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Abstract

Background: Hepatitis C virus (HCV) infection is a major global health problem. WHO guidelines recommend
screening all people living with HIV for hepatitis C. Considering the limited resources for health in low and middle
income countries, targeted HCV screening is potentially a more feasible screening strategy for many HIV cohorts.
Hence there is an interest in developing clinician-friendly tools for selecting subgroups of HIV patients for whom HCV
testing should be prioritized. Several statistical methods have been developed to predict a binary outcome. Multiple
studies have compared the performance of different predictive models, but results were inconsistent.
Methods: A cross-sectional HCV diagnostic study was conducted in the HIV cohort of Sihanouk Hospital Center of
Hope in Phnom Penh, Cambodia. We compared the performance of logistic regression, Spiegelhalter-Knill-Jones and
CART to predict Hepatitis C co-infection in this cohort. We estimated the number of HCV co-infections that would be
missed. To correct for over-optimism, the leave-one-out bootstrap estimator was used for estimating this quantity.
Results: Logistic regression misses the fewest HCV co-infections (8%), but would still refer 98% of HIV patients for
HCV testing. Spiegelhalter-Knill-Jones (SKJ) and CART respectively miss 12% and 29% of HCV co-infections but would
only refer about 30% for HCV testing.
Conclusions: In our dataset, logistic regression has the highest log-likelihood and smallest proportions of HCV
co-infections missed but Spiegelhalter-Knill-Jones has the highest area under the ROC curve. The likelihood ratios
estimated by Spiegelhalter-Knill-Jones might be easier to interpret for clinicians than odds ratios estimated by logistic
regression or the decision tree from CART. CART is the most flexible method, and no model has to be specified
regarding presence of interactions and form of the relationship between outcome and predictor variables.
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Background
Hepatitis C virus (HCV) infection is a major global health
problem. 71 million people are chronically infected and
HCV-attributable mortality kept rising the last 20 years
to 495.000 annual deaths in 2015 [1]. Until recently, treat-
ing HCV was complex, not affordable, poorly successful
and not considered for programming in low and mid-
dle income countries (LMIC). Recently, with the advent
of affordable generic HCV Direct Acting Antivirals this
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changed. The new global HCV cascade targets—90%
of infected diagnosed and 80% of diagnosed treated by
2030—reflect this paradigm shift [2]. To allow timely scale
up of treatment, efficient HCV testing strategies will thus
be crucial. Less than 15% of those living with hepatitis C
know their status, with even lower proportions in LMIC
[3]. WHO guidelines recommend screening all people liv-
ing with HIV for hepatitis C. For the general population,
the recommendation is tailored according to prevalence;
universal screening if prevalence above 2 or 5%, and
targeted screening if lower [4]. Considering the limited
resources for health in LMIC, and recent data indicative of
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low-to-intermediate HCV/HIV co-infection rates among
HIV populations without specific risk profile [5, 6], tar-
geted HCV screening is potentially a more feasible and
cost-effective screening strategy for many HIV cohorts in
LMIC (except for HIV populations with higher risk pro-
file, as men having sex with men, and people who use
drugs), especially in this initial phase of HCV care scale-
up. Simple tools or scores to guide targeted screening,
other than birth-cohort screening, do not exist. However,
HCV screening based on older age as sole criterion might be
too restrictive for LMIC where drivers of generalized HCV ex-
posure were often removedmuch later or only partially [7].
Hence there is an interest in developing other, more sen-

sitive, but clinician-friendly tools for selecting subgroups
of HIV patients for whom HCV testing should be priori-
tized, i.e. in predicting active HCV co-infection (defined
as HCV-RNA detected). When developing a predictive
model, multiple items might be of prognostic value. Since
these items are typically correlated, the predictive model
should take this dependency into account. Logistic regres-
sion [8] is widely used when the outcome is a binary
variable. However, several other approaches have been
developed, e.g. classification and regression trees (CART)
[9] and the Spiegelhalter-Knill-Jones (SKJ) approach [10].
Several studies have compared the performance of differ-
ent predictive models, but results were inconsistent [11,
12]. While the SKJ method requires all predictors to be
categorical, the logistic regression model and CART are
able to incorporate continuous predictors too. Another
advantage of CART is that it does not require a pre-
defined underlying relationship between the predictors
and the outcome. The goal of this paper is to compare the
performance of these three methods to predict HCV co-
infection in a cohort of Cambodian HIV-infected patients.

