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Abstract

Background: Clostridioides difficile infection (CDI) is one of the most common healthcare infections. Common
strategies aiming at controlling CDI include antibiotic stewardship, environmental decontamination, and improved
hand hygiene and contact precautions. Mathematical models provide a framework to evaluate control strategies. Our
objective is to evaluate the effectiveness of control strategies in decreasing C. difficile colonization and infection using
an agent-based model in an acute healthcare setting.

Methods: We developed an agent-based model that simulates the transmission of C. difficile in medical wards. This
model explicitly incorporates healthcare workers (HCWs) as vectors of transmission, tracks individual patient antibiotic
histories, incorporates varying risk levels of antibiotics with respect to CDI susceptibility, and tracks contamination
levels of ward rooms by C. difficile. Interventions include two forms of antimicrobial stewardship, increased
environmental decontamination through room cleaning, improved HCW compliance, and a preliminary assessment
of vaccination.

Results: Increased HCW compliance with CDI patients was ranked as the most effective intervention in decreasing
colonizations, with reductions up to 56%. Antibiotic stewardship practices were highly ranked after contact precaution
compliance. Vaccination and reduction of high-risk antibiotics were the most effective intervention in decreasing CDI.
Vaccination reduced CDI cases to up to 90%, and the reduction of high-risk antibiotics decreased CDI cases up to 23%.

Conclusions: Overall, interventions that decrease patient susceptibility to colonization by C. difficile, such as
antibiotic stewardship, were the most effective interventions in reducing both colonizations and CDI cases.
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Background
Clostridioides difficile–an anaerobic, gram-positive,
endospore-forming bacterium–is the leading cause of
infectious diarrhea in United States hospitals and one of
the most common healthcare-associated infections [1].
C. difficile colonizes the large intestine and can cause
severe diarrhea and colitis [2]. In severe cases, C. dfficile
also causes colonic perforation and death [2]. In 2019,
the Centers for Disease Control and Prevention (CDC)
classified C. difficile with the highest threat level of urgent
[3]. C. difficile causes approximately 223,900 infections
in hospitalized patients and 12,800 associated deaths in
the U.S. per year [4]. The cost associated with C. difficile
infection (CDI) in U.S. acute-care facilities alone has
been estimated to be as much as $4.8 billion annually [5].
Because CDI is one of the most common nosocomial
infections among patients in healthcare facilities, there
is a critical need to better identify primary sources of
transmission and optimal methods for prevention.
Controlling CDI is complicated because patient sus-

ceptibility to CDI is influenced by many factors, includ-
ing antibiotic exposures. In addition, there are multiple
sources of transmission; in hospitals, less than 35% of
symptomatic cases are traced back to previous symp-
tomatic cases [6, 7]. Other sources of transmission are
asymptomatic carriers and the hospital environment. Col-
onized patients–both symptomatic and asymptomatic–
shed C. difficile spores in the stool. Skin and environ-
ments near patients become contaminated withC. difficile
spores [8]. C. difficile has been found on beds, sinks,
toilets, walls, rails, call buttons, and stretchers [9]. The
survival of C. difficile spores on hospital surfaces makes
healthcare workers (HCWs) important vectors of trans-
mission, particularly if they exhibit poor contact precau-
tion practices [9].
Antibiotic use is the primary risk factor for CDI since

antibiotics disrupt the normal gut microbiota [10], allow-
ing C. difficile to colonize and proliferate [11]. Certain
antibiotics may make individuals more susceptible to col-
onization by C. difficile than others. This depends on the
spectrum, duration, and number of antibiotics received
[12–14]. Prolonged duration of antibiotic use and number
of prescriptions are both linked to increased risk for CDI
[12]. Broad-spectrum antibiotics work against a broad
range of bacteria, which results in more significant gut
microbiota disturbance and, thereby, an increased risk for
C. difficile colonization [14].
Common strategies aimed at controlling CDI include

antibiotic stewardship, isolation of patients with CDI,
environmental decontamination of rooms with bleach,
and improved HCW hand-hygiene and contact protocol
[15, 16]. Antibiotic stewardship may involve an over-
all reduction in the number of antibiotics prescribed
and/or a reduction targeted specifically at the proportion

of antibiotics prescribed that are associated with a high
risk for CDI, such as fluoroquinolones, clindamycin, and
cephalosporins [17–19]. Current hospital practice calls
for the identification and subsequent isolation of patients
with CDI so that proper contact precautions can be
implemented to decrease the chances of pathogen spread
[15, 16]. More purposeful cleaning with a sporicidal
product is an additional strategy aimed at reducing the
pathogen level in healthcare settings [20]. HCWs’ hands
can become contaminated after touching CDI patients
or surfaces with C. difficile spores [21, 22], and stud-
ies have shown that adherence to best hand-hygiene and
contact protocol practices have been difficult to main-
tain [23, 24]. Because the spread of nosocomial pathogens
has been linked to poor hand-hygiene practices [9],
improved adherence of HCWs to proper hand-washing
and contact protocols is also an important control mea-
sure. Overall, recommendations for controlling CDI have
not changed over time. Vaccine trials have demonstrated
hopeful results in clinical trials [25, 26]. Although many
initial vaccines focus on toxin-related antigens and do
not prevent colonization by C. difficile, vaccines may be
an additional tool for reducing transmission in hospital
settings by decreasing number of CDI patients.
Interventions are often combined; however, there are

few clinical studies evaluating the effectiveness of com-
bined interventions [27]. Computational models have
been used to quantify the relative impact of single inter-
ventions on the spread of C. difficile and to determine
the optimal combination of intervention strategies for
reducing transmission [19, 24, 28]. Agent-based models
(ABMs) allow us to define a system based on individual
behaviors and interactions in order to observe emergent
behaviors of the entire system [29]. ABMs also allow us
to incorporate spatial heterogeneity, consider a variety of
transmission pathways, and incorporate individual patient
characteristics that are significant in determining trans-
mission. Furthermore, ABMs inherently have stochastic
components that can result in different outcomes from
similar starting conditions.
Previous ABMs for C. difficile transmission differ

on what elements of the transmission processes were
included and subsequently what interventions the mod-
els were able to evaluate [19, 24, 28, 30, 31]. For example,
the ABM created by Codella et al. [24] specifically con-
sidered patients, HCWs, and visitors as agents. Bintz et
al. [19] developed an ABM that focused on evaluating the
efficacy of various control measures targeting environ-
mental contamination and antibiotic exposures in order
to reduce colonization and infection incidence within the
hospital. Previous ABMs did not simultaneously incor-
porate heterogeneity of antibiotics prescribed, individual
patient antibiotic histories, and HCWs as vectors of trans-
mission in their evaluation. In this study, we expand on the



