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Abstract

Background: Coronavirus disease 2019 (COVID-19) has caused a global pandemic that has raised worldwide
concern. This study aims to investigate the correlation between the extent of lung infection and relevant clinical
laboratory testing indicators in COVID-19 and to analyse its underlying mechanism.

Methods: Chest high-resolution computer tomography (CT) images and laboratory examination data of 31 patients
with COVID-19 were extracted, and the lesion areas in CT images were quantitatively segmented and calculated
using a deep learning (DL) system. A cross-sectional study method was carried out to explore the differences
among the proportions of lung lobe infection and to correlate the percentage of infection (POI) of the whole lung
in all patients with clinical laboratory examination values.

Results: No significant difference in the proportion of infection was noted among various lung lobes (P > 0.05). The
POI of total lung was negatively correlated with the peripheral blood lymphocyte percentage (L%) (r = − 0.633, P <
0.001) and lymphocyte (LY) count (r = − 0.555, P = 0.001) but positively correlated with the neutrophil percentage
(N%) (r = 0.565, P = 0.001). Otherwise, the POI was not significantly correlated with the peripheral blood white blood
cell (WBC) count, monocyte percentage (M%) or haemoglobin (HGB) content. In some patients, as the infection
progressed, the L% and LY count decreased progressively accompanied by a continuous increase in the N%.

Conclusions: Lung lesions in COVID-19 patients are significantly correlated with the peripheral blood lymphocyte
and neutrophil levels, both of which could serve as prognostic indicators that provide warning implications, and
contribute to clinical interventions in patients.
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Background
In December 2019, several cases of pneumonia of un-
known causes were reported in Wuhan, Hubei Province,
China [1]. It was confirmed that the pneumonia was
coronavirus disease 2019 (COVID-19), which was caused
by a new coronavirus. Later, the International Commit-
tee on Taxonomy of Viruses (ICTV) officially named the
virus severe acute respiratory syndrome coronavirus type
2 (SARS-CoV-2). Studies have shown that SARS-CoV-2,
which is a beta genera coronavirus, shares similarity with
the viruses that cause SRAS and Middle East respiratory
syndrome (MERS); however, SARS-CoV-2 is more
severely contagious [2]. SARS-CoV-2 is principally trans-
mitted through respiratory droplets (cough, sneeze) and
contact, and people of all ages are generally susceptible.
The symptoms after infection mainly include fever, dry
cough, and fatigue. Most patients have a comparatively
good prognosis, and a few quickly progress to acute
respiratory distress syndrome (ARDS), sepsis shock, and
multiple organ failure, which heralds a poor prognosis.
On March 11, 2020, the WHO announced that COVID-
19 has caused a global pandemic. As of March 15, 2020,
COVID-19 had spread in 135 countries and territories
around the world, with more than 330,000 cumulative
confirmed cases and more than 14,000 deaths [3].
COVID-19 generally attacks within 14 days after infec-

tion, and its diagnosis depends on viral nucleic acid testing,
which is susceptible to interference by some factors. More-
over, the sensitivity of nucleic acid testing is relatively lower
than that of computer tomography (CT) (71% vs. 98%) [4].
CT is recommended for clinical screening and observation
of COVID-19 patients due to its high efficiency and object-
ivity. However, visual inspection of CT imaging cannot
attain a quantitative assessment of the infected area and is
incapable of accurately judging the patient’s progress. At
present, artificial intelligence (AI) technology is becoming
increasingly mature. This technology is adept in automatic-
ally identifying complex patterns in imaging data, can
quantitatively evaluate specific imaging features, and has
been widely used in the field of medical imaging [5].
COVID-19 mortality is lower but its morbidity is

higher compared with SARS and MERS [6, 7]. Current
evidence shows that the primary diseased region of
COVID-19 patients is the lungs, and normal or decreased
peripheral leukocytes, as well as reduced lymphocyte
counts, are noted [8, 9]. Based on the current diagnostic
sensitivity of high-resolution CT (HRCT), early changes in
the lungs of COVID-19 patients are easily detected. To
ensure the accuracy of diagnosis, it is necessary to com-
bine CT results with clinical laboratory testing indicators.
However, there is a lack of evidence that indicates the
exact relationship between COVID-19 progression and la-
boratory testing indicators. To further clarify the dynamic
changes of relevant clinical laboratory test indicators and

their significance in the diagnosis and treatment of
COVID-19, this study intends to use AI technology to
quantitatively evaluate the extent of pulmonary lesions in
COVID-19 patients and, in combination with their re-
spective blood observation indexes, to explore the correl-
ation between the two factors, so as to provide a clinical
reference.

