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Abstract

climate factors in Bangkok, Thailand, from 2003 to 2017.

Background: In Thailand, dengue fever is one of the most well-known public health problems. The objective of this
study was to examine the epidemiology of dengue and determine the seasonal pattern of dengue and its associate to

Methods: The dengue cases in Bangkok were collected monthly during the study period. The time-series data were
extracted into the trend, seasonal, and random components using the seasonal decomposition procedure based on
loess. The Spearman correlation analysis and artificial neuron network (ANN) were used to determine the association
between climate variables (humidity, temperature, and rainfall) and dengue cases in Bangkok.

Results: The seasonal-decomposition procedure showed that the seasonal component was weaker than the trend
component for dengue cases during the study period. The Spearman correlation analysis showed that rainfall and
humidity played a role in dengue transmission with correlation efficiency equal to 0.396 and 0.388, respectively. ANN
showed that precipitation was the most crucial factor. The time series multivariate Poisson regression model revealed
that increasing 1% of rainfall corresponded to an increase of 3.3% in the dengue cases in Bangkok. There were three
models employed to forecast the dengue case, multivariate Poisson regression, ANN, and ARIMA. Each model
displayed different accuracy, and multivariate Poisson regression was the most accurate approach in this study.

Conclusion: This work demonstrates the significance of weather in dengue transmission in Bangkok and compares
the accuracy of the different mathematical approaches to predict the dengue case. A single model may insufficient to
forecast precisely a dengue outbreak, and climate factor may not only indicator of dengue transmissibility.
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Background

Dengue fever is one of the most common infectious dis-
eases in Thailand and one of the top threats to global pub-
lic health. Dengue virus is the cause of dengue fever. The
dengue virus is a single positive-stranded RNA virus of
the family Flaviviridae; genus Flavivirus. Approximately
a third of the world population are living in dengue-
endemic areas, the significant disease burden being in
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tropical and subtropical regions, which are mostly devel-
oping countries [1]. The symptoms of dengue fever indi-
viduals range from no signs, mild fever, high fever, pain
behind eyes, headache, vomiting, and muscle pains [2].
Severe cases can be massive bleeding, shock, and death.
Dengue symptoms can be classified into three categories
depending on the clinical syndromes, from mild to severe,
dengue fever (DF), dengue hemorrhagic fever (DHF) and
dengue shock syndrome (DSS). Dengue virus has four dif-
ferent serotypes (DENV 1-4) that can transmit to humans
[3]. Recovery from infection (primary infection) by one
serotype provides lifelong immunity against that serotype
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and temporary for the other. If persons get infected with
different serotypes (secondary infection), the risk of devel-
oping severe dengue is increasing.

The mosquito, Ae. aegypti and Ae. albopictus, are the
main vector of the dengue virus and mainly feed on
human blood [1]. Ae. aegypti habit in urban areas while
Ae. albopictus is in rural areas. There is no specific treat-
ment for dengue fever. The control methods are mainly
surveillance and elimination of mosquito. A commercial
dengue vaccine, known as CYT-TDV or Dengvaxia, is
available in some countries for people ages 9-45 years
old. However, the World Health Organization suggests
that the vaccine only be provided to persons who have
exposures previously to dengue virus [4]. The number of
Dengue cases is likely to increase in the future because
of several factors such as climate change, globalization,
development of the virus, insufficient political and eco-
nomic supports, and limited resources for effective con-
trol measures.

In Thailand, the first report of dengue infection in the
country was around 1949, and the first outbreak was
1958 [5]. The recent reports indicated that the significant
dengue-endemic occurs typically every 3-5 years [5]. In
the last decades, The Bureau of Epidemiology reported
that approximately 40,000-150,000 dengue cases per year
[5]. Kongsin et al. [6] estimated the total annual economic
burden of dengue in Thailand was 125-191 million US
dollars, which approximately 72% was the cost of dengue
illness and 28% was dengue control programs. In gen-
eral, the patterns and epidemiological characteristics of
dengue mostly depend on climate factors. Humidity, tem-
perature, and rainfall are the key factors [7, 8]. Phanitchat
et al. [9] reported that the dengue outbreaks coincide with
the rainy season and maximum temperature in Khonkean,
Thailand. However, the patterns of dengue incidence also
depend on several factors, such as population density,
human movement, sanitation, and infrastructure. It is
essential to understand the pattern of dengue incidence
because it may assist the authorities to prepare and pre-
vent the outbreak.

