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Abstract

Background: Infectious diarrhea can lead to a considerable global disease burden. Thus, the accurate prediction of
an infectious diarrhea epidemic is crucial for public health authorities. This study was aimed at developing an
optimal random forest (RF) model, considering meteorological factors used to predict an incidence of infectious
diarrhea in Jiangsu Province, China.

Methods: An RF model was developed and compared with classical autoregressive integrated moving average
(ARIMA)/X models. Morbidity and meteorological data from 2012 to 2016 were used to construct the models and
the data from 2017 were used for testing.

Results: The RF model considered atmospheric pressure, precipitation, relative humidity, and their lagged terms, as
well as 1–4 week lag morbidity and time variable as the predictors. Meanwhile, a univariate model ARIMA (1,0,1)(1,0,
0)52 (AIC = − 575.92, BIC = − 558.14) and a multivariable model ARIMAX (1,0,1)(1,0,0)52 with 0–1 week lag
precipitation (AIC = − 578.58, BIC = − 578.13) were developed as benchmarks. The RF model outperformed the
ARIMA/X models with a mean absolute percentage error (MAPE) of approximately 20%. The performance of the
ARIMAX model was comparable to that of the ARIMA model with a MAPE reaching approximately 30%.

Conclusions: The RF model fitted the dynamic nature of an infectious diarrhea epidemic well and delivered an
ideal prediction accuracy. It comprehensively combined the synchronous and lagged effects of meteorological
factors; it also integrated the autocorrelation and seasonality of the morbidity. The RF model can be used to predict
the epidemic level and has a high potential for practical implementation.
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Background
Infectious diarrhea is one of the major causes of morbid-
ity and mortality in infants and younger populations. It
is a major global public health issue, particularly in de-
veloping countries [1]. In 2015, diarrheal diseases led to

an estimated 688 million illnesses and 499,000 deaths
among children under the age of 5 [2]. Over the past
decade, morbidity has also increased in various regions
in China [3]. Thus, an accurate forecast of infectious
diarrhea based on predictive models is crucial for public
health authorities to clearly understand its epidemic
characteristics, track seasonal updates in advance, and
select the main response actions such as the surveillance
of disease and deployment of emergency supplies [4].
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The autoregressive integrated moving average (ARIMA)
model has been widely used as classical method for diarrhea
incidence prediction, however, it has some limitations at the
same time [4–7]. For example, Yang et al. [4] used the
ARIMA model without climate terms in an early warning
systems for diarrhea but achieved a poor fit. Several studies
have reported that meteorological factors are associated with
diarrhea and can be used to predict its incidence [8, 9]. Yan
et al. [7] developed a multivariable ARIMA (ARIMAX)
model considering temperature and rainfall but only
achieved high short-term predictive accuracy, possibly be-
cause the ARIMAX model assumed linear relationships be-
tween the independent and dependent variables. However,
meteorological factors have been reported to be non-linearly
associated with the infectious diarrhea epidemic [9, 10].
The RF model is a new regression method and can ad-

dress the limitations of ARIMA/X models in the predic-
tion of diarrhea incidence [11–14]. It can effectively
extract non-linear relationships from data. The RF model
uses independent variables to create classification and re-
gression trees (CARTs), wherein each constituent tree is
trained on a potentially non-linear regression space. The
RF model may achieve predictive stability in terms of the
actual instable morbidity. Using the RF model, the training
set for each tree is randomly selected from the data, and
the final predicted value is the average of all CART out-
puts. RF model has been widely used for infectious-disease
prediction such as West Nile virus infection and Bovine
viral diarrhea [12, 13]. Notably, Michael et al. [14] re-
ported that an RF model has advantages over the ARIMA
model in predicting avian influenza H5N1 outbreaks.
However, no studies have used an RF model to predict the
incidence of infectious diarrhea .
This study was aimed at developing an optimal RF model

for predicting infectious diarrhea epidemics with meteoro-
logical factors in Jiangsu Province, China. Meanwhile, the
performance of the RF model was compared with those of
the ARIMA/X models. The model can be used to develop
an early warning system for infectious diarrhea to facilitate
preventive strategies in a more effective manner.

