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Explaining age disparities in tuberculosis
burden in Taiwan: a modelling study
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Abstract

Background: Tuberculosis (TB) burden shows wide disparities across ages in Taiwan. In 2016, the age-specific
notification rate in those older than 65 years old was about 100 times as much as in those younger than 15 years
old (185.0 vs 1.6 per 100,000 population). Similar patterns are observed in other intermediate TB burden settings.
However, driving mechanisms for such age disparities are not clear and may have importance for TB control efforts.

Methods: We hypothesised three mechanisms for the age disparity in TB burden: (i) older age groups bear a
higher risk of TB progression due to immune senescence, (ii) elderly cases acquired TB infection during a past
period of high transmission, which has since rapidly declined and thus contributes to little recent infections, and (iii)
assortative mixing by age allows elders to maintain a higher risk of TB infection, while limiting spillover transmission
to younger age groups. We developed a series of dynamic compartmental models to incorporate these
mechanisms, individually and in combination. The models were calibrated to the TB notification rates in Taiwan
over 1997–2016 and evaluated by goodness-of-fit to the age disparities and the temporal trend in the TB burden,
as well as the deviance information criterion (DIC). According to the model performance, we compared
contributions of the hypothesised mechanisms.

Results: The ‘full’ model including all the three hypothesised mechanisms best captured the age disparities and
temporal trend of the TB notification rates. However, dropping individual mechanisms from the full model in turn,
we found that excluding the mechanism of assortative mixing yielded the least change in goodness-of-fit. In terms
of their influence on the TB dynamics, the major contribution of the ‘immune senescence’ and ‘assortative mixing’
mechanisms was to create disparate burden among age groups, while the ‘declining transmission’ mechanism
served to capture the temporal trend of notification rates.

Conclusions: In settings such as Taiwan, the current TB burden in the elderly may be impacted more by
prevention of active disease following latent infection, than by case-finding for blocking transmission. Further
studies on these mechanisms are needed to disentangle their impacts on the TB epidemic and develop
corresponding control strategies.
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Introduction
Global tuberculosis (TB) incidence and mortality have
been declining in recent decades, with continuous efforts
in improving case detection and treatment outcomes [1].
However, in many countries with intermediate TB bur-
den, where the annual incidence lies between 10 and
100 per 100,000 population, a wide age disparity in TB
burden is observed (Additional file 1: Fig. S1.1). For ex-
ample, in South Korea, a substantially high TB incidence
is reported among those older than 65 years old [2]. A
similar age disparity is also reported in Hong Kong,
where the age-specific TB notification rate is as large as
100 times among people older than 85 years old, com-
pared to children less than 15 years old [3]. As life ex-
pectancy increases along with population ageing, these
age disparities in TB burden may place an increasing
need for prioritising TB control measures among the
elderly, especially when countries are approaching the
goal for TB elimination.
Age is a crucial factor in shaping TB epidemiology.

Symptoms, disease progression risks, and treatment out-
comes of TB patients are known to vary with age, prob-
ably caused by changes in the immune response with
age [4–7]. Age-assortative social mixing patterns may
contribute to different TB transmission risks across ages
[8], as seen in other respiratory diseases [9, 10]. Overall,
a systematic understanding of the driving mechanisms
behind the large age disparities in TB burden would be
valuable for control planning. For example, if concen-
trated TB burden in older age groups is due to a high
risk of disease progression from remote infection, this
suggests that measures to prevent reactivation, such as
treating latent TB infection in the elderly, could be im-
portant. If, however, these disparities could be explained
by preferential mixing between the elderly, measures to
early diagnose and treat TB could be more impactful.
In the present study, we focus on the example of