Methods
Data source
We compared the performance of the predictive mod-
els on a dataset of a cross-sectional HCV diagnostic
study conducted in the HIV cohort of Sihanouk Hospi-
tal Center of Hope (SHCH) in Phnom Penh, Cambodia
(clinicaltrials.gov NCT02361541) [5]. The information on
potential predictors (by history-taking, physical examina-
tion and laboratory testing) was collected prospectively
following a pre-specified study protocol, and whilst results
of HCV diagnostic testing were yet unknown. In total,
3045 adult HIV patients were enrolled, of whom 106 with
a current HCV co-infection (i.e. HCV-RNA detected).
We built the predictive models including the following
items: age (years), gender (female/male), platelet count
(×109 cells/L), aspartate aminotransferase (AST, IU/L),
alanine aminotransferase (ALT, IU/L), AST-to-platelet
ratio index (APRI), having diabetes mellitus (yes/no), any
of the following symptoms: fatigue, myalgia/arthralgia,

anorexia/weight loss (yes/no), presenting generalized pru-
ritus without obvious skin lesions (yes/no), having a
household member and/or partner with liver disease
(yes/no), and poor CD4 recovery on ART, i.e. CD4 below
200 after 3 years or more on ART (yes/no).

Performance of predictive model
In this setting, we wanted to select a subset of HIV
patients at higher risk of HCV co-infection for whom
HCV testing should be prioritized. In absence of a well-
established threshold for HCV testing, we considered
the harm/benefit of testing and not testing (at patient
and public health level). We intended a lower threshold
than the WHO recommended threshold (2-5% depend-
ing on resource availability) for HCV testing in the general
population [4], because HIV populations in resource-
constrained settings remain at higher risk of advanced
HCV disease as they have often started antiretroviral
therapy late or with less optimal regimens. A 1% prob-
ability threshold for the decision rule (i.e. giving false
negatives much more weight than false positives) seems
low enough as the risk score, if easily applicable, can be
repeated yearly. Hepatitis C treatment is in most cases not
urgent. Hence our aim was to build a prediction model
where the probability of HCV co-infection in the group
who is classified as negative is smaller than 1%. To com-
pare performance of the prediction models obtained with
the different methods, we estimated the log-likelihood,
the area under the ROC curve, the number of HCV
co-infections that would be missed, the sensitivity, speci-
ficity, positive and negative predictive value. To correct
for over-optimism, the leave-one-out bootstrap estimator
[13] was used. Furthermore, we compared the proportion
of participants who would be referred to HCV testing.

Logistic regression
The logistic regression model is

log (odds) = α + β1x1 + · · · + βpxp

where x1, · · · , xp are the different predictors. The coef-
ficients βi represent the adjusted log odds ratio (OR) for
each difference of one unit in xi. The intercept, α, is the
log odds when all predictors are equal to zero. The logis-
tic regression model can include continuous, binary and
categorical predictors. Missingness was added as a factor
level to variables for which there are missing values.
A logistic regression model was fitted with all candidate

predictors as independent variables. Because of sparse
data, Firth correction was applied. The predictor score
was calculated by rounding β̂1x1 + · · · + β̂pxp. A cutoff
was chosen as the minimal value such that in the group
of subjects with this score, the proportion of subjects with
HCV co-infection was larger than 1%. All subjects with a
score of at least this cutoff were classified as needing HCV
testing.
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Classification and regression trees
Classification and regression trees (CART) use recursive
binary partitions to divide the predictor space into a set
of subregions [9]. More specifically, the covariate space
of the root node is split into two child nodes, based on
the predictor and cutoff that yields the largest decrease in
impurity (i.e. less heterogeneity in outcome within each
node). Next, one of these child nodes is split into twomore
nodes. This procedure is repeated under the following
conditions: a node has to contain at least 20 observations
to be considered for splitting and a terminal leaf has to
contain at least 7 observations. Since this process likely
over-fitted the data, the tree was pruned to a smaller sub-
tree. A penalty is added to the error of the tree, relative
to the size of the tree. A sequence of trees was fitted
with each time a different cost-complexity parameter (i.e.
penalty for the size of the tree). The smallest tree whose
error lies within one standard error of the minimal error
over the sequence of trees was selected. The weight for
false negatives was chosen so that the proportion of true
HCV co-infections in the group who are classified as neg-
ative is smaller than 1%. For each split a surrogate variable
is identified which approximates the split using another
predictor variable. Any observation which is missing
the split variable is then classified using the surrogate
variable [14].