Methods
Study area
Jiangsu Province, located along the eastern-coast of
China (latitude 30°45′-35°20′N and longitude 116°18′-
121°57′E), has an area of 102,600 km2 and a population
of approximately 80 million. It has a typical temperate
subtropical monsoon climate with mild temperature,
moderate rainfall and a distinct four-season pattern.

Data sources
In China, infectious diarrhea (excluding cholera, dysentery,
typhoid and paratyphoid) is an intestinal infectious disease
with diarrhea and/or vomiting as the main symptom. It

has been listed as a legal Class C infectious disease [3]. An
infectious diarrhea case, clinically diagnosed or etiologic-
ally confirmed by any hospital or healthcare institution
throughout the country, must be reported timely and dir-
ectly to the National Notifiable Disease Surveillance Sys-
tem (NNDSS) [15] (http://www.cdpc.chinacdc.cn). In this
study, the weekly numbers of infectious diarrhea cases in
Jiangsu Province during 2012–2017 were downloaded
from the NNDSS, including both clinically diagnosed and
etiologically confirmed cases.
The demographic data were collected from the Jiangsu

provincial statistics department. The weekly meteorological
factors were calculated based on the daily data obtained
from the Jiangsu Meteorological Service Center. The data
included atmospheric pressure, mean temperature, max-
imum temperature, minimum temperature, precipitation,
relative humidity and sunshine duration.

ARIMA/X model
ARIMA model, namely the Box−Jenkins model, has been
widely used for time series analysis [16]. The seasonal
ARIMA, that incorporates seasonal variation based on
ARIMA model, performs better in the presence of clear
seasonal patterns [17, 18]. It is denoted as ARIMA(p,d,
q)(P,D,Q)s, where p, d and q indicate the orders of gen-
eral auto-regression (AR), differencing and moving aver-
age (MA) terms; P, D and Q are the orders of seasonal
AR, differencing and MA terms, respectively; and s is
the seasonal periodicity (s = 52 weeks in this study) [18].
The fitting of the ARIMA model involves the following

three essential steps:
First, an augmented Dickey−Fuller test is conducted to

detect whether the original time series is stationary (stat-
istical properties such as the mean and variance are all
constant over time). If not, a logarithmic transformation
or difference is adopted to achieve stability.
Second, ARIMA models are established for a station-

ary time series, and the model with the minimum Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) values is considered the optimal model.
The model parameters are then estimated using the con-
ditional least squares method.
Third, to verify the adequacy of the ARIMA model, a

Box−Ljung test is conducted to check whether the re-
sidual series is a white noise sequence. A white noise se-
quence is a purely random time series without an
autocorrelation, and useful information cannot be ex-
tracted from the sequence for model fitting. If not, the
model must be reestablished. Finally, a prospective pre-
diction is conducted using the optimal model.
Based on the optimal ARIMA model, a multivariate

ARIMA model including meteorological factors as exter-
nal regressors [19] is further developed, and is referred
to as the ARIMAX model.
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In this study, the ARIMA/X models were used as refer-
ences to evaluate the performance of the RF model. A
cross-correlation analysis was used to identify the lagged
associations (1–4 week lag [20, 21]) between the meteoro-
logical factors and the incidence of infectious diarrhea.