Methods
Study design
Chest HRCT images and laboratory examination data of
COVID-19 patients were extracted, and lesion areas in
the CT images were quantitatively segmented and calcu-
lated using the deep learning (DL) system. A cross-
sectional study was conducted to investigate the correl-
ation between lung infection and clinical laboratory indi-
cators in patients with COVID-19 pneumonia.

Participants
Thirty-one patients with a diagnosis of COVID-19 were
collected from January 21, 2020, to February 4, 2020, in
Jingmen No.1 People’s Hospital, Hubei Province, China.
All patients received a respiratory or blood specimen test
via fluorescent reverse-transcription polymerase chain
reaction (RT-PCR), and the results were positive for new
coronavirus nucleic acids. Furthermore, the viral gene
sequence must be highly homologous to the new cor-
onavirus sequence. All participants underwent a HRCT
scan and peripheral blood laboratory testing on the same
day without other basal diseases that may affect labora-
tory observation indicators (such as combined bacterial
infection and immunosuppression).
In order to comprehensively evaluate the severity of

the included patients, the clinical classification of each
patient was determined based on his (her) clinical mani-
festations, radiological and laboratory examination
results to serve as a supporting data for the degree of
pulmonary infection. The new coronavirus pneumonia
diagnosis and treatment plan (trial version 7) (ncpDTP-
7) developed by the National Health Commission of the
People’s Republic of China [10] was used as a diagnostic
standard. These patients have not been reported in any
other submission by anyone else.

Imaging data acquisition and post-processing
HRCT images were collected in the Department of Radi-
ology, Jingmen No.1 People’s Hospital, Hubei Province.
A GE MEDICAL SYSTEMS LightSpeed VCT scanner
was used. All patients were supine, and the images were
captured after the patients were instructed to hold his
(her) breath. The following scanning parameters were
employed: slice thickness, 1.25 mm; field of view (FOV),
354.0 mm; tube voltage, 120 kV; tube current, 278 mA;
and image zoom, 1.00. The AI analysis software used for
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image processing was a deep learning system developed
by Shanghai United Imaging Intelligence Co., Ltd. and
Shanghai Public Health Clinical Center, Fudan University
(New Coronavirus Pneumonia Auxiliary Analysis Software,
version number: Full-uAI-Discover-NCP.R001.0.0.15980)
[11]. The lung window (with window width 1200 HU and
window level − 600 HU) was used for image reading.

Laboratory inspection data collection
We scrutinized the clinical data of all laboratory-
confirmed COVID-19 patients in the in-hospital medical
records system, including clinical charts, laboratory test
results, radiological diagnosis opinions and nursing re-
cords, and extracted the clinical laboratory examination
indicators of each patient through standardized data col-
lection. After the collection of clinical laboratory inspec-
tion indicators, the data were independently reviewed
and checked by two researchers to ensure that the rele-
vant values were accurate.

Observation indicators
The original HRCT images of 31 patients were extracted
from the Picture Archiving and Communication System
(PACS), and all patients were randomly numbered for
identification (patient 1, patient 2, ..., patient 31). The
lungs of each patient were divided into 20 bronchopul-
monary segments based on anatomical division by DL
system, and lesions of the whole lung and each lung lobe
were calculated. The infection regions were determined
through identifying ground-glass opacity (GGO) (− 750
HU to − 300 HU) and consolidation component (− 300
HU to 50 HU) in the lungs. Besides, a small number of
voxels with Hounsfield unit (HU) values not falling
within the interval [− 750, 50] were surrounded by
GGOs or consolidation area, which were also designated
as the infected area by the system [11]. Specific steps: 1)
input the HRCT images into the DL automatic segmen-
tation system; 2) calculate the quantitative metrics that
characterize infected regions, including but not limited
to the volume of infection (VOI) and the percentage of
infection (POI) in the whole lung, lung lobes and
bronchopulmonary segments.
Figure 1 shows the software interface obtained by