The objective of this study was to investigate the epi-
demiological pattern of dengue incidence in Bangkok,
Thailand, and also the effects of climate on dengue infec-
tion by using the data from 2003-2017 and the mathemat-
ical approach. The time-series models can evaluate trends
and seasonal patterns of dengue incidence and may apply
to predict future endemics. The seasonal-decomposition
procedure based on loess (STL) was employed to assess
the trend and seasonality of dengue fever. It is essen-
tial to use more than one approach to predict dengue
cases. In this study, we used three different methods;
Multivariate Poisson Regression model (MPR), Artificial
Neural Networks (ANN), and Autoregressive Integrated
Moving Average (ARIMA). Various studies [10-14] used
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these methods to predict the dengue-endemics. MPR uses
climate factors as a dependent variable and number of
dengue cases as an independent variable. ANN uses com-
binations of independent variables (climate factors) to
calculate relationships with dependent variables (dengue
cases). ARIMA is a generalization of an autoregressive
moving average model and provides another approach
to time series forecasting. We used RStudio to stimu-
lated and calculated the results. A high dengue incidence
rate typically occurs every 3-5 years [5]. A period of 15
years would be sufficient to obtain the pattern of dengue
epidemiology.

Methods

Study area

Bangkok is the capital city of Thailand and the most pop-
ulous in the country. The city is the center for transporta-
tion, industry, finance, tourism, education, and trade.
The register population was 5.6 million in 2017, and the
population density was approximately 3500 per square
kilometer. In 2003-2017, the mean temperature was 29.8
°C, average relative humidity was 72.9%, and the average
monthly rainfall was 150 mm.

Data collection

The Bureau of Epidemiology (BoE), Department of Dis-
ease Control, Ministry of Public Health of Thailand,
provided Dengue statistical data [5]. The local health ser-
vices submit the data to the central administration. The
BoE published the data on its website and within the
Annual Epidemiological Surveillance Reports (AESRs).
The dengue data from Thai national surveillance are pub-
lished monthly. The data consist of the number of dengue
cases, fatality, age, and type of dengue. The dengue inci-
dence number data set in this study can be found in the
Supplementary file, data set sheet, Table S4.

The Department of Meteorology, Ministry of the Digi-
tal Economy and Society, provided the climate data from
2003-2017 [15]. The data set consists of 180 monthly mea-
surements or sets of mean temperature, mean relative
humidity, total rainfall, and the number of dengue cases.
The climate data set in this study can be found in the
Supplementary file, data set sheet, Table S1-S3.

Mathematical analysis

Decomposition

Several types of research include the natural sci-
ences, environmental science, and public health use the
seasonal-decomposition procedure based on loess (STL)
to analyse the time-series data. SLT filters the trend
and seasonal component from the time series data and
decomposes into three components: trend (the long term
and low-frequency variation in the data), seasonal (vari-
ation in the data within the same period), and random
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or remainder (the remaining variation in the data after
extracting trend and seasonal component). The advan-
tages of SLT are its simplicity, robustness of results,
and effective data visualization. The time-series data, the
trend, seasonal and random component were denoted
by Y, T: S: and Ry, respectively. The equation can be
described as follows.

Y =T+ S+ R, (1)

In this study, Y; is the number of dengue cases. ¢ is time
in the unit of month. The numbers of dengue cases are
vastly different each year. In the outbreak year, the num-
bers may triple that of an average number of the whole
period. Therefore, it might lead to mistranslate the pat-
tern. It is essential to adjust the numbers of dengue cases
each year to the same magnitude. Consequently, we set
up the new parameter, adjusted dengue data, Y7, which is
defined as follows.