RF model
RF model is an ensemble machine learning method pro-
posed by Breiman [11]. It creates multiple CARTs,
wherein each tree is trained on a bootstrap sample of the
original training data using a randomly selected subset of
input variables, and taking the average outputs of the
CARTs as the final prediction. One of its most important
features is the calculation of the variable importance,
which measures the association between a given variable
and the accuracy of the prediction, based on the percent-
age of increase in the mean square-error (%IncMSE).
The RF model fitting consists of four essential steps [14]:
First, a bootstrap sampling method is used to ran-

domly select sample units from the original training data
to create multiple CARTs.
Second, the bootstrap sampling method is used again

to select the candidate variables for each CART. In this
study, the related meteorological variables were chosen
as the predictors. Meanwhile, the 1–4 week lag morbid-
ity and time variable were incorporated into the RF
model to consider the effects of autocorrelation and sea-
sonality of the dependent variable, respectively.
Third, the average outputs from all CARTs are calcu-

lated as the final predictive value.
Fourth, the importance of each variable is assessed

based on the reduction in accuracy.

Model evaluation
Three models were fitted during this study, namely an RF
model with meteorological factors, a univariate ARIMA
model and a multivariate ARIMAX model. The data sub-
set for the period of 2012–2016 was used as the training
set to fit the models, and data from 2017 were used as the
test set to evaluate the forecasting accuracy. The root
mean square error (RMSE) and mean absolute percentage
error (MAPE) were selected to evaluate the performance
of each model; they were calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
t¼1 ŷt−ytð Þ2

n

s

MAPE ¼ 1
n

X

n

t¼1

ŷt−ytj j
yt

where n is the number of real data or predicted values,
yt is the real data, and ŷt is the predicted value.

Statistics analysis
All analyses were conducted in R (version3.5.1). A sea-
sonal decomposition was conducted to elucidate the tem-
poral pattern of infectious diarrhea. The RF model was
fitted using the “randomForest” package, and the ARIMA/
X models were fitted using the “Forecast” package.

Results
General description
A total of 102,020 cases were detected during 2012–
2017 in Jiangsu Province, China, reaching an annual
average incidence of 21.40 per 100,000. As shown in
Fig. 1, the incidence exhibited an increasing long-term
trend during these 6 years. Moreover, a distinct seasonal-
ity was exhibited, i.e., two incidence peaks were observed
during each year: namely higher winter peak from De-
cember to February and a lower summer peak from July
to September. The descriptive statistics for the meteoro-
logical factors were summarized in Table 1.

Correlation analysis
As presented in Table 2, the atmospheric pressure and
precipitation were significantly associated with 0–2 week
and 0–3 week lag morbidity, respectively. Meanwhile, the
relative humidity was related to the synchronous morbid-
ity (rs = − 0.13, P = 0.02). The temperature variables and
sunshine duration were not correlated with the incidence.

Model fitting
ARIMA/X model
The original time series of the incidence of infectious
diarrhea was stationary (Dickey−Fuller = −4.26, P < 0.01).
Univariate ARIMA models were developed. The best-
fitting ARIMA model was determined to be ARIMA (1,
0,1)(1,0,0)52, with a minimum AIC = − 575.92 and a
minimum BIC = − 558.14. The Ljung−Box test results
suggested that the residual series of the model was a
white noise sequence (χ2 = 0.01, P = 0.93).
Next, related meteorological factors were added as co-

variates into the optimal ARIMA model to establish the
multivariate ARIMAX models. Finally, ARIMAX (1,0,
1)(1,1,0)52 with 0–1 week lag precipitation was identified
as the optimal ARIMAX model, with a minimum AIC of
− 578.58 and a minimum BIC of − 578.13 (Ljung−Box
test: χ2 = 0.00548, P = 0.10).
RF model.
An RF model was constructed using atmospheric

pressure, precipitation and their lagged terms, relative
humidity, 1–4 week lag morbidity and time variable as
predictors. Figure 2 indicated that the lag dependent
terms were the most imperative among all the applied
predictors. The atmospheric pressure and its lagged
terms were the most vital meteorological factors,
followed by a lag in precipitation.
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Prediction performance comparison
Table 3 compared the RF and ARIMA/X models, the
predictive outputs of which were reported in Fig. 3.
The RF model with meteorological factors outper-
formed the ARIMA/X models in both model fitting
and prospective stages in terms of RMSE and MAPE.
The values predicted by the RF model matched the
actual values very well, with a MAPE of approxi-
mately 20%. The performance of the ARIMAX model
was comparable to that of the ARIMA model with a
high MAPE of approximately 30%.