Taiwan, where has seen rapid growth in living standards
and nationwide coverage of high-quality, publicly funded
healthcare services [11]. In this setting, the age-specific
TB notification rates in 2016 were 1.6 per 100,000 popu-
lation amongst those under the age of 15, contrasting
with 185.0 amongst those over the age of 65 [12]. We
proposed and compared three mechanism hypotheses to
explain these age disparities: (i) Immune senescence -
due to a weakening immune system with older age,
those with latent TB infection have an increased risk of
developing TB as they age. (ii) Declining transmission -
the force of TB transmission, despite being high in earl-
ier generations, has undergone a rapid decline in recent
decades owing to the improvement of living conditions
and health services. Consequently, older generations are
those most likely to have been exposed to TB, and this
risk decreases sharply with declining age. (iii) Age-

specific assortativity - elders have more contact with one
another than with adults and children; any incident TB
in elders therefore tends to cause infections in the same
age group, with limited ‘spillover’ of infections to youn-
ger ages. We note that by itself, this mechanism does
not necessarily drive a high burden in the elderly. Its po-
tential value is to complement the other two mecha-
nisms, to accentuate any disparity they produce.
We incorporated these mechanisms into a mathemat-

ical model of TB transmission dynamics. We evaluated
the performance of these different mechanisms, acting
alone and in combination, in capturing key features of
TB epidemiology in Taiwan.

Methods
Model description
We developed a compartmental transmission model,
where individuals are divided into three age groups: chil-
dren (< 15 years old), adults (15–64), and elders (≥65).
To replicate the historical demographics in Taiwan, we
first executed the model in the absence of TB transmis-
sion dynamics with per-capita birth rates and age-
specific death rates between 1900 and 2016 [13]. We
employed the least-squares method to capture the aggre-
gated population sizes and proportions of children, adults,
and elders over time [13], by modifying the initial popula-
tion size and transition rates between the three successive
age groups. The best-fitting demographic parameters were
then carried over to model TB transmission.
In the transmission model, within each age group,

eight mutually exclusive compartments were constructed
to represent the natural history of TB (Fig. 1). The state
of latent TB infection is described by ‘fast-latent’, ‘fast-
latent following re-infection’, and ‘slow-latent’ compart-
ments, according to different risks of developing TB
disease [5, 6, 14]. We also distinguished pulmonary and
extrapulmonary TB in the model, with only pulmonary
TB being infectious. TB cases may leave their active state
by treatment initiation, self-recovery, or by disease-
specific mortality rate, excess to the background mortal-
ity rate. We assumed treatment outcomes to be either
cure or death, with failure accounting for < 2% in all age
groups [15]. Post-treatment recurrence of TB was as-
sumed to occur in the first 3 years after being cured, but
after that, recovered individuals show the same hazard
rate of developing the disease as those in the ‘slow-la-
tent’ state [16].

Base model (m0)
We refer to the simplest model, in which none of the
proposed mechanisms is included, as the base model.
The base model incorporates some age-specific parame-
ters, including TB treatment outcomes [15], proportions
of extrapulmonary TB among all cases [17], and
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recurrence rates [16], but otherwise treats all age groups
equally (Additional file 1: Table S2.2). These values were
assumed constant over time in the base model, while the
force of TB infection varies in time, as:

λm0 tð Þ ¼ βm0
PTB tð Þ
N tð Þ ;

which is proportional to pulmonary TB prevalence
PTB(t), relative to a population N at a given time t.
The infection rate βm0 was assumed to be independ-
ent of age and constant over time in the base model.
In addition, the primary progression rate and reactiva-
tion rate in the base model were also assumed to be
age-independent. For all age groups, we applied esti-
mates of the progression rates consistent with those
in adults, this being the largest age group in the
population [5, 6].
Next, to explore each of the mechanisms hypothesised

above, we modified the base model. Assumptions for
each of these age-related mechanisms and their effects
on the model structure are described in the following
sections and summarised in Table 1.