Stephenson et al. BMC Infectious Diseases          (2020) 20:799 Page 3 of 17

ideas formulated by Bintz et al. [19] in order to create an
ABM of C. difficile transmission that incorporates specific
patient histories, antibiotic histories, antibiotic risk levels,
and explicitly incorporates HCWs as agents. By extend-
ing and modifying their model, we aim to evaluate the
following control strategies:

1 Improved terminal cleaning and disinfection of
environmental surfaces

2 Antibiotic usage restriction and stewardship
3 Improved HCW basic compliance
4 Improved HCW compliance with CDI patients
5 Vaccination.

Methods
In this section, we give an overview of the structure and
components in our ABM of nosocomial C. diffcile trans-
mission. For all the specific details about model design
and implementation in their entirety, see the Overview,
Design Concepts, and Details (ODD) protocol provided as
a supplemental file (Additional File 1), which also includes
descriptions of the submodels. Our ODD protocol follows
the standard formatting developed by Grimm, Railsback,
and their collaborators [32].

Model setting
Wedeveloped our ABMusingNetLogo, a coding language
andmodeling environment primarily used for the creation
of ABMs [33]. Our model is a modification and exten-
sion of the ABM originally created by Bintz et al. [19].
The model has two types of agents: patients and HCWs.
The environmental patches represent ward rooms, and
the model environment is a hospital consisting of six med-
ical wards, each with 35 patient rooms. These are all
single-patient rooms, so there can be at most 210 patients
in the medical wards of the hospital at a time. For sim-
plicity and to ensure we never have more patients than
available rooms, we maintain a constant occupancy level.
That is, the number of new patients admitted at a given
time always equals the number of patients discharged at
the previous time. For simplicity, the number of HCWs in
the hospital is chosen to maintain a 3:1 ratio of patients
to HCWs, and each time an HCW leaves the hospital, a
new one arrives to maintain a constant total population
of HCWs. In our model, HCWs may include physicians,
nurses, assistants, cleaning staff, meal delivery persons,
etc.
We note that shared equipment such as computers on

wheels, vital signs machines, and glucometers can be
a source of nosocomial pathogens in hospitals. Studies
measuring the interaction between portable equipment
and HCWs indicate that more than 50% of the contacts
between portable equipment and patients are mediated
by HCWs [34, 35]. For simplicity and computational

efficiency, the model captures all the interactions between
room components and patients through HCWs. As such,
the model allows for HCWs to move from room to room
but assumes that patients remain in their rooms.
We track behaviors and characteristics specific to each

individual agent and each individual room. Patient inter-
actions and characteristics are updated at every half-day
time step, which mimics the time-scale of the ABM
in [19], while HCW interactions and characteristics are
updated at every 15-minute time step. Many of the val-
ues for the parameters used in the model were taken
from [36], which was originally based on retrospective
data collected from Barnes-Jewish Hospital in St. Louis,
Missouri.

Model components
For each ward room, we track its contamination level
over time. The contamination level is unit-less and can
be incremented or decreased based on pathogen transfer.
The more surfaces in a room contaminated by C. dif-
ficile spores, the higher the room’s contamination level.
Pathogen shedding of both symptomatic and asymp-
tomatic patients will increase the contamination level of
a room. However, we assume that the shedding of symp-
tomatic patients contributes slightly more to room con-
tamination than that of asymptomatic carriers since it has
been shown that those with symptomatic CDI shed more
C. difficile in their stool [16] and are more likely to be
incontinent, which leads to more environmental contam-
ination. We also note that although a more recent study
has measured comparable levels of contagiousness of C.
difficile carriers and CDI patients [37], our model is not
particularly sensitive to the modestly different contami-
nation levels used for asymptomatic versus symptomatic
patients. Additionally, patients who are not colonized by
C. difficile will have no effect on the contamination level
of the room in which they are residing.
For all patients, we assign a length of stay in the hospi-

tal based on their disease status upon admission and on
data for the lengths of stays of patients [19, 36]. We also
track each patient’s time since admission, and once a pre-
assigned length of stay is reached, the patient is discharged
from the hospital.
All patients, regardless of their disease status with

respect to C. difficile, have a probability of receiving an
antibiotic (for treating illnesses not related to C. diffi-
cile) at each half-day time step. Because different types of
antibiotics result in varying degrees of microbiota distur-
bance and, therefore, varying risks of colonization by C.
difficile [12, 13], we group antibiotics into three risk levels
with respect to C. difficile: low-, high-, and very high-risk
[19]. The risk level of an antibiotic directly affects the time
until restoration of a normal gutmicrobiota and a patient’s
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incubation period (the time between exposure to C. diffi-
cile and the onset of symptoms). In particular, higher risk
antibiotics are associated with shorter incubation peri-
ods and longer periods until successful restoration of the
gut microbiota [19]. The model tracks the number and
associated risk level of antibiotics each patient receives.
Additionally, the amount of time each patient spends on
a particular antimicrobial therapy is tracked. Because of
this, we are able to incorporate the impact of the antibi-
otic type, duration of treatment, and number of antibiotics
on the risk of colonization and subsequent infection by C.
difficile. A patient’s assigned length of stay is also updated
based on the number and type of antibiotics he or she
received while in the hospital.
Throughout a patient’s stay, we track the progression