Discussion
The incidence of infectious diarrhea in Jiangsu Province
exhibited a long-term gradual growth trend. Mathematical
prediction models are urgently required to reinforce inte-
grated management to monitor, control and prevent infec-
tious diarrhea. We constructed an RF model with
meteorological factors, which delivered a good accuracy in
predicting the incidence of infectious diarrhea with a
MAPE of approximately 20%. It can relatively estimate the
seasonal fluctuation of this disease well. The model may
be used as an important tool by public health authorities.

Fig. 1 Weekly observed cases of infectious diarrhea in Jiangsu Province, 2012–2017. Note: From top to bottom, the lines represent actual
observations, the trend, seasonal, and random components

Table 1 Summary of weekly meteorological factors in Jiangsu Province, 2012–2017

Variable Min P25 Median P75 Max

Atmospheric pressure (Pa) 998.58 1007.02 1015.38 1022.56 1032.09

Mean temperature (°C) −2.19 7.39 17.13 23.67 32.65

Maximum temperature (°C) 1.25 12.36 22.38 27.60 37.41

Minimum temperature (°C) −4.77 3.59 13.08 20.63 28.24

Relative humidity (%) 45.93 68.06 74.69 80.40 91.88

Precipitation (mm) 0.00 3.53 11.94 30.12 59.66

Sunshine duration (h) 2.25 27.71 37.50 48.72 82.01
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The RF model is more suitable than the ARIMA/X
method for predicting an infectious diarrhea epidemic
within the study region. The performance of the ARIMAX
model was comparable to that of the ARIMA model,
which suggested that the introduction of meteorological
factors did not significantly optimize the prediction accur-
acy of the ARIMA model. This finding was consistent with
the findings of other previous studies [3–5]. The RF model
provided a meaningfully better fit to the data in terms of
RMSE and MAPE. Compared with the ARIMA/X models,
the prediction error of the RF model decreased by ap-
proximately 50 and 30% in the training and testing sets,
respectively. This is because the RF model can better fit

non-linear relationships. Moreover, compared with the
ARIMAX model, the RF model is not influenced by the
multicollinearity, mainly because of the random selection
of variables for each tree in the RF [11]. The meteoro-
logical factors and their lagged terms were incorporated
into the models when they significantly correlated with
the morbidity. All of them exhibited a certain degree of
importance, which suggested that the RF model com-
prehensively combined the climatic variables and their
lagged effects. In particular, the models partly underes-
timated the incidence of infectious diarrhea in 2017.
This is primarily due to the sharp increase in morbidity
in 2017, which indicated that the potential influencing

Table 2 Cross correlation coefficients between infectious diarrhea and meteorological factors in Jiangsu Province, 2012–2017

Lag Atmospheric
pressure (Pa)

Mean
temperature (°C)

Maximum
temperature (°C)

Minimum
temperature (°C)

Relative
humidity (%)

Precipitation
(mm)

Sunshine
duration (h)

0 0.21** −0.10 −0.09 −0.11 −0.13* −0.23** 0.07

1 0.17** −0.06 −0.06 −0.07 −0.08 −0.22** 0.05

2 0.12* −0.02 −0.01 −0.02 −0.04 −0.14* 0.03

3 0.08 0.03 0.03 0.03 −0.02 −0.12* 0.04

4 0.04 0.08 0.08 0.08 0.04 −0.08 0.05

Note: *P < 0.05, **P < 0.01

Fig. 2 Variable importance in random forest regression model for infectious diarrhea
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factors might have changed over a 52-week period, such
as increase in the number of outbreaks, or changes in
the pathogen spectrum [22, 23]. In addition to me-
teorological factors, some other variables should be
considered to better optimize the prediction accuracy
of the RF model.
Atmospheric pressure, precipitation, and relative hu-