Immune senescence (m1)
The first mechanism we proposed is that the breakdown
of existing latent infection becomes progressively more
likely in older age groups, as a result of a weakening im-
mune system or age-related comorbidities (such as dia-
betes [18]). We therefore incorporated age-specific

values for the per-capita primary progression rate ρðaÞf ;m1

and reactivation rate ρðaÞs;m1 . For simplicity, we assumed
that both are related to the baseline progression rates in

the base model (ρf, m0, ρs, m0) through age-specific multi-
pliers σ(a); that is,

ρ að Þ
f ;m1 ¼ σ að Þ � ρ f ;m0

ρ að Þ
s;m1 ¼ σ að Þ � ρs;m0:

We further imposed the constraint σ(C) ≤ σ(A) ≤ σ(E), re-
lating to the multipliers for children, adults, and elders.
As discussed above, because the baseline progression
rates drawn from the literature represent adults, we have
σ(A)= 1.

Declining transmission (m2)
Next, we postulated that TB transmission was more in-
tense in past generations before undergoing a rapid de-
cline, as a result of improving living standards and
health access over time. Under this hypothesis, most
contemporary cases amongst the elderly therefore de-
velop from reactivation of existing, latent infection. To
capture the temporal trend in a simple way, we replaced
the constant infection rate with a function of time t,
structured as:

βm2 tð Þ ¼ βini; if t≤t0
βini þ g � t−t0ð Þ; if t > t0

�
;

where βini represents the infection rate prior to the year
t0, and afterwards, a gradient g determines how fast the
rate linearly declines. The declining gradient g is mod-
elled as (βend − βini)/(2017 − t0), where βend represents
the infection rate at 2017, and was restricted to be not
less or equal than βini. We assumed t0 to lie between
1957 and 2005, considering the availability of effective
TB diagnosis and treatment services in Taiwan. With

Fig. 1 Schematic diagram of TB dynamic model. This is a simplified model structure of TB natural history within a single age group. Each box
represents mutually exclusive disease states (S-susceptible, Lf-latent with fast progression, Lref-latent with fast progression from reinfection, Ls-
latent with slow progression, PTB-pulmonary TB disease; ETB-extrapulmonary TB disease, TX-under treatment, and R-recovered). Arrows denote
transitions between two states, with blue and green ones respectively highlighting the ‘infection’ and ‘progression’ processes that the proposed
mechanisms modify (a-infection, b-primary progression, c-stabilisation from Lf/Lref to Ls, d-reinfection, e-reactivation, f-treatment initiation, g-
natural recovery, h-treatment completion, i-relapse, j-stabilisation from R to Ls). For simplicity, birth, natural death and death during treatment are
not shown in the figure
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the incorporation of this ‘declining transmission’ mech-
anism, the force of TB infection was modified as:

λm2 tð Þ ¼ βm2 tð Þ PTB tð Þ
N tð Þ :

We note that an alternative mechanism is an increase
in the rates at which TB cases are initiated on treatment,
reflecting improvements in TB care. In Additional file 1
we present further analysis of this alternative mechan-
ism, showing that it provides dynamical behaviour that
is qualitatively the same as the ′β-mediated’ mechanism
applied in the main analysis.

Age-specific assortativity (m3)
The third mechanism we hypothesised is that a high TB
burden is maintained in the elderly by preferential mix-
ing amongst the elderly, and weaker mixing between the
elderly and younger age groups to avoid the spillover of
infection. We modelled this assortative mixing pattern
by restructuring the force of TB infection for this mech-
anism as a function of time and age (t and a,
respectively):

λ að Þ
m3 tð Þ ¼ βm3

X
j
Μa; j

PTB jð Þ tð Þ
N jð Þ tð Þ

where the ‘mixing’ matrix Μa, j denotes the contact in-
tensity between a susceptible person from age group a
and an infectious person from age group j, and PTB(j)

and N(j) are respectively the prevalence of pulmonary TB
and the size of age group j. As a simple choice of Μa, j,
we assumed age groups mix in proportion to their
respective weights w(a), and further that the mixing
between the elderly and the rest of the population is
diminished by a factor ε. The mixing matrix therefore
takes the following form:

Μa; j ¼
w Cð Þw Cð Þ w Cð Þw Að Þ εw Cð Þw Eð Þ

w Að Þw Cð Þ w Að Þw Að Þ εw Að Þw Eð Þ

εw Eð Þw Cð Þ εw Eð Þw Að Þ w Eð Þw Eð Þ

2
4

3
5;

where we chose w(C) = 1 for simplicity, thus interpreting
w(A) and w(E) as the connectivity weights of adults and
elders relative to children. βm3 can therefore be inter-
preted as the children-to-children infection rate.

Model calibration
The age-related mechanisms were assessed individually,
in pairwise combination and finally in full combination,
to produce seven different mechanism models. All of
these mechanism models and the base model were cali-
brated by comparing model outputs for annual TB treat-
ment initiations against observed data for annual
notifications. In particular, for reimbursement purposes,
almost all TB cases are reported to the central surveil-
lance system upon initiating TB treatment [19]. We used
the aggregated notification rates over 1997–2004 [20]
and age-specific notification rates over 2005–2016 [12]

Table 1 Summary of proposed age-related mechanisms

Mechanisms Descriptions Notation Prior
distribution

Parameters

Definition (unit)

m0 Base model No additional age-related mechanisms are incorporated. βbase 0.001–30 Infection rate (per year)

m1 Immune
senescence

The risk of developing TB disease following recent or remote
infection increases with age, potentially related to comorbidities and
health-related behaviours.

σ(C) 0.1–1 Multiplier to baseline progression
rates for children, compared to
adults

σ(E) 1–10 Multiplier to baseline progression
rates for elders, compared to
adults

m2 Declining
transmissiona

Frequent Mtb transmission in the past generated a substantial
number of latently infected population, who become the elderly
cases in the present day. A rapid decline of Mtb transmission
happens recently because of improved living standard and health
service.

βini 0.001–30 Infection rate prior to t0 (per year)

βend 0.001–30 Infection rate at 2017 (per year)

t0 1957–2005 Beginning year of transmission
decline

m3 Age-specific
assortativity

Mixing between age groups lead to different infection tendencies, as
a result of social activity and infectiousness. Elders are additionally
restricted to mix with younger age groups in order to retain the
high burden in the population.

w(A) 0.2–5 Connectivity weight of adults for
mixing with others, compared to
children

w(E) 0.2–5 Connectivity weight of elders for
mixing with others, compared to
children

ε 0.01–1 Isolation factor for mixing
between elders and younger age
groups

aWe assumed uniform distributions for all prior parameters with the boundaries described. In models with the mechanism of age-specific assortativity (m3, m23,
m13, and m123), βbase, βini, and βend represent the infection rates within children, so those prior distributions were modified as 0.001–10
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(the period when age-specific data was available). For
simplicity, we assumed notification errors in diagnosis
and reporting to be normally distributed. To reflect an
improvement in TB data quality from 2005 onwards, we
parameterised the normal distributions to allow for +/−
20% notification error over 1997–2004, and +/− 10% no-
tification error over 2005–2016 (see Additional file 1:
Table S.3.1 for resulting estimates of the standard
deviations).
We adopted a Bayesian inference framework for model

calibration, implemented by a Markov chain Monte
Carlo (MCMC) method with the adaptive Metropolis al-
gorithm [21, 22]. Uniform prior distributions for param-
eters on both the mechanisms and natural history of TB
were used (Table 1 & Additional file 1: Table S2.2). We
first calibrated each model with the Nelder-Mead sim-
plex method using 100 initial parameter sets drawn from
Latin Hypercube sampling; of these we assigned the two
best-fit results as initial parameter values for independ-
ent MCMC chains and evaluated these chains for con-
vergence. Each MCMC chain was run for 1,000,000
iterations and thinned to obtained 1000 posterior sam-
ples to reduce autocorrelation, after removing the burn-
in iterations. We repeated the same process above for
model calibration in each mechanism model.