of his or her disease status, and we begin by noting the
patient’s disease status at admission. There are four pos-
sible disease statuses of patients: resistant, susceptible,
(asymptomatically) colonized, and diseased. Upon admis-
sion, a patient’s disease status is determined based on the
admission proportions for each disease class. We use the
same admission proportions here as used in [38], in which
the proportions were based on hospital data with mod-
ifications made to the colonized admission proportion
because of updated data given by Alasmari et al. [39].
All possible transitions among disease states are repre-

sented in Fig. 1. Because antibiotic use is widely recog-
nized as the most significant risk factor for colonization
by C. difficile [2, 40], we assume a patient only becomes
susceptible to colonization after beginning antimicrobial
therapy [38]. Those who have not recently undergone
antimicrobial therapy are considered resistant to coloniza-
tion and will not be affected by exposure to C. difficile

spores. Since, on average, a patient’s microbiota will return
to normal after 30 days [36], our model allows suscepti-
ble patients to return to resistant if they are not exposed
to C. difficile while susceptible or if they do not receive
an additional antibiotic in those 30 days. However, the
susceptible individuals who do come into contact with C.
difficile spores have a chance of becoming colonized. Each
individual susceptible patient has his or her own proba-
bility of becoming colonized that changes at each 15-min
time step and depends on the risk level of the antibiotic
prescribed and on the contamination level of his or her
room.
Upon colonization, patients are randomly assigned as

either lacking protective immunity or not, indicating
whether or not they mount their own immune response
against the toxins produced during colonization. In keep-
ing with the values used by Bintz et al. [19], there is a
10% chance a colonized individual will be lacking protec-
tive immunity. This leads to approximately 1 symptomatic
patient for every 9 asymptomatic patients. All colonized
patients have a chance of receiving one or more additional
antibiotics (for the treatment of illnesses not related to C.
difficile). For those who are not lacking protective immu-
nity and receive an additional antibiotic, it is possible they
will clear their colonization but still have an altered gut
microbiota. Therefore, this subset of colonized patients
may return to susceptible. For colonized patients who
are not lacking protective immunity and do not receive
an additional antibiotic, they may clear their colonization
and also have their gut microbiota return to normal. This
subset of colonized patients will return to the resistant
class. Finally, those colonized who are lacking protec-
tive immunity become clinically infected. If they receive

Fig. 1 Summary of movement among disease statuses of patients in ABM
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an additional antibiotic prior to becoming diseased, this
will shorten their incubation period and cause them to
experience CDI symptoms more quickly than they would
have otherwise. Our model includes screening of symp-
tomatic patients for CDI with the turnaround time for
the screening test and the sensitivity of the screening test
also incorporated. Within a half-day time step or two half-
day time steps, a symptomatic patient may be tested and
receive the results. Additionally, the symptomatic patients
who were unsuccessfully screened will be tested again in
a subsequent time step. Those diseased patients who are
successfully screened for CDI will be quarantined, and
their symptoms will be treated with one of the typical
antibiotics used to treat CDI. There is an 80% chance
of successful treatment and resolution of symptoms that
will allow diseased patients to return to the susceptible
class [36].
Upon arrival to the hospital, each HCW is assigned a

shift length. For simplicity, we consider either 8-hour or
12-hour shifts, with a 50% chance of each. We track each
HCW’s time since beginning a shift, and once this time
surpasses the total shift length assigned, that HCW leaves
the hospital. We divide HCWs into two groups: Type 1
and Type 2. Type 1 HCWs are assumed to be completing
more routine, less time-consuming tasks and, therefore,
move from patient to patient every 15 min. In contrast,
Type 2 HCWs spendmore time with the patients they visit
and only move from patient to patient every 45 min. Our
model assumes that no HCW will visit a vacant room and
that HCWs of the same type will never be in the same
room simultaneously; however, a Type 1 and Type 2 HCW
may visit the same patient at the same time. HCWs have
individual contamination levels that represent the amount
of C. difficile they are carrying. Like room contamina-
tion levels, these are unit-less and will be incremented and
decreased based on pathogen transfer. We do not track
C. difficile colonization or infection of HCWs and view
them only as vehicles of pathogen spread from room to
room. Therefore, we assume each HCW has a contam-
ination level of zero upon entry into the hospital. Each
time an HCW visits a patient, the chances of becoming
contaminated by C. difficile depends on the type of task
being performed on the patient and on the amount of con-
tamination in the room. For this reason, we divide the
types of tasks HCWs complete into three groups: low-,
medium-, and high-risk. The risk associated with a par-
ticular task depends on the invasiveness of the task and
the likelihood of coming into contact with a large num-
ber of surfaces in the room. For example, we consider a
task such as giving a patient a scrub bath to put an HCW
more at risk of becoming contaminated than giving med-
ication to a patient. Although both types of HCWs can
perform any level of task, we assume Type 1 HCWs have
a greater chance of performing low-risk tasks while Type

2 HCWs have a greater chance of performing high-risk
tasks.

Model processes
Before beginning simulations, the model environment is
first initialized. In this process, we populate the hospi-
tal with enough patients to meet the specified occupancy
level. The disease status of these patients upon admission
is based on the admission proportions: ar , as, ac, and ad,
whose values are given in Table 1. The room contamina-
tion levels are then initialized based on the disease status
of the patient in the room. Rooms with resistant or sus-
ceptible patients will have a contamination level of zero.
Because colonized and diseased patients will shed C. diffi-
cile spores, the contamination level of their rooms will be
increased to reflect this. The exact process for determin-
ing the amount of increase is described in the ODD proto-
col (Additional File 1), where each submodel of the ABM
is outlined. The hospital is next populated with HCWs,
and the contamination level of all HCWs is initialized to
zero. In this initialization process, HCWs are randomly
assigned a length of time remaining on their shift, varying
from 0 to 12 hours remaining before leaving the hospital.
After the initialization process, all shifts will either be 8 or
12 hours long. We let the model run for a three-week time
period before recording outputs to ensure the resulting
outputs are not significantly dependent on the specified
initial conditions.
After initialization, the model executes the processes