midity were all correlated with the incidence of infec-
tious diarrhea in Jiangsu Province with 0–2 week, 0 week
and 0–3 week lag, respectively. However, Tao et al. [20]
reported that the atmospheric pressure and relative hu-
midity were related to the 0–1 week lag diarrhea mor-
bidity in Lanzhou city (northwest China). The relative
humidity was related to 4-week lag in the incidence of
diarrhea in Beijing city (north China) [21]. This differ-
ence may be due to the regional differences in pathogen
composition and climatic conditions. Furthermore, the
meteorological factors significantly contributed to the
forecasting ability of the RF model, with atmospheric
pressure as the main contributor. Potential mechanisms
can include the influencing pathogen survival and air

barrier. A high atmospheric pressure may be conducive
to the survival of infectious diarrhea causing microor-
ganisms, such as the rotavirus, in the environment [24].
A high atmospheric pressure can hinder the airflow and
serve as a barrier to the spreading of airborne pathogens
thereby increasing their concentration at a smaller scale,
which may lead to more diarrhea infection [25]. The
precipitation had a moderate importance in the RF
model, particularly the 3-week lag effect. This implied
that the precipitation during the previous 3 weeks may
influence the morbidity and can thus be used in its pre-
diction. The relative humidity was identified as the least
important factor. The relative humidity in Jiangsu Prov-
ince exhibited a narrow variation at the weekly level, and
did not fit well with the morbidity. These findings may
help future studies in analyzing the specific relationship
between the climate and infectious diarrhea.
Notably, the prediction performance is likely to vary in

different climatic regions. The generalizability of the RF
model for the incidence of infectious diarrhea in Jiangsu
Province to other regions might not be straightforward.
However, the use of the RF model incorporating me-
teorological factors in the detection and prediction of in-
fectious diarrhea may provide an opportunity for
reallocating healthcare resources more efficiently in
other regions. In addition, considering the autocorrel-
ation and clear seasonality of infectious diarrhea, the 0–
4 week lag morbidity and time variable were incorpo-
rated into the RF model and were more important than
the meteorological factors in improving the prediction

Table 3 Performance of the RF and ARIMA/X models

Model RMSE MAPE (%)

Training
set

Testing
set

Training
set

Testing
set

RF 0.04 0.31 6.88 20.89

ARIMAX(1,0,1)(1,0,0)52 0.08 0.46 13.64 28.06

ARIMA(1,0,1)(1,0,0)52 0.08 0.45 13.78 28.53

Fig. 3 Observed infectious diarrhea incidences and values predicted by different models. Note: The left side of the vertical line indicates the
model fitting stage, and the right side indicates the prospective stage
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accuracy of the RF model. These strategies should be
used as a reference when fitting similar RF models.
This study had a few limitations. First, some mild

cases may use home therapies, and cases with atypical
symptoms may be misdiagnosed, therefore, the reported
data may underestimate the level of morbidity. Second,
only meteorological factors were considered to improve
the prediction ability. Other factors associated with in-
fectious diarrhea may also be used as good predictors
and should be studied further. Third, similar to other
machine learning methods such as artificial neural net-
works, the RF model cannot explain the specific non-
linear relationship between meteorological factors and
the disease.

Conclusions
The RF model with meteorological factors demonstrated
a satisfactory prediction accuracy and can be used to
predict the epidemic level, demonstrating its potential
and practical applicability. The autocorrelation and sea-
sonal variation of the dependent variables are crucial for
the prediction model. In addition, the synchronous ef-
fects of meteorological factors and their cumulative ef-
fects over a period of time were combined to improve
the model. Future studies should be conducted to ex-
plore an RF model with meteorological and other vari-
ables for the development of a useful tool for predicting
other major infectious diseases.
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