Model comparison
With the obtained posterior samples, we compared
models on their ability to reproduce age disparities, as
well as the gradually declining trend in TB burden ob-
served in Taiwan. The indicators for age disparities in-
clude the average of adult-child and elder-child ratios of
the notification rates over 2005–2016. For the temporal
trend, the proportion of change over the same period in
population-level TB notification rates was evaluated:
(rate2016 − rate2005)/rate2005. Additionally, to quantify
model fit, we calculated the deviance information criter-
ion (DIC) as:

DIC ¼ 2D−D θ
� � ¼ Dþ D−D θ

� �
⏟|fflfflfflfflfflffl{zfflfflfflfflfflffl}

pD

where D(θ) is the deviance given posterior parameter set
θ. D(θ) is defined as −2 log L(θ), and L(θ) denotes the
joint likelihood of the notification rates for calibration.
As in the equation shown above, DIC can also be pre-
sented as a combination of measures for model fit (D)
and complexity (pD). A smaller DIC value is favoured in
model selection. In addition, we assessed the correlations
between parameters and analysed the sources of incident
TB cases, from recent infection, remote infection, and
post-treatment recurrence.

Sensitivity analyses
Above we mentioned that the ‘declining transmission’
mechanism was mediated by a rapid temporal decline in
the infection rate, which may arise from improving living
conditions. However, other approaches such as enhan-
cing case detection and treatment access could also re-
duce opportunities for transmission. We used this
alternative approach to model the ‘declining transmis-
sion’ hypothesis, by assigning a linear increasing trend to
the treatment initiation rate (Additional file 1: Section
S4). In addition, the models described above involve a
simple representation of the ageing process. We assessed
how a more sophisticated age structure would change
the comparison of the proposed mechanisms. We con-
structed a cohort-ageing model, refining the age struc-
ture into single-year spans, and modelling the ageing
process discretely, by shifting each cohort of age a to
a + 1 (a = 0, 1, …, 99) at end of each simulated calendar
year. Under this more realistic but computationally inten-
sive age structure, we re-calibrated all mechanism models
and the base model. To reduce the computation effort, we
limited all the sensitivity analyses to the ‘best-fit’ param-
eter sets through the Nelder-Mead simplex method, with-
out performing MCMC on these alternative models.

Results
Figure 2 shows a comparison of model estimates of the
age-specific TB notification rates to the observed data
on the log scale. Figure 3 shows quantitative indicators
for how well the different models reproduce (i) age dis-
parities, and (ii) recent, overall temporal trends in TB
burden. Both figures illustrate that the base model (m0)
was poorly calibrated, despite incorporating some age-
specific characteristics of TB natural history, such as the
proportions of pulmonary TB in total cases. By contrast,
the ‘full’ model with all the three mechanisms (m123)
best captured the age-specific notification rates over
time, but we found that the two-mechanism model
which incorporates the mechanisms of immune senes-
cence and declining transmission (m12), also demon-
strated a good fit to the adult-child and elder-child
ratios of the notification rates. However, this model,
without the age-specific assortativity mechanism, slightly
underestimated the rate of decline in TB burden over
2005–2016.
None of the single-mechanism models could fully de-

scribe the age disparities in TB burden. Nonetheless, Fig. 2
provides some insight into the role that each of these mech-
anisms offers in matching the data. The mechanisms of im-
mune senescence (m1) and of age-specific assortativity
(m3) both act to capture the disparities of TB burden across
age groups. Indeed, the model with the combined mecha-
nisms of these two mechanisms (m13) led to an overesti-
mate of the adult-child and elder-child ratios, reflecting
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Fig. 2 Calibration results of age-specific TB notification rates on a log scale. For each mechanism model, the TB notification rates over 1997–2016
are shown by children (blue), adults (red), elders (green), and aggregated population (dark grey). We present the model estimates from the 1000
posterior samples (lines), compared to the observed data (diamonds). Details of mechanism models are described in Table 1