Y;

Y; = 2)

Ymax
where Y}, is a dengue case of the peak month of the year.
We assumed that the period of the dengue-endemic was
12 months; start from January to December. The adjusted
value allows us to investigate the pattern of the dengue
incidence by reducing the effects of outlier cases.

The variance of Y; can be described as follows;

Var(Y;) =Var(Ty) + Var(S;) + Var(Ry) + Cov(T%, Sy)
+ COV(T[, Rt) =+ COV(St, Rt) (3)

The ratio of the variance of component and the variance
of data set was calculated as follows;

Var(Cy)

=
Var(Y;)
where r is the value of the ratio, and C; is the compo-

nent of seasonal decomposition. If r is close to one, the
component is the most important to the data set.

(4)

Multivariate poisson regression (MPR)

In this study, we applied the Spearman correlation analysis
to identify the relationship between the number of dengue
cases and mean temperature, rainfall, and humidity with
three-month lags in Bangkok. The three-month length is
sufficient to cover the life span of the mosquito, incu-
bation, and infectious period of the dengue virus in the
human body. We established a time-series Poisson regres-
sion model to determine the association between climate
factors and dengue cases in Bangkok. Typically, the Mul-
tivariate Poisson Regression model expresses the natural
logarithm of the outcome as a linear function of a set of
predictors can be described as follows;

Page 30f 10

In(Ys) = Bo + Y _ Bixi + ¥y (5)
i=1

where In(Y}) is the natural logarithm of predicted dengue
cases at time ¢; B, B; and c are the constant. x; represent
climate variables.

Artificial neural networks (ANN)

The ANN models consisted of three layers; input layer,
hidden layer, and output layer. The key advantages of this
procedure are ANN can manage a large number of data
sets, extract complex nonlinear relationships, and detect
interactions between dependent and independent vari-
ables. The network model consisted of four parameters
in its input layer, namely rainfall, relative humidity, mean
temperature, and the number of dengue cases reported
last month. The output was the number of dengue cases.

The Arima models

An autoregressive integrated moving average (ARIMA)
model is a statistical analysis model that uses the time
series data to forecasts the possible outcome. A non-
seasonal ARIMA model is denoted ARIMA(p, d, q). The
non-negative integers, p is the number of autoregres-
sive terms. d is the number of times that the raw
observations are differenced. g is the number of lagged
forecast errors in the prediction equation. An exten-
sion of ARIMA models with the seasonal component is
SARIMA(p,d, q)(P,D,Q)"”, where m is the number of
periods in each season, and P, D, Q are the autoregressive,
differencing, and moving average terms for the seasonal
part of the ARIMA model respectively.

The data set is divided into two different subsets called
train and test set. The main difference between train and
test sets is that the train data set is used in training the
neural networks, and the test data set is the unseen data
that is hidden to the network during training. In this study,
total data covered 15 years or 180 months period. The
training data set was 168 months period, and the rest 12
months were test set and used to verify the accuracy of
the model. The ratio of the selection in the number of data
was 0.93 (168/180), which means an excellent validation if
trained and successfully tested since the training data set
contains less data than the testing set.

Results

Figure la shows the reported dengue incidence rate in
Bangkok during the study period (2003-2017). The peak
of dengue-endemic occurred in November 2015, in which
the incidence rate was 147 per 100,000 and also the high-
est dengue-endemic year, with an incidence rate of 461
per 100,000. The lowest incidence rate was 2014 (83 per
100,000). The average annual dengue incidence rate was
172 (SD=93) per 100,000 population. The total number
of dengue cases was 146,180 cases, and the total number
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Fig. 1 a: The number of dengue incidence rate per 100,000 population in Bangkok from 2003 to 2017. b: Monthly box plot distribution of dengue
incidence rate

of fatalities was 91. Figure 1b shows the box plot of the
dengue incidence rate in Bangkok. The box encompasses
50% of the distribution, the line within the box is the
median value, borderlines are the first, and the third
quartile and small cycles are outliers. January, Septem-
ber, October, November, and December have outliers as
illustrated in the figure.

