is the use of online database se-

quences that may contain contaminated and truncated se-
quences leading to spurious phylogenetic tree results and
also these databases are not regularly updated. Furthermore,
gaps in the aligned regions between the homologous tem-
plate and target sequence may result in unresolved loop re-
gions within the protein model which is one of the
limitations of 3D protein modelling that can result in in-
accurate interaction prediction. Furthermore, the interaction
analysis was done for only a single static structure of the

protein structure and does not consider the dynamic behav-
iour of the protein structure that might result in the loss and
under estimation of crucial interaction partners. An import-
ant finding in this study is the fact that sequence diversity
amongst different subtypes may affect different folding con-
formations of the HIV-1 IN subtypes thereby allowing not
only RAM’s but accessory mutations to result in less effica-
cious INSTI binding to HIV-1 IN structures.

Conclusion
Molecular modelling and interaction analysis provided novel
insights into the effect of accessory mutations (E157Q and
D232N) on HIV-1 CRF02_AG IN drug resistance. This em-
phasise the need to screen for the presence of INSTIs major
RAM’s and accessory mutations in patients on INSTI treat-
ment. This would help identify pathways that contribute to
drug resistance and help tailor more effective treatment regi-
mens in INSTI naïve patients.

Fig. 4 Interactions formed between DTG and the energy minimized WT and seven mutant structures for HIV-1 CRF02_AG Integrase. a WT HIV-1
CRF02_AG IN showing in total six contacts formed between DTG and two IN residues, two DNA nucleotides and two MG ions. b T66A HIV-1
CRF02_AG IN showing in total four contacts formed between DTG and one IN residue, one DNA nucleotide and two MG ions. c T97A HIV-1
CRF02_AG IN showing in total five contacts formed between DTG and two IN residues, one DNA nucleotide and two MG ions. d E157Q HIV-1
CRF02_AG IN showing in total four contacts formed between DTG and one IN residue, two DNA nucleotides and one MG ion. e Q148H HIV-1
CRF02_AG IN showing in total five contacts formed between DTG and one IN residue, two DNA nucleotides and two MG ions. f R263K HIV-1
CRF02_AG IN showing in total four contacts formed between DTG and one IN residue, one DNA nucleotide and two MG ions. g N155H HIV-1
CRF02_AG IN showing in total seven contacts formed between DTG and three IN residues, two DNA nucleotides and two MG ions. h D232N HIV-
1 CRF02_AG IN showing in total two contacts formed between DTG and two DNA nucleotides. The drug DTG is shown as sticks and coloured in
magenta, the MG ions are shown as spheres coloured in green while the IN protein residues and terminal 3’end viral DNA nucleotides are
labelled and shown as sticks. Three letter codes for IN protein residues and numbers are given as well as the DNA nucleotide three letter codes
and numbers. The nucleotides represent terminal end viral DNA nucleotides after 3′ processing
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