Spiegelhalter-Knill-Jones
The Spiegelhalter-Knill-Jones (SKJ) approach adapted by
Berkley et al. [10, 15] estimates likelihood ratios. Because
the SKJ approach requires binary predictor variables, the
continuous candidate predictors were dichotomized using
the cutoff which maximizes the Youden index. In a first
step, unadjusted likelihood ratios (LR) for all candidate
predictors are estimated, and the predictors with an unad-
justed LR ≥ 2 or ≤ 0.5 are included in a next step, in the
multivariable logistic regression model:

log (odds) = α + β1w1 + · · · + βpwp

where wi is the crude log positive/negative LR for posi-
tive/negative test results respectively. The adjusted likeli-
hood ratios (aLR) are then given by

aLR+i = exp
(
βi × log (LR+i)

)

aLR−i = exp
(
βi × log (LR−i)

)

where βi is the shrinkage factor from crude LR to adjusted
LR. The predictors with an aLR ≥ 1.5 or ≤ 0.67 were
selected for the final predictive model. The aLRs were
transformed to their natural logarithm, and rounded to
the nearest integer to calculate the score (relative weight)
of each predictor. By summing the scores of all predic-
tors presented by a patient the total predictor score for
each patient was obtained. A value of 0 was assigned to

missing data, assuming that a missing value is not predic-
tive. A cutoff was chosen as the minimal value such that
in the group of subjects with this score, the proportion of
subjects with HCV co-infection was larger than 1%. All
subjects with a score of at least this cutoff were classified
as needing HCV testing.
Statistical analysis was performed in Stata 15.1 [16] and

R 3.5.0 [17].

Results
A total of 3045 ambulatory HIV patients of Sihanouk Hos-
pital Center of Hope were included. Their median age
was 43 years (interquartile range (IQR): 36–48), 43% were
male patients, 98% were on antiretroviral therapy (ART),
and 1% (N=31) reported past or current sex work, being
homosexual, or a history of injecting drug use. In this
cohort, 106 patients had a detectable HCV-RNA (our out-
come of interest), but none among the above-mentioned
31 HIV patients with higher risk profile. Distribution of
the candidate predictors in the cohort and the missing
values are further specified in Table 1.

Predictive models: logistic regression, cART,
spiegelhalter-Knill-Jones
The adjusted odds ratios from the logistic regression
model are shown in Table 2. A higher age, ALT, APRI and

Table 1 Patient characteristics

Characteristics Missing values n = 3045

Male, n (%) 0 1307 (42.9)

Age, years,
median (IQR)

0 42.5 (36.3–48.1)

Poor CD4 recov-
ery on ART, n (%)

13 117 (4.0)

ALT, IU/L, median
(IQR)

0 28 (20–43)

AST, IU/L, median
(IQR)

0 26 (21–36)

Platelets, ×109

cells/L, median
(IQR)

0 266 (221–312)

APRI, median
(IQR)

0 0.29 (0.21–0.41)

Fatigue, myalgia/
arthralgia, or
anorexia/weight
loss, n (%)

0 301 (9.9)

Generalized pruri-
tus, n (%)

0 120 (3.9)

Diabetes mellitus,
n (%)

6 113 (3.7)

Partner or house-
hold member
with liver disease,
n (%)

10 185 (6.1)
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Table 2 Logistic regression