outlined in Fig. 2 at every 15-min time step. To update
the contamination levels of rooms and HCWs, we first
determine the probability of pathogen transfer occurring.
When HCWs visit rooms, they have a chance of picking
up C. difficile spores, which would add to the existing con-
tamination on their hands, and they also have a chance
of transferring C. difficile spores already on their hands
to the room. The probability of an HCW picking up
pathogen when visiting a room depends on the amount of
contamination in the room and the risk level of the task
being performed. Similarly, the probability of an HCW
transferring pathogen from his or her hands to a room sur-
face depends on the contamination level of the HCW and
on the risk level of the task being performed. We refer to
the chance of HCWs picking up pathogen from the room
as prob-room-transfer and refer to the chance of HCWs
transferring some of their existing contamination to the
room as prob-HCW-transfer. To calculate these probabili-
ties at each 15-min time step for each HCW and room, we
use three transfer functions, one for each task risk level.
When determining prob-room-transfer, we consider these
transfer functions to be functions of the room contamina-
tion level, and when determining prob-HCW-transfer, we
consider them to be functions of the HCW contamination
level. For more details and to see the specific functions
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Table 1 Global variable explanations and baseline values

Global variable Description Baseline value

occupancy hospital occupancy level 0.85

ar probability a patient is resistant upon admission 0.75

as probability a patient is susceptible upon admission 0.09

ac probability a patient is colonized upon admission 0.15

ad probability a patient is diseased upon admission 0.01

probability-lack-immunity probability a colonized patient will not mount an immune
response

0.1

prrmin minimum probability of regaining resistance 0.2

probability-antibiotic half-daily probability of a patient beginning an antibiotic
treatment

0.27

prob-low-risk probability of a prescribed antibiotic being low-risk with
respect to CDI

0.4

prob-high-risk probability of a prescribed antibiotic being high-risk with
respect to CDI

0.26

prob-vhigh-risk probability of a prescribed antibiotic being very high-risk with
respect to CDI

0.34

phl probability of becoming colonized if treated with low-risk
antibiotic in a highly contaminated room

1/30

prob-suff-clean probability of effective room cleaning 0.5

sensitivity sensitivity of the CDI screening test 0.91

turnaround turnaround time (half-days) of the CDI screening test 2

prob-succ-treat probability of successful treatment of CDI 0.8

HCW-compliance-CDI-patients probability of an HCW following proper contact precautions
when visiting a quarantined patient with CDI

0.6

HCW-basic-compliance probability of an HCW complying with contact precautions
after visiting a non-quarantined patient

0.45

clean-reduction proportion by which the contamination level of a room is
reduced after effective cleaning

0.5

HCW-transfer-percent proportion of an HCW’s carrier level that is transferred to a
room upon successful transfer

0.9

room-transfer-percent proportion of a room’s contamination level that is transferred
to an HCW upon successful transfer

0.1

contam-level-low maximum contamination level of a low-contamination room 0.4

contam-level-med maximum contamination level of a medium-contamination
room

0.8

used, refer to the ODD protocol (Additional File 1). Based
on these probabilities, themodel then determines whether
or not transfer will occur between a room and an HCW.
Studies have shown that HCWs aremore likely to adhere

to contact protocol when visiting patients in isolation
[41]. We refer to the likelihood of HCWs following com-
pliance protocol when visiting quarantined patients as
HCW-compliance-CDI-patients and set its baseline value
to 0.6 [42]. If HCWs properly comply (based on the 60%
chance), then there is a 0% chance of pathogen transfer
between that room and the HCW; if they do not com-
ply, there is a 100% chance of some transfer occurring. We
keep in mind that this may be a strong assumption as we
are assessing the effectiveness of interventions.

After determining whether transfer will occur for each
HCW-room combination, the model next updates HCW
and room contamination levels to reflect the trans-
fer. Contamination levels are unit-less numbers that are
either increased or decreased depending on the result
of pathogen transfer. In particular, if an HCW picks
up pathogen from a room, we decrease the room con-
tamination level by 10% and increase the HCW con-
tamination level by that same amount to represent the
transfer. Similarly, if an HCW transfers pathogen to a
room, we decrease the HCW contamination level by 90%
and increase the room contamination level by the same
amount. These percentages were chosen to reflect the fact
that ward rooms contain many surfaces, so one HCW is
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Fig. 2 Summary of ABM processes that are run at each 15-minute time step

likely to only pick up a small percentage of the total con-
tamination in the room during one visit. In contrast, we
are only tracking the contamination of HCWs on their
hands, so they are likely to transfer a vast majority of their
total contamination to the room if it is determined that a
transfer will occur.
HCWs may decrease their contamination levels by fol-

lowing proper compliance protocol. Note that the ABM
does not simulate any specific practices being imple-
mented to achieve such a decrease in contamination, but
only their overall efficacy at reducing contamination. In
particular, there is a 45% chance of an HCW reducing
his or her contamination level after a visit with a patient.
This value was obtained by averaging the adherence per-
centage after patient contact of nurses and physicians
given by Rubin et al. [28]. We refer to this compliance as
HCW-basic-compliance and set its baseline value to 0.45
(Table 1).
In addition to the processes run at each 15-min time

step, the model runs the processes in Fig. 3 at each half-
day time step. At each half-day time step, all patients
have a 27% chance of receiving an antibiotic. This num-
ber was chosen by Bintz et al. [19] so that the output
for the total number of antibiotic treatments per patient
matched the data from Barnes-Jewish Hospital. Whether
or not a patient receives an antibiotic will affect his or her
disease status.When themodel updates each patient’s dis-
ease status, it first determines if that patient will receive
an antibiotic and then determines the risk level of the
antibiotic given. In this step, the model also updates the
number of antibiotics each patient receives. The changes
to disease status are updated based on the transitions
previously described and illustrated in Fig. 1.