inputting the original HRCT images of one patient into
the DL automatic segmentation system. The HU histo-
gram within the infection regions can be visualized.
Figure 2 shows the CT image segmentation results of
typical COVID-19 infection cases at three different
infection stages: the early stage, progressive stage, and
severe stage. The contour drawn by the DL system coin-
cided with the lesion boundary visible in the CT image.
The peripheral blood white blood cell (WBC) count,

neutrophil percentage (N%), lymphocyte percentage (L%),
monocyte percentage (M%), lymphocyte (LY) count, and

haemoglobin (HGB) content were extracted. Laboratory
examination and HRCT image acquisition of each patient
were completed on the same day. Two independent
researchers verified all the values.

Statistical analysis
The Shapiro-Wilk test was used to verify the normality
of the data. The Kruskal-Wallis test was performed on
the POIs of the following five lung lobes: the left upper
lobe, left lower lobe, right upper lobe, right middle lobe,
and right lower lobe. The Spearman correlation test was
carried out to analyse the correlation between the total
pulmonary POI and the peripheral blood WBC count,
N%, L%, M%, LY count, and HGB content. SPSS 19.0
statistical software (IBM Company, Armonk, NY) was
employed.

Results
A total of 31 COVID-19 patients were involved in this
study, including 18 males (58.1%) and 13 females
(41.9%). The patients were 17 to 80 years old with an
average age of 42.6 ± 16.0 years. Of the 31 patients, 8

Fig. 1 Software interface obtained by inputting original HRCT
images of one patient into the DL system. The VOIs and POIs in the
lung lobes and bronchopulmonary segments are presented; the HU
histogram within the infection regions can be visualized
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(25.8%) had one or more comorbidities. The most com-
mon symptoms at the initial stage of illness were fever
[29 (93.5%)], cough [15 (48.4%)]. Less common symp-
toms were fatigue [2 (6.5%)], myalgia [1 (3.2%)] and diar-
rhea [1 (3.2%)]. The average interval from illness onset
to CT scan was 8.8 ± 5.7 days, and the mean duration of
hospitalization before the CT scan was 2.6 ± 3.5 days.
The average proportion of affected lungs calculated by
AI was 8.91% ± 15.01%. Thereinto, 21 patients (67.7%)
had an infection of less than 5%; 5 patients (16.1%) were
between 5 and 20%, the other 5 (16.1%) were for more
than 20%. According to the criteria in ncpDTP-7, 23
patients (74.2%) were moderate, 4 (12.9%) were severe
and remaining 4 (12.9%) met the critical type. More
demographic data and laboratory tests of the study
group are listed in Table 1.
The status of pulmonary infection is presented in

Table 2. No significant difference was noted among the

proportions of pulmonary lobe infection (P > 0.05).
Correlation analysis found that the total pulmonary POI
was negatively correlated with the L% (r = − 0.633, P <
0.001, Fig. 3a) and the LY count (r = − 0.555, P = 0.001,
Fig. 3b) but positively correlated with the N% (r = 0.565,
P = 0.001, Fig. 3c). The peripheral blood WBC count,
M% and HGB content did not significantly correlate
with the total POI of the lungs (Table 3).
In the data we collected, of note, several patients in

different disease periods showed a dynamic trend of
progressively decreased L% and LY count, accompanied
by continuously increased N%, which correlated with the
increase in the pulmonary infection volume (Table 4,
Fig. 4).

Discussion
The lungs are more vulnerable to SARS-CoV-2 than
other organs. Pathological studies have shown that the

Fig. 2 Lesion segmentation results of three COVID-19 cases displayed using the software post-processing platform. Rows 1–3: early, progressive,
and severe stages. Columns 1–3: CT image, CT images overlaid with segmentation, and 3D surface rendering of segmented infections
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primary changes in the lungs of COVID-19 patients in-
clude diffuse alveolar injury, fibrinous protein exudation,
and alveolar cell desquamation accompanied by trans-
parent membrane formation and lymphocyte-based
inflammatory cell infiltration in the stroma [12]. A hand-
ful of autopsy reports have further demonstrated that
COVID-19 is a disease that induces multi-organ and
multi-system damage and does not simply affect the
lungs [13]. The immune system damage caused by SARS-

Table 1 Demographics, clinical characteristics, and laboratory
findings of COVID-19 patients