Decomposition

We created the adjusted data from the raw data by using
Eq. (2). Figure 2 shows STL plot of two data sets, raw
and adjusted data. Figure 2a shows SLT of the raw data
set. There is a prominent high peak in the figure because
the massive outbreak of dengue occurred in 2015. The

trend and random component also clearly display this
peak. Figure 2b displays the STL of the adjusted data. The
maximum value of the dengue incidence rate was one.
Therefore, extremely high peak or outlier incidence was
limited to one. The configuration of the components of
both data set is different, as can be seen in the figure.

In this study, we evaluated the component that was
the most critical component factor for the dengue-
endemic in Bangkok. The ratio (r) values between the
variance of each component and the variance of the
data were calculated. For the raw data set, the ratio is
0.208, 0.281, and 0.443 for seasonal, trend, and random
components, respectively. For the adjusted data set, the
ratio is 0.455, 0.167, and 0.361 for seasonal, trend, and
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Fig. 2 The decomposition plot of the time-series dengue case in Bangkok from 2003 to September 2017. @) The decomposition plot of raw data set;
b) The decomposition plot of adjusted data set; The other layers show the decomposed components, representing the seasonal, trend, and random

random components, respectively. Adjusted dengue inci-
dence data in the first and second quarters of the year are
right-skewed distribution, as illustrated in Fig. 3. The left-
skewed distribution is in the third and fourth quarters of
the year.

Multivariate poisson regression model (MPR)

Table 1 shows the Spearman correlation analysis of
the relationship between dengue cases (2003-2017) and
climate variables with a time-lag of zero to three months.
The positive regression was observed in humidity and
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precipitation, while the mean temperature was negative
regression during the study period. The MPR model (lag
1-3 months) with the autoregressive term was estab-
lished in this study by using the monthly climate data
of Bangkok. The time lag 0 was excluded because the

objective of the model aimed to predict the future number
of dengue cases. The period 2003-2016 was the training
set (168 samples), and 2017 was the test set (12 sam-
ples). After fitting the models for the training set, we
used the model to predict the monthly dengue cases and

Table 1 Results of Spearman’s coefficient of rank correlation for time-lag effects, coefficient value, importance of independent variables

Climate variable Time-Lag MPR ANN
Correlation Coefficient Importance Normalized
(x 1073) Importance (%)
Relative Humidity (%) 0 0224 NA 0.228 68.1
1 0.380** 9.167 0.069 68.1
2 0.388** 1.735 0.093 91.6
3 0.268** -1.168 0.056 54.8
Rainfall (mm) 0 0.125 NA 0.162 82.8
1 0.373** 1.333 0.087 859
2 0.396"* 0.651 0.102 100
3 0.245* 0.200 0.083 81.7
Temperature (C°) 0 -0.150 NA -0.096 62.2
1 -0.077 -71.801 0.069 68.3
2 0.144 11.606 0.079 779
3 0.271* 5.869 0.059 58.2
The correlation of variables with intercept 1.11 x 1073 and coefficient for previous case is 0.443x 10~>. Spearman rank correlation and Pearson correlation analyses were

performed with temperature and rainfall respectively.
*: p-value< 0.05, **: p-value< 0.01
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compared to the test set. Table 1 displays the coefficient of
the parameters and Fig. 4 illustrates the predicted dengue
incidence cases.The correlation graph can be found in the
correlation sheet in Supplementary file.

Artificial neuron network (ANN)

The ANN with one hidden layer and nine neurons was
employed in this study. The number of neurons provided
the least errors in this data set. The predictor impor-
tance number indicates the relative importance of each
predictor or variable in estimating the model. The impor-
tance of an independent variable is a measure of how
much the network’s model-predicted value changes for
different values of the independent variable. Normalized
importance is simply the importance values divided by the
largest importance values and expressed as percentages.
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The results show that the importance of independent
variables of climate factors to dengue cases. The highest
was rainfall with two-month lag time, followed by relative
humidity with the same lag time as display in Table 1. The
predicted number of test values, as shown in Fig. 4.

ARIMA model

We used the natural logarithm of dengue incidence
for 2003-2016 as a test set. The best fit model was
SARIMAC(L,0,2)(1,1,2)2. In this time series, there was a
strong seasonal component (1,1,2) and with the seasonal
component (1,0,2), considered a mixed model.