After patient disease statuses are updated, the room
contamination levels are updated based on contributions
from CDI and asymptomatically colonized patients. A
summary of all possible C. difficile transfer routes is rep-
resented in Fig. 4. Note that our model does not explicitly
include pathogen transfer directly from HCW to patient
or vice versa; rather, we model the transfer between
HCWs and rooms and between patients and rooms.
Once the disease status of patients and room con-

tamination levels are updated, patients whose time since
entering the hospital exceeds their length of stay assigned
at admission are discharged. After this, the model admits
new patients to replace those who were just discharged.
This admission of patients is run in the same way patients
were admitted during the initialization process. When
new patients are admitted, we assign them a disease status
and initialize all other patient characteristics that we are
tracking. A complete list of these patient characteristics is
given in the ODD protocol (Additional File 1) along with
a detailed description of the admission of patients process
run by the model.

CDI prevention interventions
Our goal is to compare the impact of various prevention
interventions, and combinations of prevention interven-
tions, on the transmission of and subsequent infection
by C. difficile. We consider the following intervention
strategies:

1 Antimicrobial stewardship (in two forms)
2 Increased HCW adherence to compliance protocol

(with non-quarantined patients and specifically with
quarantined patients)
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Fig. 3 Summary of ABM processes that are run at each half-day time step

3 Improved environmental decontamination
4 Vaccination (a preliminary assessment).

We consider antimicrobial stewardship in two forms
(using the same techniques described in [19]): (1) an
overall reduction in the number of antibiotics prescribed
and/or (2) a reduction targeted at the proportions of
high-risk and very high-risk antibiotics prescribed. To
implement an overall reduction in the number of antibi-
otics prescribed, we reduce the half-daily probability of
a patient receiving an antibiotic by a certain proportion.
At baseline, this reduction is assumed to be 0% so that
there is a 27% chance of patients receiving an antibi-
otic each half-day, as described by the global variable
probability-antibiotic listed in Table 1. The intervention
scenarios considered include a reduction of this probabil-
ity by 10% and by 20%, resulting in a 24.3% and a 21.6%

chance, respectively, of patients receiving an antibiotic
each half-day. For easy reference, these values are given in
Table 2.
To implement the second form of antimicrobial stew-

ardship, we alter the probabilities of the antibiotic pre-
scribed being low risk, high risk, or very high risk with
respect to CDI. The scenarios considered here are the
same as those used by Bintz et al. [19] and are listed in
Table 3. In the baseline scenario, we set the proportion
of low-risk antibiotics prescribed to be 0.4, the propor-
tion of high-risk to be 0.26, and the proportion of very
high-risk to be 0.34.Wewill refer to this as targeted antibi-
otic reduction scenario 1. The second targeted antibiotic
reduction scenario considered involves reducing the prob-
ability of very high-risk antibiotics being prescribed by
half, and as a result, increasing the probability of high-risk
antibiotics being prescribed by that same amount. The

Fig. 4 Summary of modes of C. difficile transmission included in the ABM, where prob-room-transfer refers to the probability of an HCW picking up C.
difficile spores from a room, prob-HCW-transfer refers to the probability of an HCW contaminating room surface(s) with spores, and
prob-becoming-colonized represents the probability of a patient becoming colonized based on the contamination level of the room and on the risk
level of the antibiotic received
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Table 2 Antimicrobial stewardship strategy: reduction in the
overall number of antibiotics prescribed

Probability of receiving antibiotic

baseline 0.27

10% reduction 0.243

20% reduction 0.216

third and final targeted antibiotic reduction scenario con-
sidered involves replacing both half of the proportion of
very high-risk antibiotics prescribed with high-risk antibi-
otics and half of the high-risk antibiotics prescribed with
low-risk antibiotics.
The next intervention strategy considered involves the

increased adherence of HCWs to contact precaution pro-
tocols. We consider both improved HCW compliance
with each patient visit and improved HCW compliance
specifically while visiting quarantined patients. The base-
line value for HCW compliance after completing a routine
visit with a patient is 0.45, as previously mentioned to be
taken from data given in [28], and is referred to as HCW-
basic-compliance. To assess the impact of improved HCW
adherence on transmission and infection, we consider val-
ues greater than 0.45, including 0.65, 0.75, 0.85, and 1.
Although a compliance of 100% is not the most likely
scenario, this extreme case allows us to determine the
impact of this particular control intervention. In addition
to this more basic HCW compliance, we also consider an
increase in compliance when visiting quarantined patients
with CDI, referred to as HCW-compliance-CDI-patients.
The baseline value for this compliance is 0.6, and we
increase it by various amounts up to, and including, 1 to
assess the impact of this control strategy. (Details given in
Additional File 1.)
The third intervention strategy considers improved

environmental decontamination. In this paper, we only
present the results for terminal cleaning of rooms after
patients are discharged rather than routine daily cleaning
of all rooms. Different types of cleaning and disinfection
strategies will have varying impacts on the removal of C.
difficile spores in the environment. Thus, we incorporate
a probability of sufficient cleaning into our model with
a baseline value of 0.5 [19] that represents the effective-

Table 3 Antimicrobial stewardship strategy: reduction in the
proportions of antibiotics prescribed according to risk level with
respect to CDI

Targeted antibiotic reduction scenario 1 2 3

proportion of low-risk 0.4 0.4 0.53

proportion of high-risk 0.26 0.43 0.3

proportion of very high-risk 0.34 0.17 0.17

ness of routine terminal cleaning. This means there is a
50% chance that the cleaning will reduce the contamina-
tion level in the room by some amount. An increased value
of this probability indicates the implementation of a more
stringent and effective cleaning strategy that targets C.
difficile. Additionally, we increase this probability of suffi-
cient cleaning when simulating the cleaning of a room for
a quarantined patient.
TheC. difficile vaccines currently being tested are toxoid

vaccines that will not protect against colonization by C.
difficile. An effective version of this vaccine would result
in a decrease in the proportion of patients lacking pro-
tective immunity. We perform a preliminary assessment
of vaccination by making the strong assumption that a
vaccination program has been successfully implemented
for a period of time such that it has already resulted in
an overall reduction in the percentage of patients lack-
ing protective immunity. To simulate this, we decrease the
baseline value for the probability of a patient lacking pro-
tective immunity from 10%, used by Bintz et al. [19], down
to values such as 5% or 1%. Note that this is a preliminary
assessment of vaccination because it relies on the major
assumptions that all patients at risk will be vaccinated and
will be vaccinated effectively leading to a reduction in the
proportion of patients who experience clinical symptoms
of CDI.
To assess the impact of the interventions, we exam-

ine the resulting number of nosocomial colonizations
and nosocomial infections over a year’s time period
under each particular control strategy. Because simula-
tions result in varying numbers of total patient admis-
sions per year, we normalize all of the outputs to 10,000
admitted patients per year for comparison. Because of
the stochasticity embedded in ABMs, to best assess the
impact of the control intervention strategies, we ran our
model for 100 iterations over a one-year simulated time
period with each combination of parameter values (rep-
resenting different control strategies) using the technique
outlined by Ponce et al. in [43].