Fig. 3 Age-specific ratios and temporal trend of TB notification rates. Age disparities of TB burden were evaluated by (a) adult-child and (b) elder-
child ratios of the notification rates, and the temporal trend (c) was summarised by the proportion of change in the notification rates over 2005–
2016. Dots and error bars show central points and 95% uncertainty intervals of the model estimates based on the 1000 posterior samples in the
main analysis. Asterisk marks show the best-fit results obtained from the cohort-ageing models using the explicit ageing structure in sensitivity
analysis. Horizontal dashed lines mark the observed data. Details of mechanism models are described in Table 1
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their overlapping functions in capturing the age disparities
(Fig. 4). On the other hand, the decreasing trend of TB bur-
den could only be replicated by those models incorporating
the declining transmission mechanism (m2). In models
lacking this mechanism, an increasing TB burden results
from an ageing population in this setting.
Table 2 presents values for DIC, log-likelihood, and

the median and 95% credible intervals of key parameters
for model calibration. Generally, DIC values dropped
with increasing model complexity (Fig. 5), with the low-
est (most favourable) DIC being observed in the ‘full’
model integrating all the three mechanisms. Separating
the components of the DIC values, Table 3 reveals that
the complexity measures had a limited effect on the
overall performance while the fit measures are the dom-
inating factors in model selection. Table 4 shows the at-
tribution of incident TB cases to recent infection,
remote infection, and post-treatment recurrence by age

groups in the ‘full’ model (m123). Remote infection be-
comes a more important source of TB incidence with in-
creased age and contributed to more than half of active
cases in adults and elders. However, the role of recent
infection is also important, accounting for an estimated
of 47.3% (34.8–59.5%) among overall incidence.
Section S4 in Additional file 1 shows results of the

sensitivity analysis on the ‘declining transmission’ mech-
anism (m2). When assuming that this mechanism was
mediated by the treatment initiation rate rather than by
the infection rate, we did not identify qualitative differ-
ences in the main calibration results. Similar to the effect
of decreasing infection rate, improvement in treatment
initiation tended to capture overall declining trends in
TB burden, while contributing little to the age disparities
of TB burden. In terms of the explicit ageing process,
Fig. 3 demonstrates consistent findings resulting from
the main models, on the relative roles of each

Fig. 4 Scatter plot matrix of mechanism-related parameters in the ‘full model’. Scatter plots show distributions between each pair of posterior
parameters, and histograms in the diagonal present the distribution of individual parameters. For clarity, only eight parameters specific to the
three hypothesised mechanisms were included. Notations for the parameters are described in Table 1
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mechanism in explaining the age disparities and tem-
poral trend of TB burden, even though the calibrated pa-
rameters from the two ageing approaches show different
distributions. This suggests that a model with simple age
categories of children, adults, and elders is likely to be
sufficient in capturing the age effect on TB dynamics in
this setting.

Discussion
Using an age-structured compartmental model, we ex-
plored the potential mechanisms contributing to the age
disparities and recent temporal pattern observed in the
TB notification rates in Taiwan. The age-specific TB
burden was best described by the model with all the
three proposed mechanisms together; amongst the more
parsimonious models, the one capturing immune

senescence and declining transmission (omitting age-
specific assortativity) performed best in capturing the
data. The sensitivity analysis suggested that the simple
age structure incorporated in our model was appropriate
in evaluating the effect of age-related mechanisms on
TB burden.
Each age-related mechanism in this study performed