Performance of models
Figure 4a displays the plot between actual and predicted
the number of dengue cases from the methods in the train
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set. The number of dengue cases in 2017 was used as a ref-
erence to test the accuracy of the results. Figure 4b shows
a comparison between real data and predicted value. To
obtain the most accurate method, we used several ways
to evaluate the results. The correlation coefficient, Mean
Absolute Error (MAE), Root-Mean-Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE) were a
measure of prediction accuracy of a forecasting method
that employed in this study. The MPR model achieved
0.87, 2.69, 3.37, and 2641 for the correlation coeffi-
cient, MAE, RMSE, and MAPE, respectively. The ANN
obtained 0.69, 4.07, 5.53, and 39.12 for the correlation
coefficient, MAE, RMSE, and MAPE, respectively. Finally,
the ARIMA was 0.90, 3.83, 6.49, and 26.45 for the corre-
lation coefficient, MAE, RMSE, and MAPE, respectively.
The results have shown that the MPR model has lower
errors in every measurement compare to the others. The
summary of the model comparison displays in Table 2.
The total number of dengue cases in 2017 in Bangkok
was 8781. The MPR, ANN, and ARIMA predicted the
numbers of dengue cases were 8929, 7317, and 10038,
respectively.

Discussion

The objective of this study was to evaluate the pattern of
dengue incidence and the association between the num-
ber of dengue cases and climate factors in Bangkok (2003-
2017). The unusual dengue-endemic was November 2015,
which was nearly ten times the average number of dengue
incidence rates in the study period, which may cause a
significant error for prediction. Several outliers appeared
in a boxplot. The outlier value may alter the accuracy of
the model [14]. The adjusted data set assists us in explor-
ing the pattern of the peak of the dengue incidence by
reducing the effects of outlier value.

In this study, none of the elements has a ratio of variance
exceed 0.5. Therefore, none of the components controls
the pattern of dengue incidence of Bangkok. The ratio
value (r) has shown that the random component was the
most important to the raw data set. This result explains
the appearance of outlier dengue cases. The seasonal com-
ponent was the most crucial component of the adjusted
data set. The peak of dengue cases may occur at vary-
ing times each year. Although the histogram of adjusted
dengue incidence rate (Fig. 3) indicates that the peak time
of dengue incidence in Bangkok is likely to be in the last
quarter of the year.

Table 2 Model Comparison

Model Correlation Coefficient MAE RMSE MAPE
MPR 0.87 2.69 3.37 2641
ANN 0.69 4.07 553 39.12
ARIMA 0.90 383 6.49 2645
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Climate variables affect the mosquito population
dynamics and disease transmission ability. In this study,
the MPR and ANN model suggested that relative humidity
and rainfall contribute to the impact on dengue trans-
mission in Bangkok. The highest correlation was rela-
tive humidity with a two-month time lag, and the high-
est ANN importance was rainfall with also two-month
time lag. Similar results also found in previous studies
[8, 16, 17]. There was a difference in the distribution of
dengue fever within and between provinces in Thailand
[18, 19]. Increasing temperature contribute to a minor
negative association because the mean temperature in
Bangkok was relatively constant throughout the year. The
average temperature during the study period was 29.8°C
(SD=1.29), which was close to the optimal temperature
for dengue transmission, 29.3°C [7]. The high tempera-
ture may decrease vector populations in warmer regions
that are currently close to the limit for the mosquito to
survive [20].

Rainfall generally increases the breeding sites for
mosquitoes; its impact on dengue transmissibility was
moderate in this study. There are plenty of human-
made water containers such as jars, drums, pools, dis-
carded tires that are mostly independent of rainfall in
Bangkok. They become breeding sites for mosquito in the
urban area. Also, stagnant water and poor sanitary and
hygiene practices may make suitable breeding sites for the
mosquitoes. In contrast, heavy rainfall may wash away
breeding sites, interrupt the development of mosquito
eggs or larvae [21]. The seasonal pattern indicates that the
peak of the dengue-endemic in Bangkok usually occurs
in November during the study period, which is generally
outside the rainy season.