Results
Baseline results
The entire list of baseline parameter values is given in
Table 1. The median number of nosocomial colonizations
per year at baseline normalized to 10,000 admissions was
2,157, and the median number of nosocomial infections
per year normalized to 10,000 was 111.We adjusted select
parameters from Bintz et al. [19] purposely so that our
numbers of nosocomial colonizations matched updated
data indicating that nosocomial colonization incidence
affects 20% of admitted patients [40, 44] (details described
in Additional File 1). Throughout the results section,
we report median numbers only, but we note that the
mean numbers were never significantly different from the
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corresponding medians. Thus, we did not have significant
outlier cases.
In the baseline scenario, the majority of patients who

become colonized were admitted as resistant; thus they
became both susceptible and colonized during the hos-
pitalization (approximately 19.64% of the total number of
admitted resistant patients). The high number of resistant
patients becoming colonized is a reflection of the fact that
patients have a 75% chance of being resistant upon admis-
sion, so the number of resistant patients hospitalized is
much higher than that of any other disease state. The
percentage of admitted susceptible patients who become
colonized was 32.87%. The largest percentage of admitted
patients who will become clinically infected are those who
were colonized upon admission (5.56%). Less than 1% of
resistant and susceptible became diseased.

Single prevention interventions
The baseline values of all parameters to be varied and the
median number of nosocomial colonizations and infec-
tions for the baseline scenario are specified in Table 4.
Table 5 gives the resulting percentage decrease in median
nosocomial colonizations and infections for each of the
individual control interventions.
Increasing HCW compliance with quarantined patients

has the largest impact on reducing nosocomial coloniza-
tions while vaccination is the most effective method for
reducing nosocomial infections (Table 5). When com-
paring the two antimicrobial stewardship strategies, we
note that reducing the proportions of high-risk and very
high-risk antibiotics has more of an impact on decreas-
ing the nosocomial infections than reducing the half-
daily probability of receiving an antibiotic has on reduc-
ing nosocomial infections. In fact, reducing the propor-
tions of very high-risk and high-risk antibiotics is the
second most effective strategy for reducing nosocomial
infections (second to vaccination). Improved terminal

Table 4 Baseline values of the variables that were varied to
simulate control scenarios and median numbers of nosocomial
colonizations and infections for a 1-year period normalized to
10,000 admissions

Variable Baseline value

probability-antibiotic 0.27

targeted-antib-reduction-scenario 1

prob-suff-clean 0.5

HCW-basic-compliance 0.45

HCW-compliance-CDI-patients 0.6

probability-lack-immunity 0.1

Median nosocomial colonizations 2157

Median nosocomial infections 111

Table 5 Percentage reduction in the baseline median number of
nosocomial colonizations and infections (given in Table 4) for
each of the individual control scenarios, where the specific
distributions of antibiotic-risk-level probabilities for each targeted
antibiotic reduction scenario are given in Table 3

Preventive strategy Decrease from
median baseline
nosocomial
colonizations

Decrease from
median baseline
nosocomial
infections

Reduction in overall
antibiotics

probability-antibiotic
= 0.243 (by 10%)

10.04% 5.21%

probability-antibiotic
= 0.216 (by 20%)

19.33% 8.45%

Reduction in vhigh- and
high-risk antibiotics

targeted-antib-reduction-
scenario
= 2

7.93% 14.90%

targeted-antib-reduction-
scenario
= 3

17.45% 23.21%

Improved terminal
cleaning

prob-suff-clean = 0.8 2.26% 2.10%

prob-suff-clean = 1 4.13% 2.76%

Increased HCW
compliance

HCW-basic-compliance
= 0.75

8.73% 5.47%

HCW-basic-compliance
= 1

14.73% 5.87%

Increased HCW
compliance with CDI
patients

HCW-compliance-CDI-
patients
= 0.8

7.06% 1.99%

HCW-compliance-CDI-
patients
= 1

55.97% 15.69%

Vaccination

probability-lack-immunity
= 0.05

0.70% 50.29%

probability-lack-immunity
= 0.01

2.46% 90.22%

cleaning does not have a notable impact on coloniza-
tions or infections even if 100% effective terminal cleaning
is maintained. Increased HCW basic compliance has a
comparable impact on nosocomial colonizations to that of
antimicrobial stewardship (both forms); however, improv-
ing the basic HCW compliance does not have much



Stephenson et al. BMC Infectious Diseases          (2020) 20:799 Page 11 of 17

impact on reducing nosocomial infections, especially
when compared to that of targeted reduction in high-risk
and very high-risk antibiotics.
If HCWs achieve 100% compliance with quarantined

patients, there is an extremely noticeable decrease in
nosocomial colonizations (55.97%). Such a vast decrease
is likely due to our model structure: if HCWs are com-
pliant with quarantined patients, there is a 0% chance of
pathogen transfer from HCW to room, or vice versa. This
assumes that when fully compliant, HCWs will strictly
follow contact protocol so that there is no chance of expo-
sure or transfer, which is more likely to happen when
HCWs know a patient is isolated due to symptomatic CDI.
This control strategy also results in a sizable reduction of
nosocomial infections.
Finally, since vaccination does not prevent colonization,

it has a minimal impact on the nosocomial colonizations,
but a large impact on the nosocomial infections. In fact,
there is not one individual strategy that is best at reducing
both nosocomial colonizations and nosocomial infections
simultaneously.