Characteristics

Age, years 42.6 ± 16.0

< 40 16 (51.6%)

40–60 12 (38.7%)

> 60 3 (9.7%)

Sex

Female 13 (41.9%)

Male 18 (58.1%)

Hypertension/ diabetes /cardiovascular disease/
cerebrovascular disease/COPD/kidney disease

8 (25.8%)

Signs and symptoms

Fever 29 (93.5%)

Cough 15 (48.4%)

Fatigue 2 (6.5%)

Myalgia 1 (3.2%)

Diarrhea 1 (3.2%)

Interval from illness onset to CT scan, days 8.8 ± 5.7

Days of clinical intervention before CT scan 2.6 ± 3.5

Proportion of affected lungs calculated by AI (%) 8.91 ±
15.01

< 5% 21 (67.7%)

5–20% 5 (16.1%)

> 20% 5 (16.1%)

Clinical classification according to ncpDTP-7

Mild 0 (0.0%)

Moderate 23 (74.2%)

Severe 4 (12.9%)

Critical 4 (12.9%)

Arterial blood gas on the day of CT scan

PaO2, mmHg 57.7 ± 19.8

< 60 4/6 (66.7%)

≥ 60 2/6 (33.3%)

PaCO2, mmHg 42.7 ± 6.8

≤ 50 5/6 (83.3%)

> 50 1/6 (16.7%)

Laboratory findings

White blood cell count, × 109/L 4.80 ± 1.87

< 4 13 (41.9%)

4–10 17 (54.8%)

> 10 1 (3.2%)

Lymphocyte percentage (%) 30.3 ± 13.3

Lymphocyte count, ×109/L 1.35 ± 0.59

Neutrophil percentage (%) 57.4 ± 14.1

Monocyte percentage (%) 11.0 ± 3.7

Hemoglobin, g/L 131.4 ±

Table 1 Demographics, clinical characteristics, and laboratory
findings of COVID-19 patients (Continued)

Characteristics

18.1

AST, U/L 35.3 ± 28.6

≤ 40 21/30
(70.0%)

> 40 9 /30
(30.0%)

ALT, U/L 26.7 ± 18.4

≤ 35 25/30
(83.3%)

> 35 5 /30
(16.7%)

CRP, mg/L 19.2 ± 30.1

≤ 5 10/21
(47.6%)

> 5 11/21
(52.4%)

CK, U/L 148.3 ±
271.9

≤ 200 25/28
(89.3%)

> 200 3/28
(10.7%)

Continues data are expressed as mean ± SD. Categorical data are presented as
n (%) or n/N (%), where N is the total number of patients with available data
Abbreviations: COVID-19 coronavirus disease 2019, COPD chronic obstructive
pulmonary disease, CT computer tomography, AI artificial intelligence,
ncpDTP-7 new coronavirus pneumonia diagnosis and treatment plan (trial
version 7), AST aspartate transaminase, ALT alanine transaminase, CRP C-
reactive protein, CK creatine kinase

Table 2 Lung (lobes) average infection volume and proportion

Anatomical partition VOI (cm3) POI (%)