different roles in capturing the TB burden in Taiwan.
First, the ‘immune senescence’ mechanism appears to be
most important in explaining age disparity, with its
omission from the ‘full’ model resulting in the greatest
increase in the DIC value (m23 vs m123 in Table 2).
Parameter estimates in the full model suggest a 40-fold
relative hazard of disease progression amongst the eld-
erly, compared to children. Such disparities might be ex-
plained by the protective effect of BCG vaccination in
children [23], combined - in older age groups - with the
increased prevalence of risk factors such as diabetes [24]
and smoking [25]. Overall, although our results suggest
that immune senescence is indeed an important factor
in the age disparities of TB burden, our quantitative esti-
mates should be treated with caution: just as these esti-
mates are sensitive to the inclusion of alternative
mechanisms (comparing m1 with m123), they may be
changed further by incorporating additional mechanisms
that we have not covered here.
Second, while the ‘declining transmission’ mechanism

was not able to capture the age disparities on its own
(m2), it acted as a key influence in capturing the declin-
ing trend of TB burden. Indeed, models without this
mechanism (m0, m1, m3 and m13) showed an overall
increasing burden of TB in the recent decade, a trend
driven by the ageing population in all the models (Fig. 3).
In the full model m123, the initiation timing for this
mechanism fell between 1995 and 2003. Besides the gen-
eral improvement of living standards, this period coincides
with the health sector reform that replaced a vertical TB
control system with an integrated programme led by
Taiwan Centers for Disease Control in 2002 [26]. In
addition, the National Health Insurance was established in
1995 and its coverage exceeded 96% by 2000 [11]. Both of
these major developments are likely to have reduced TB
transmission intensity over time, and the subsequent
scale-up of the Directly Observed Treatment, Short
Course in 2006 and contact tracing in 2007 may have fur-
ther contributed to the trend [27]. Resolving individual
impacts of these various developments is outside the
scope of the present study; nonetheless, our results
present estimates that are consistent with this overall his-
tory of improvements in TB services in Taiwan.
Third, the mechanism of age-specific assortativity

modified the force of infection and allowed heteroge-
neous risks of infection according to mixing between age
groups. This appears to be the least influential

Fig. 5 DIC Distribution by the number of age-related mechanisms
included. The values of DIC decrease as more age-related
mechanisms are included. Details of mechanism models are
described in Table 1. Abbreviations: DIC-deviance
information criterion

Table 3 Fit and complexity measures of DIC by mechanism
models

Model DIC Fit measure (D) Complexity measure (pD)

m0 9090 9092 −2.31

m1 3288 3287 −0.78

m2 6099 6097 2.27

m3 2455 2457 −1.27

m12 −1159 − 873 − 285

m13 −242 − 236 −5.88

m23 1012 1009 3.66

m123 −5825 − 923 − 4902

Abbreviation: DIC deviance information criterion
Details of the mechanism models are described in Table 1
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mechanism for capturing recent age-specific trends, with
its omission from the ‘full’ model resulting in the least
increase in the DIC value (m12 vs m123 in Table 2).
Nonetheless, an important question is how our hypoth-
esis relates to existing sociological data for age-specific
mixing. Diary-based contact surveys in Western Europe
[28] suggest that the bulk of assortative mixing occurs
between school-age children, and a subsequent study
suggested a similar contact pattern in Taiwan [9]. These
findings are consistent with a key aspect of our age-
specific assortativity hypothesis, that the elderly have
fewer reported contacts than other age groups. We also
note that while such data have been helpful for acute in-
fections such as influenza [9], it is unclear how applic-
able they may be to TB, where infection arises as a
result of cumulative exposure over time. Hence, other
forms of non-physical, sustained contacts (including
shared air) may be more important in driving TB trans-
mission [29].
As with any modelling studies, there are some limita-