Combination strategies
We begin this section by considering various combina-
tions of antimicrobial stewardship and improved terminal
cleaning. The combinations of antimicrobial stewardship
and terminal cleaning considered were taken from [19]
and are numbered by scenario in Table 6; they include all
three levels of reduction in overall antibiotics that were
individually implemented (baseline, 10% reduction, and
20% reduction), all three targeted high-risk and very high-
risk antibiotic reduction combinations (targeted antibi-
otic reduction scenario 1, 2, and 3 given in Table 3),
and all three probabilities of sufficient cleaning consid-
ered individually (0,2, 0.5, and 0.8). Note that the base-
line combination scenario is indicated by Scenario 2 in
Table 6. As the results of implementing strategies indi-
vidually suggested, nosocomial colonizations are not as
greatly reduced by improved terminal cleaning as they are
by improved antimicrobial stewardship. This insensitivity
to more stringent cleaning of environmental surfaces is
shown in Table 6 by the fact that the best-ranked strate-
gies for reducing colonizations are 27, 26, and 25, which
have varying levels of effective terminal cleaning together
with the most extreme antimicrobial stewardship strate-
gies.We can conclude that Strategies 27, 26, and 25 are the
best strategies for reducing both the nosocomial coloniza-
tions and infections simultaneously while Strategies 1 and
2 (baseline) are the worst for both.We also still observe, as
we did in Table 5, that targeted antibiotic reduction sce-
nario 3 (Table 3), which targets the reduction of high-risk
and very high-risk antibiotics, is best at reducing nosoco-
mial infections. Therefore, Scenarios 7, 8, 9, 16, 17, 18, 25,
26, and 27 affect the nosocomial infections the most.

Next, we consider the addition of improved HCW basic
compliance to the current combinations of antimicrobial
stewardship with improved terminal cleaning. To keep
the number of parameter combinations under control, we
select 5 of the 27 strategies listed in Table 6 to be represen-
tative of their varying effects on nosocomial colonizations
and infections. To these 5 strategies (Strategies 6, 15, 18,
22, and 25), we incorporate improved HCW basic com-
pliance. We consider three values for HCW basic com-
pliance: 0.45 (baseline), 0.75, and 1, and we consider two
values for HCW compliance with quarantined patients:
0.6 (baseline) and 1. We will consider the resulting 15
parameters combinations first with baseline HCW com-
pliance with quarantined patients (Table 7) and then all 15
combinations again with the increased HCW compliance
with quarantined patients (Table 8).
The results in Table 7 show that Scenarios 25.2, 25.1,

18.2, and 18.1 are most effective at reducing nosocomial
colonizations. Once again, these four scenarios imple-
mented targeted antibiotic reduction scenario 3 (Table 3),
which accounts for the most extreme reductions in high-
risk and very high-risk antibiotics. The next two best
scenarios, 22.2 and 15.2, surpassed Scenarios 25.0 and
18.0 (that implement targeted antibiotic reduction sce-
nario 3 but only consider baseline HCW basic compliance
with non-quarantined patients) in their effectiveness at
reducing nosocomial colonizations. This is one exam-
ple of a common trend we observed that often a more
extreme version of one control (such as HCW basic
compliance) can compensate for a less extreme version
of another (such as a smaller reduction in the overall
antibiotic probability). We do not, however, see this same
trend when HCW compliance with quarantined patients
is increased to 100% (Table 8). In this case, Scenario 25
is always better than the remaining 4 strategies for all
values of HCW basic compliance with non-quarantined
patients. This is expected since increasing HCW con-
tact compliance with quarantined patients leads to less
overall pathogen transfer between HCWs and rooms, so
nosocomial colonizations are no longer as sensitive to
changes in HCW basic compliance with non-quarantined
patients.
The resulting ranking of control scenarios for reduc-

ing nosocomial infections matches what we discovered
when running the control scenarios individually. All of
the strategies from Tables 7 and 8 with targeted antibi-
otic reduction scenario 3 (18.0, 18.1, 18.2, 25.0, 25.1, 25.2)
were the most effective at reducing nosocomial infections,
regardless of the values of other parameters. Therefore,
we still observed that a specific reduction in high-risk and
very high-risk antibiotics was most effective at reducing
nosocomial infections.
Next, for illustration and to reduce the number of simu-

lations, we selected 8 scenarios from Table 7 (6.1, 6.2, 18.1,
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Table 6 Parameter combinations (numbered 1-27) simulating varying levels of antimicrobial stewardship (Cols 2 and 3) and effective
ward-room terminal cleaning (Col 4). The risk-level scenarios in Column 3 (numbered 1-3) are given for reference alongside the
corresponding resulting change frommedian baseline nosocomial colonizations and infections (given in Table 4). Specific distributions
of antibiotic-risk level probabilities for each risk scenario are given in Table 3