Typically, humidity increases the survival rate of
mosquito and daily biting rates [22]. However, humid-
ity above 79% may reduce the population of mosquito
due to complex interactions between climate factors [23].
In Bangkok, the average humidity was 72.9% (SD=5.5)
during the study period. Therefore, the humidity level in
Bangkok is still in the condition that increases dengue
transmission ability.

The models may be employed to predict the effect of
the climate factors on the number of dengue cases. We
used the most accurate MPR model to inspect the impact
of changing the variables on the prevalence number. The
MPR model showed that 1% rise of rainfall corresponded
to an increase of 3.3% in the monthly incidence rate of
dengue while 1% rise of humidity increase of 0.7% of
dengue case in the model. However, a 1% rise of tem-
perature corresponded to a decrease of 1.6% of dengue
case.

Besides climate, there are many factors to consider.
Several studies suggested that climate variables may con-
tribute a minor effect to dengue transmission [13, 24].
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In Singapore, urbanization is one of the main reasons
for rapid dengue growth in the past 40 years [25]. Lee
et al. calculated that none of the climate variables was
a significant factor in the dengue transmission model
for Ho Chi Minh City [11]. Johansson et al. stated that
climate data did slightly improve the accuracy of the
seasonal autoregressive dengue models for Mexico [13].
Female mosquitoes and seasons strongly correlated with
the number of dengue cases in some provinces in Thai-
land [26]. Bangkok is one of the densest cities in the
world, and it is likely to affect the pattern of dengue
fever. Li et al. [27] found that urbanization may increase
the abundance and survival rate of mosquitoes, which
can increase the transmission ability and the number of
infections.

There were several limitations to this study. Firstly,
the actual dengue infection could be underestimated
because persons who diagnosed with only mild or asymp-
totic symptoms usually not seek medical care. The real
number maybe 4-6 times of reported cases [28]. Sec-
ondly, Bangkok is the center of economy and educa-
tion. Every day, millions of persons travel to Bangkok
in the morning and leave in the evening or early night.
Some of the patients may be infected in Bangkok but
obtained medical care somewhere else, which is hard to
identify the place of infection. Therefore, human move-
ment, urbanization, and transportations are essential fac-
tors to determine the dynamics of dengue transmission
[29]. The non-climate variables may be added to the
models if the data is available in the future. Another
significant limitation is the effect of mosquito control
programs excludes from the models. This factor may
provide information on the potential of campaigns on
the mosquito population control and may be useful in
future researches. Instead of monthly data, the weekly or
biweekly data may provide more detail about the non-
linear association between climate factors and dengue
cases. However, BoE stores only monthly data on its online
database.

Three models in this study displayed a different level
of accuracy when compared to the test set. ANN showed
a poor performance in predicting dengue cases compare
to MPR in this study. The error in ARIMA was slightly
above MPR. The results indicate that a single model may
insufficient to predict the number of dengue because there
are several factors that direct and indirect effects the
transmission ability. This study provided three different
approaches to forecast the number of dengue cases in
Bangkok.

Conclusion

The results have shown that the pattern of dengue in
Bangkok relies only partially on the seasonal compo-
nent. Rainfall and humidity have an impact on dengue
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transmissibility in Bangkok with a positive association.
It is strongly recommended to add more variables to
increase accuracy. These findings may be useful for devel-
oping climate models for dengue outbreak early warning
method for Bangkok and the rest of the country.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512879-020-4902-6.

Additional file 1: Data set sheet contains the climate data in Bangkok
form 2003-2017. Table S1 is mean temperature. Table S2 is rainfall.
Table S3 is humidity. Table S4 is Dengue incidence number in Bangkok
from 2003 to 2017. Correlation sheet contains the correlation between
dengue case number and climate data in Bangkok.

Abbreviations

ANN: Artificial neural networks; ARIMA: Autoregressive integrated moving
average; DF: Dengue fever; MPR: Multivariate poisson regression; STL: The
seasonal-decomposition procedure based on loess

Acknowledgements
Not Applicable.

Authors’ contributions
SP designed, analysed and written all the works. The author read and
approved the final manuscript.