Predictor Adjusted OR p-value

Age (per 10 years) 1.66 < 0.001

Male gender 0.55 0.008

Platelets (per 10 × 109 cells/L) 0.91 < 0.001

AST (per 10 IU/L) 0.93 0.078

ALT (per 10 IU/L) 1.09 0.037

APRI 1.30 0.029

Diabetes mellitus

Yes 2.15 0.052

Missing 22.89 0.002

Fatigue or myalgia/arthralgia 1.35 0.33

or anorexia/weight loss

Generalized pruritus 1.83 0.16

Household member and/or

partner with liver disease

Yes 3.68 < 0.001

Missing 1.08 0.96

Poor CD4 recovery on ART

Yes 0.99 0.99

Missing 1.90 0.69

having a partner or household member with liver disease
increase the probability of HCV co-infection, while higher
platelet levels and being a male decrease the probability
of HCV co-infection. The number of observed HCV co-
infections for each score are shown in Table 3. A score of
−2 is the lowest score for which the proportion of sub-
jects who are HCV co-infected is larger than 1%. Thus all
subjects with a prediction score of −2 or higher would be
referred to HCV screening.
In CART, to ensure that the proportion of true HCV

co-infections in the group who are classified as negative
is smaller than 1%, the selected weight for false nega-
tives was 58. The predictors used in the tree (Fig. 1) are:
age, gender, platelets, AST, ALT, APRI, any of fatigue,
myalgia/arthralgia, anorexia/weight loss and generalized
pruritus. Of the 106 subjects with HCV co-infections, 105
would be referred for HCV screening, compared to 839 of
the 2939 subjects without HCV co-infection.
The unadjusted and adjusted likelihood ratios of the

candidate predictors resulting from the Spiegelhalter
Knill-Jones method are reported in Table 4. The predic-
tors retained for the score were: age≥ 50 years, platelets<

200 × 109 cells/L, AST ≥ 30 IU/L, APRI ≥ 0.45, diabetes
mellitus, generalized pruritus and household member
and/or partner with liver disease (Table 4). The number
of observed HCV co-infections for each score are shown
in Table 3. A score of 0 is the lowest score for which the
proportion of subjects who are HCV co-infected is larger

Table 3 Prediction score

score no HCV co-infection HCV co-infection Total

logistic regression

-6 1 0 1

-5 3 0 3

-4 6 0 6

-3 44 0 44

-2 302 4 306

-1 1116 8 1124

0 1022 33 1055

1 363 30 393

2 63 14 77

3 13 5 18

4 6 9 15

5 0 2 2

8 0 1 1

Spiegelhalter-Knill-Jones

-2 1167 7 1174

-1 936 9 945

0 245 11 256

1 329 16 345

2 194 28 222

3 61 24 85

4 6 8 14

5 1 3 4

than 1%. Thus all subjects with a prediction score of 0 or
higher would be referred to HCV screening.

Predictive performance of the different models
The predictive performance of the different models is
shown in Table 5. Logistic regression obtains the highest
log-likelihood and misses the fewest HCV co-infections,
but would still refer 98% of HIV patients for HCV test-
ing. Spiegelhalter-Knill-Jones has a higher area under the
ROC curve and misses fewer HCV co-infections than
CART but has a lower specificity and positive predictive
value. Both methods would refer about 30% for HCV test-
ing. This would yield a high cost reduction compared to
testing all HIV patients for HCV.

Discussion
In our dataset, logistic regression has the highest log-
likelihood and smallest proportions of HCV co-infections
missed but refers more subjects for HCV screening.
Depending on the specific setting, a balance needs to be
made between the number of HCV co-infections missed
and the number of HCV tests to perform. In general for
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Fig. 1 CART. The leaves show the predicted HCV co-infection status, the probability of HCV co-infection and the percentage of observations in the leaf