Whole lung 281.19 ± 421.55 8.91 ± 15.01

Left lung 115.45 ± 191.99 7.81 ± 13.26

Upper lobe 57.02 ± 108.02 7.72 ± 14.92

Lower lobe 58.44 ± 93.80 10.31 ± 20.26

Right lung 165.73 ± 243.46 9.98 ± 17.14

Upper lobe 54.39 ± 89.82 9.50 ± 18.50

Middle lobe 20.44 ± 39.93 8.20 ± 18.54

Lower lobe 90.91 ± 123.99 13.54 ± 22.82

Data are expressed as mean ± SD
Abbreviations: VOI volume of infection, POI percentage of infection
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CoV-2 should not be underestimated. The spleen volume
of COVID-19 patients is significantly reduced, and the
number of CD4+ T cells and CD8+ T cells in the spleen
and peripheral lymph nodes is also reduced; such effects
are accompanied by tissue degeneration and necrosis as
well as a proliferation of macrophages, which are specific-
ally like those noted with SARS-CoV infection [14–16].
Lymphocytopenia seems to potentially signify that COVID-
19 may deplete and disrupt the immune system in some
direct or indirect manner, resulting in an AIDS-like re-
sponse. Studies on SARS indicate that SARS-CoV cannot
infect human lymphocytes and monocytes in vitro and that
attacking lymphocytes and mononuclear cells with infec-
tious SARS-CoV, inactivated virus particles, or receptor
protein-binding fragments of the virus is unable to trigger
an apoptotic response [17]. Besides, autopsies of COVID-
19 patients yielded negative immunohistochemistry and
PCR results from spleen, bone marrow, and peripheral
lymphoid tissues. The above results suggest that SARS-
CoV-2 is unlikely to destroy the human immune system via
a direct mechanism. The reason is probably related to the
lack of angiotensin-converting enzyme 2 (ACE2) expression
in human immune tissues or organs [18, 19].

However, the mechanism underlying lymphopenia in per-
ipheral blood of COVID-19 patients remains unclear. There
are three possible explanations: a) The inflammatory storm
gives rise to the destruction and consumption of lympho-
cytes. Studies have shown that the strong type I interferon
(IFN) response caused by a viral infection and the high
levels of glucocorticoids caused by normal stress responses
can induce T cell apoptosis [20, 21]. Also, the intense cyto-
kine storm itself experienced by SARS patients can induce
lymphocyte apoptosis [17, 22], suggesting that lymphocyte
apoptosis might exist in COVID-19 patients. b) Reduced
lymphocyte production. Any debilitating disease inevitably
activates the stress response mediated by the hypothalamic-
pituitary-adrenal (HPA) axis and increases cortisol secre-
tion. Steroid levels in the blood can significantly affect the
number and biological behaviour of lymphocytes in the cir-
culatory system. Robertson et al. reported that glucocorti-
coids can induce human lymphoblast apoptosis; even under
physiological conditions, the number of lymphocytes also
has a significant negative correlation with the circadian
rhythm of the cortisol content [23–25]. After viral infection,
the body exhibits a stress reaction, and the HPA axis is acti-
vated to produce more steroids, thus inhibiting the level of
lymphocytes in the circulatory system. Of course, the possi-
bility that the lymphocyte levels also change after patients
receive an exogenous cortisol treatment cannot be ex-
cluded. However, many COVID-19 patients have exhibited
a decreasing trend in lymphocytes in peripheral blood be-
fore receiving a clinical intervention. At present, contro-
versy exists regarding whether glucocorticoids should be
used to relieve the symptoms of patients with severe viral
pneumonia [7, 26–28]. The application of glucocorticoids
in the treatment of COVID-19 should be considered dia-
lectically. Besides, whether glucocorticoids can cause im-
munosuppression in SARS-CoV-2-infected patients and the
relationship between the dosage of glucocorticoids and the
prognosis of patients still require further research. c) Ab-
normal distribution of lymphocytes in the body. The

Fig. 3 Correlation between total pulmonary POI and L%, LY count, or N%. POI of the total lung was negatively correlated with the L% [r = −0.633,
P < 0.001, (a)] and LY count [r = − 0.555, P = 0.001, (b)] but positively correlated with the N% [r = 0.565, P = 0.001, (c)]

Table 3 Correlation between total lung infection and the
clinical laboratory indicators

POI of whole lung

Correlation coefficient (r) P-value*

Lymphocyte percentage −0.633 0.000

Lymphocyte count −0.555 0.001

Neutrophil percentage 0.565 0.001

White blood cell count 0.057 > 0.05

Monocyte percentage 0.097 > 0.05

Haemoglobin content −0.193 > 0.05

*P < 0.05 was considered statistically significant
Abbreviations: POI percentage of infection
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immune response of the respiratory tract to invasive patho-
gens is initiated by airway epithelial cells. After airway
epithelial cell infection, resident respiratory dendritic cells
(DCs) are activated by pathogens or antigens to process an-
tigens and simultaneously migrate to peripheral lymphoid
organs. After arriving at peripheral lymphoid organs, DCs
present the processed antigens to immature T lymphocytes
in the form of the major histocompatibility complex
(MHC)-peptide complex. After binding to the MHC-
peptide complex, T cells are activated to proliferate and mi-
grate to the infected site [29, 30]. This process will inevit-
ably lead to the redistribution of lymphocytes in the lesion

and other areas. It is worth noting that the effect of
COVID-19 on the immune system does not simply involve
reducing the number of lymphocytes via a specific mechan-
ism, which is quite likely attributed to a combination of the
above three reasons. The exact mechanism of this change
needs to be confirmed by relevant cellular and molecular
pathology research. In addition, our study also demon-
strated that the number and percentage of lympho-
cytes decreased progressively as COVID-19 progressed,
suggesting that the level of lymphocytes in the blood
might be a biomarker to predict the prognosis of
COVID-19 patients.