Funding

This work was supported by funding from the Center of Excellence in
Mathematics, The commission of higher education, Thailand. This funding
source had no role in the design of this study and will not have any role during
its calculation, analyses, interpretation of the data, or decision to submit results.

Availability of data and materials

The data that support the findings of this study are available from the
Department of meteorology of Thailand [15] and, Bureau of Epidemiology of
Thailand [5].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 23 September 2019 Accepted: 18 February 2020
Published online: 12 March 2020

References

1. World Health Organization: Comprehensive Guidelines for Prevention
and Control of Dengue and Dengue Haemorrhagic Fever. 2011. http://
apps.searo.who.int/pds_docs/B4751.pdf. Accessed 7 Dec 2019.

2. Mayo Clinic: Dengue Fever. 2018. https://www.mayoclinic.org/diseases-
conditions/dengue-fever/symptoms-causes/syc-20353078. Accessed 7
Dec 2019.

3. Back A, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol.
2013;3. https://doi.org/10.3402/iee.v3i0.19839.

4. Centers for Disease Control and Prevention: Dengue Vaccine. 2019.
https://www.cdc.gov/dengue/prevention/dengue-vaccine.html.
Accessed 7 Dec 2019.

5. Bureau of Epidemiology, Department of Disease Control, Ministry of Public
Health of Thailand: Dengue Fever Report. 2018. http://www.boe.moph.
go.th/boedb/surdata/disease.php?ds=262766. Accessed 7 Dec 2019.


https://doi.org/10.1186/s12879-020-4902-6
http://apps.searo.who.int/pds_docs/B4751.pdf
http://apps.searo.who.int/pds_docs/B4751.pdf
https://www.mayoclinic.org/diseases-conditions/dengue-fever/symptoms-causes/syc-20353078
https://www.mayoclinic.org/diseases-conditions/dengue-fever/symptoms-causes/syc-20353078
https://doi.org/10.3402/iee.v3i0.19839
https://www.cdc.gov/dengue/prevention/dengue-vaccine.html
http://www.boe.moph.go.th/boedb/surdata/disease.php?ds=262766
http://www.boe.moph.go.th/boedb/surdata/disease.php?ds=262766

Polwiang BMC Infectious Diseases (2020) 20:208

20.

21

22.

23.

24.

25.

26.

27.

28.

Kongsin S, Jiamton S, Suaya J, Vasanawathana S, Sirisuvan P, Shepard
D. Cost of dengue in Thailand. Dengue Bull. 2010;34:77-88.
Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklov J. Vectorial
capacity of Aedes aegypti: effects of temperature and implications for
global dengue epidemic potential. PLoS ONE. 2014;9(3):e89783.
Thammapalo S, Chongsuwiwatwong V, McNeil D, Geater A. The climatic
factors influencing the occurrence of dengue hemorrhagic fever in
Thailand. Southeast Asian J Trop Med Public Health. 2005;36:191-6.
Phanitchat T, Zhao B, Haque U, et al. Spatial and temporal patterns of
dengue incidence in northeastern Thailand 2006-2016. BMC Infect Dis.
2019;19:743.

Aburas H, Cetiner B, Sari M. Dengue confirmed-cases prediction: A neural
network model. Expert Syst Appl. 2010;37(6):4256-60.

Lee H, Nguyen-Viet H, NamV, Lee M, Won S, Duc P, Grace P. Seasonal
patterns of dengue fever and associated climate factors in 4 provinces in
Vietnam from 1994 to 2013. BMC Infect Dis. 2017;17:218.

Sang S, GuS, BiP, Yang W, Yang Z. Predicting unprecedented dengue
outbreak using imported cases and climatic factors in Guangzhou. PLoS
Negl Trop Dis. 2014;9(5):e0003808.

Johansson M, Reich N, Hota A, Brownstein J, Santillana M. Evaluating
the performance of infectious disease forecasts: A comparison of
climate-driven and seasonal dengue forecasts for Mexico. Sci Rep. 2016;6.
Cortes F, Martelli C, Ximenes R, Montarroyos U, SiqueiraJ, Cruz O,
Alexander N, de Souza W. Time series analysis of dengue surveillance
data in two brazilian cities. Acta Trop. 2018;182:190-7.