Table 4 Spiegelhalter-Knill-Jones

Predictor Unadjusted LR Adjusted LR score

LR+ LR- aLR+ aLR-

Age ≥ 50 years 2.25 0.71 2.18 0.72 +1

Male gender 0.99 1.01 - -

Platelets < 200 × 109 cells/L 3.46 0.62 1.69 0.82 +1

AST ≥30 IU/L 2.21 0.28 1.48 0.53 −1

ALT ≥40 IU/L 2.33 0.49 - -

APRI ≥0.45 3.88 0.33 2.42 0.48 +1/ − 1

Diabetes mellitus 3.76 0.90 2.14 0.94 +1

Fatigue or myalgia/arthralgia 2.11 0.88 - -

or anorexia/weight loss

Generalized pruritus 2.61 0.94 2.04 0.95 +1

Household member and/or 3.21 0.87 3.62 0.85 +1

partner with liver disease

Poor CD4 recovery on ART 1.34 0.99 - -

a triage test (like a clinical scoring system), a higher sen-
sitivity is preferred, and the specificity is determined by
the resources available. A limitation of our study is that
our goal was not to compare the predictive performance
of logistic regression, CART and SKJ in general, but only

Table 5 Comparison of predictive performance

Logistic regression CART Spiegelhalter-
Knill-Jones

log-likelihood -201.3 -267.8 -209.6

Area under ROC curve 74.6% 73.4% 81.9%

Porportion of HCV 7.8% 28.8% 12.1%

co-infections missed

Sensitivity 92.2% 71.2% 87.9%

Specificity 22.1% 73.3% 50.5%

Positive predictive
value

4.1% 8.7% 5.9%

Negative predictive
value

98.7% 98.6% 99.2%

Proportion for whom 98.2% 31.0% 30.4%

HCV testing is needed
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in this specific case of predicting HCV co-infection in the
study population of Cambodian HIV-infected patients.
Our findings may not be generalizable to other outcomes.
Also generalizability of the different derived models for
our outcome (HCV co-infection) could not be ascer-
tained, this would require further external validation.
When the aim is to predict a binary outcome, logistic

regression is widely used. The association of each predic-
tor with the outcome is expressed as an adjusted odds
ratio, which might be difficult for clinicians to interpret.
However if the goal is to build a prediction model, the
interpretation of the relationship between predictor and
response is probably not of interest. Furthermore, for clas-
sification, the score needs to be calculated, which is not
very user-friendly. Although an app could be developed
that calculates this score based on values of the predic-
tor variables. The usefulness of a clinical prediction rule is
also determined by its ease of use. The SKJ method esti-
mates adjusted likelihood ratios, positive or negative if key
predictors are present or absent, and this more nuanced
information is preferred above odds ratios by clinicians.
Moreover the score can be easily calculated, as a sum of
integers. Also CART results in a decision tool that can be
easily applied in clinical practice. However the relation-
ship between predictor and reponse is harder to interpret
than with logistic regression or SKJ.
In logistic regression, missing values were considered

as an extra level of the covariate factor. However this
approach is known to be biased, even when missingness
is completely at random. Other methods to handle miss-
ing data are available, like multiple imputation, but all of
them depend on untestable assumptions. They are also
more complex and would yield a score not feasible to
apply in clinical practice. On the other hand, missing val-
ues are naturally handled by SKJ making the assumption
that a missing value is not predictive of the outcome (the
score corresponds to 0 and does not affect the prediction
in confirmation or exclusion). Using CART, for subjects
with a missing value for a splitting variable a surrogate
split is used.
The SKJ corrects for confounding, but does not allow

interactions between predictors, and the shrinkage used is
similar for a negative or a positive test result, i.e. LR+ and
LR-. Interactions can be included in the logistic regres-
sion model, but they have to be specified. In practice often
only two-way interactions are included, if any. Because of
the way they are built, CART naturally includes higher-
order interactions, derived from the data. In that sense
CART is the most flexible method, and no model has to
be specified.
The performance of CART can be improved by using

random forests or boosted trees [13]. Bothmethods aggre-
gate information from multiple decision trees, developed
on different bootstrap samples. Although their predictive

performance surpasses that of a single tree, both random
forests and boosted trees do not yield a simple decision
rule. Hence we did not consider them in this paper since
our aim was to develop a prediction rule that can be easily
applied in clinical practice.

Conclusions
When the goal is to predict a binary outcome, often logis-
tic regression is chosen as method to build a prediction
score. However other methods like SKJ and CART may
perform better and should be considered. More research
is needed on how to select the best prediction method in
a certain setting.
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