Table 4 Dynamic changes of the lung infection volume and laboratory indicators in some patients

Infected lung volume (cm3) Neutrophil percentage (%) Lymphocyte percentage (%) Lymphocyte count (×109/L)

Patient 18

Time 1 572.2 52.0 28.8 1.33

Time 2 957.7 72.5 19.5 1.38

Time 3 1596.4 95.9 1.7 0.31

Patient 22

Time 1 202.7 57.8 28.6 0.99

Time 2 298.8 60.2 30.3 0.88

Patient 24

Time 1 157.1 64.0 23.4 1.25

Time 2 198.3 67.2 18.9 1.08

Patient 27

Time 1 3.4 52.0 33.3 1.15

Time 2 330.2 70.1 19.8 0.85

Patient 28

Time 1 852.4 66.3 24.7 0.74

Time 2 1299.7 85.0 8.5 0.36

Fig. 4 Dynamic trend of L%, LY count, and N% in several patients. As the pulmonary infection volume increased, L% and LY count exhibit
progressively decreased accompanied by continuously increased N%
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Our study also found a significant positive correlation
between the percentage of neutrophils in peripheral
blood and the severity of pulmonary infection. Neutro-
phils are differentiated from hematopoietic stem cells in
the bone marrow and exhibit active chemotaxis, phago-
cytosis, and bactericidal effects. As the most abundant
leukocytes in the circulatory system, neutrophils play a
central role in the natural immune system and partici-
pate in the regulation of adaptive immune responses.
Generally, neutrophil activation is more sensitive to bac-
terial infection, but research on SARS has shown that
cytokines and complement activation play an important
role in the progression of SARS, which is related to neu-
trophil activation and aggregation [31, 32]. Based on this
finding, it is hypothesised that the increased proportion
of neutrophils in peripheral blood of patients with
COVID-19 may also be related to the production of
multiple cytokines (such as IFN-γ) and the activation of
the complement system after infection with the virus.
Moreover, if the patient is infected with bacteria in the
late stage of the disease, the percentage of neutrophils
would also increase. A retrospective study involving
1312 patients with SARS reported that the neutrophil
count is a highly reliable prognostic indicator of fatality
in SARS-CoV-infected patients, predicting relatively high
mortality [33]. Evidence also suggests that when people
are infected with some severe respiratory viruses (such
as SARS-CoV, H5N1), neutrophil infiltration into the
lungs will produce high levels of chemokines, such as C-
X-C motif chemokine 10 (CXCL10), which can induce
fulminant pneumonia and aggravate the ARDS [34].
Based on the above reasons, we suggest that the neutro-
phil level in peripheral blood should be an area of focus
during the treatment of COVID-19 patients. Once the
neutrophil level in peripheral blood becomes abnormal,
certain interventions and related supportive treatment
should be administered in time to improve the prognosis
and to reduce the fatality rate.
Our research has the following limitations. First, the

sample size is small, and the data are not normally
distributed. Thus, the information obtained may exhibit
deviations. Subsequent research with a larger sample is
needed to further reveal the specific relationship
between these two factors. Second, the inconsistency in
the treatment options of the patients included is also
another limitation. Although it has been confirmed that
the lymphocyte count in COVID-19 patients is reduced
before they receive treatment, it cannot be excluded
that different treatment options administered during
hospitalization could bias the results.

Conclusions
In this study, AI was used to assess the extent of
pulmonary lesions in COVID-19 patients, and the

correlation between overall lung lesions and related clin-
ical laboratory tests was analysed, revealing that the
reduction in the peripheral blood lymphocyte level and
the increase in the neutrophil level caused by COVID-19
were significantly related to the degree of lung lesions.
Moreover, the dynamic changes of the two indicators
after SARS-CoV-2 infection could play a role in guiding
the choice of treatment options for patients.
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