The Department of Meteorology, Ministry of the Digital Economy and
Society of Thailand: Climate Information Services. 2018. https://www.tmd.
go.th/cis/main.php. Accessed 7 Dec 2019.

Silawan T, Singhasivanon P, Kaewkungwal J, Nimmanitya S, Suwonkerd
W. Temporal patterns and forecast of dengue infection in northeastern
Thailand. Southeast Asian J Trop Med Public Health. 2008;39:90-8.
Ehelepola N, Ariyaratne K, Buddhadasa W, Ratnayake S, Wickramasinghe
M. A study of the correlation between dengue and weather in Kandy city,
Srilanka (2003-2012) and lessons learned. Infect Dis Poverty. 2015;4:42.
Bekoe C, Pansombut T, Riyapan P, KakchapatiS, Phon-On A. Modeling
the geographic consequence and pattern of dengue fever transmission
in Thailand. J Res Health Sci. 2017;17(2):e00378.

Xu Z, Bambrick H, Yakob L, Devine G, LuJ, FrentiuF, Yang W, Williams
G, Hu W. Spatiotemporal patterns and climatic drivers of severe dengue
in thailand. Sci Total Environ. 2019;656:889-901.

Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C. Climatic
and social risk factors for aedes infestation in rural Thailand. Trop Med Int
Health. 2003;8:650-9.

Benedum C, Seidahmed O, Eltahir E, Markuzon N. Statistical modeling of
the effect of rainfall flushing on dengue transmission in Singapore. PLoS
Negl Trop Dis. 2018;12(12):e0006935.

Azil A, Long S, Ritchie S, Williams C. The development of predictive tools
for pre-emptive dengue vector control: a study of aedes aegypti
abundance and meteorological variables in north queensland, australia.
Trop Med Int Heal. 2010;15:1190-7.

da Cruz Ferreira D, Degener C, de Almeida Marques-Toledo C, Bendati
M, Fetzer L, Teixeira C, Eiras A. Meteorological variables and mosquito
monitoring are good predictors for infestation trends of aedes aegypti,
the vector of dengue, chikungunya and zika. Parasit Vectors. 2017;10(1):78.
ChoiY, Tang C, Mclver L. Effects of weather factors on dengue fever
incidence and implications for interventions in Cambodia. BMC Public
Health. 2016;16:241.

Struchiner C, Rocklov J, Wilder-Smith A, Massad E. Increasing dengue
incidence in Singapore over the past 40 years: Population growth, climate
and mobility. PLoS ONE. 2015;10(8):e0136286.

Siriyasatien P, Phumee A, Ongruk P, Jampachaisri K, Kesorn K. Analysis
of significant factors for dengue fever incidence prediction. BMC
Bioinformatics. 2016;17:166.

LiY, Kamara F, Zhou G, Puthiyakunnon'S, LiC, LiuY, ZhouY, YaolL,
Yan G, Chen X. Urbanization increases aedes albopictus larval habitats
and accelerates mosquito development and survivorship. PLoS Negl Trop
Dis. 2014;8(11):e3301.

Chastel C. Eventual role of asymptomatic cases of dengue for the
introduction and spread of dengue viruses in non-endemic regions. Front
Physiol. 2012;3:70.

Page 10 of 10

29. Stoddard S, Morrison A, Vazquez-Prokopec G, Paz Soldan V, Kochel T,
Kitron U. The role of human movement in the transmission of
vector-borne pathogens. PLoS Negl Trop Dis. 2009;3(7):e481.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://www.tmd.go.th/cis/main.php
https://www.tmd.go.th/cis/main.php

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Study area
	Data collection
	Mathematical analysis
	Decomposition
	Multivariate poisson regression (MPR)
	Artificial neural networks (ANN)
	The Arima models


	Results
	Decomposition
	Multivariate poisson regression model (MPR) 
	Artificial neuron network (ANN)
	ARIMA model
	Performance of models

	Discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12879-020-4902-6.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