tions to note. Model performance may depend to some
extent on the prior parameter ranges, for example with
some of the single-mechanism models yielding param-
eter estimates at the extremes of these ranges (Table 2).
However, we deliberately adopted wide prior ranges, to
avoid unduly constraining the calibration: models requir-
ing parameter values outside these ranges are therefore
likely to be implausible. We assumed a simplified age
structure, adopting just three age compartments with
birth and death rates, and adjusting ageing rates to cap-
ture the demographic trends in Taiwan. Adopting fixed
averaged per-capita hazards of ageing, as we have done
here, can introduce unexpected population behaviour;
nonetheless, we have compared the model against an al-
ternative, considerably more complex model framework
that incorporates explicit ageing. This structural sensitiv-
ity analysis suggests that our model results are at least
qualitatively robust (Fig. 3). Moreover, we used the age-
specific TB notification rates in Taiwan as the target
data for calibration in this study. We believe that the
data accurately reflect the age disparity in the TB burden
in Taiwan, as a validation study cross-linking TB cases

in the National TB Registry and National Health Insur-
ance Database has confirmed the completeness and
timeliness of the notification system [19]. Nonetheless,
we note that TB cases could still be under-detected, es-
pecially for TB patients with atypical extrapulmonary
symptoms. In future, other sources of data could help to
further assess the mechanisms we have presented here.
For example, Fig. S5.1 in Additional file 1 shows the
age-specific LTBI prevalence that would be expected
from single and combinations of the mechanisms. This
illustrates the potential value of community-based TB
infection surveys in distinguishing these mechanisms.
This modelling analysis yields potentially helpful in-

sights into the important mechanisms behind the age
disparities of TB burden in Taiwan. In particular, our
study results suggest that control of TB in Taiwan
should focus on prevention of disease progression (ad-
dressing the mechanism of immune senescence), in
addition to control of transmission amongst the elderly
(addressing the mechanism of age-specific assortative
mixing) (Table 4). Likewise, in other intermediate TB
burden settings showing similar age disparities [2, 3], an
understanding of mechanisms behind the TB burden
can be valuable in developing proper strategies that tar-
get specific age groups. In the meantime, further re-
search on informing or validating parameters in different
mechanisms will also be useful for projecting the age
distribution of TB burden.

Conclusions
Our findings show the age disparities and temporal
trend of TB notification rates in Taiwan were best cap-
tured by incorporating all the three hypothesised mecha-
nisms into the age-structured dynamic model. While the
mechanism of declining transmission mainly explained
the falling trend of TB burden in the recent decade, the
other mechanisms of immune senescence and age-specific
assortativity contributed to the wide disparity between
children and elders. However, comparing different com-
binations of the mechanisms, we found that immune
senescence played a more important role than age-spe-
cific assortativity, in driving the age disparities of TB

Table 4 Sources of incident TB cases in the ‘full’ model, 2016

Age groups Recent infection Remote infection Post-treatment recurrence

Children 71.2% (60.0–79.9%) 27.0% (18.4–38.3%) 1.70% (1.51–1.89%)

Adults 48.2% (35.2–60.3%) 50.4% (38.3–63.4%) 1.44% (1.25–1.66%)

Elders 46.2% (33.0–60.8%) 52.6% (38.1–65.8%) 1.15% (0.98–1.32%)

Overall 47.3% (34.8–59.5%) 51.4% (39.2–63.9%) 1.30% (1.16–1.44%)

Proportions of TB cases developing from recent infection, remote infection, and post-treatment recurrence are reported by age groups. We calculated medians
and intervals between 2.5th and 97.5th percentiles (in brackets) of the proportions from the 1000 posterior parameter sets of the ‘full’ model. Incident cases in the
‘recent infection’ category develop TB through primary progression within 2 years of infection, while those in the ‘remote infection’ category develop the disease
through reactivation after two or more years of infection. TB cases occurring within 3 years of treatment completion, either from relapse or reinfection, are
included in the ‘post-treatment recurrence’ category
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burden. This revealed key implications for TB control in
Taiwan and other similar contexts: strategies aiming for
preventing disease progression can be impactful when
combined with efforts to control ongoing transmission
in the elderly. Further research on the detailed features
of these age-related mechanisms will enhance the devel-
opment of effective interventions.
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