Scenario number Half-daily
antibiotic
probability

Targeted antib
reduction
scenario

Probability of
sufficient
cleaning

Change from
baselinemedian
colonizations

Change from
baselinemedian
infections

1 0.27* 1* 0.2 +3.30% +1.45%

2 0.27* 1* 0.5* 0.00% 0.00%

3 0.27* 1* 0.8 -2.26% -2.10%

4 0.27* 2 0.2 -4.20% -14.96%

5 0.27* 2 0.5* -7.93% -14.90%

6 0.27* 2 0.8 -10.09% -17.19%

7 0.27* 3 0.2 -14.22% -21.87%

8 0.27* 3 0.5* -17.45% - 23.21%

9 0.27* 3 0.8 -19.70% -24.32%

10 0.243 1* 0.2 -6.07% -3.27%

11 0.243 1* 0.5* -10.04% -5.21%

12 0.243 1* 0.8 -11.70% -6.36%

13 0.243 2 0.2 -13.18% -16.88%

14 0.243 2 0.5* -16.95% -18.37%

15 0.243 2 0.8 -18.75% -18.25%

16 0.243 3 0.2 -22.50% -24.83%

17 0.243 3 0.5* -25.40% -22.91%

18 0.243 3 0.8 -27.79% -25.37%

19 0.216 1* 0.2 -16.70% -5.62%

20 0.216 1* 0.5* -19.33% -8.45%

21 0.216 1* 0.8 -21.49% -7.94%

22 0.216 2 0.2 - 22.44% -18.60%

23 0.216 2 0.5* -26.21% - 21.21%

24 0.216 2 0.8 -27.50% -20.97%

25 0.216 3 0.2 -31.18% -25.25%

26 0.216 3 0.5* -33.72% -26.19%

27 0.216 3 0.8 -35.83% - 25.90%

*Baseline value

18.2, 22.1, 22.2, 25.1, and 25.2) to which we added vac-
cination. The resulting combinations are numbered and
labeled in Table 9. We observed that vaccination in com-
bination with other control techniques did not change the
effectiveness of those scenarios at reducing colonizations
in the absence of vaccination. That is, the same scenar-
ios we found to be most effective at reducing nosocomial
colonizations in the absence of vaccination were still the
most effective once vaccination was added. Furthermore,
vaccination in combination with other control techniques
had a similar impact on reducing nosocomial infections
as it did when implemented in the absence of additional
controls. Other control interventions besides vaccination

would still be necessary in order to decrease C. difficile
colonizations.

Discussion
Systematic reviews and meta-analysis of epidemiological
studies consistently conclude that antibiotic stewardship
is an effective strategy against C. difficile, with overall
reductions ofC. difficile infections ranging from 32 to 52%
depending on settings and co-implementation of control
strategies [45–47]. Within stewardship practices, restric-
tive interventions that aim to reduce cephalosporins
and fluoroquinolones were ranked as the most effec-
tive stewardship practices [45]. Similarly, our model
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Table 7 Increasing levels of HCW basic compliance with non-quarantined patients (Column 5) combined with select parameter
combinations from Table 6 (Scenarios 6, 15, 18, 22, and 25). The five selected scenarios varied levels of antimicrobial stewardship and
ward-room terminal cleaning using a baseline level of HCW compliance with quarantined patients (60%). (Note that the decimal place
in the scenario number indicates the varying levels of HCW basic compliance with non-quarantined patients while the whole number
represents the original scenario number from Table 6)

Scenario number Half-daily
antibiotic
probability

Targeted antib
reduction
scenario

Probability of
sufficient
cleaning

HCW basic
compliance

Change from
baselinemedian
colonizations

Change from
baselinemedian
infections

6.0 0.27* 2 0.8 0.45* -10.09% -17.19%

6.1 0.27* 2 0.8 0.75 -19.25% -18.59%

6.2 0.27* 2 0.8 1 -23.79% -19.81%

15.0 0.243 2 0.8 0.45* -18.75% -18.25%

15.1 0.243 2 0.8 0.75 -26.92% -20.84%

15.2 0.243 2 0.8 1 -31.10% -21.11%

18.0 0.243 3 0.8 0.45* -27.79% -25.37%

18.1 0.243 3 0.8 0.75 -35.16% -27.12%

18.2 0.243 3 0.8 1 -38.88% -26.37%

22.0 0.216 2 0.2 0.45* -22.44% -18.60%

22.1 0.216 2 0.2 0.75 -29.71% -20.95%

22.2 0.216 2 0.2 1 -34.83% -23.00%

25.0 0.216 3 0.2 0.45* -31.18% -25.25%

25.1 0.216 3 0.2 0.75 -37.21% -26.47%

25.2 0.216 3 0.2 1 -41.87% -29.20%

*Baseline value

Table 8 Increasing levels of HCW basic compliance with non-quarantined patients (Column 5) combined with select parameter
combinations from Table 6 (Scenarios 6, 15, 18, 22, and 25). The five selected scenarios varied levels of antimicrobial stewardship and
ward-room terminal cleaning using an increased level of HCW compliance with quarantined patients (100%). (Note that the decimal
place in the scenario number indicates the varying levels of HCW basic compliance with non-quarantined patients while the whole
number represents the original scenario number from Table 6)

Scenario number Half-daily
antibiotic
probability

Targeted antib
reduction
scenario

Probability of
sufficient
cleaning

HCW basic
compliance

Change from
baselinemedian
colonizations

Change from
baselinemedian
infections

6.0 0.27* 2 0.8 0.45* -59.83% -30.08%

6.1 0.27* 2 0.8 0.75 -60.87% -29.94%

6.2 0.27* 2 0.8 1 -61.21% -27.43%

15.0 0.243 2 0.8 0.45* -63.42% -30.17%

15.1 0.243 2 0.8 0.75 -63.97% -29.32%

15.2 0.243 2 0.8 1 -64.38% -28.96%

18.0 0.243 3 0.8 0.45* -67.39% -33.33%

18.1 0.243 3 0.8 0.75 -67.40% -33.56%

18.2 0.243 3 0.8 1 -67.89% -34.81%

22.0 0.216 2 0.2 0.45* -66.35% -30.60%

22.1 0.216 2 0.2 0.75 -67.04% -30.38%

22.2 0.216 2 0.2 1 -67.01% -29.99%

25.0 0.216 3 0.2 0.45* -69.77% -34.04%

25.1 0.216 3 0.2 0.75 -70.16% -33.58%

25.2 0.216 3 0.2 1 -70.25% -34.38%

*Baseline value
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Table 9 Decreasing levels of immunocompromised probability (Column 6) to simulate vaccination combined with select parameter
combinations from Table 7 (Scenarios 6.1, 6.2, 18.1, 18.2, 22.1, 22.2, 25.1, and 25.2). The eight selected scenarios varied levels of
antimicrobial stewardship, ward-room terminal cleaning, and HCW basic compliance with non-quarantined patients while HCW
compliance with quarantined patients remained at baseline (60%). (Note that the second decimal place in the scenario number
indicates the varying levels of immunocompromised probabilities while XX.X represents the original scenario number from Table 7)

Scenario
number

Half-daily
antibiotic
prob

Targeted antib
reduction
scenario

Prob of
sufficient
cleaning

HCW basic
compliance

Immuno-compromised
prob

Change from
median baseline
colonizations

Change from
baselinemedian
infections

6.1.0 0.27* 2 0.8 0.75 0.10* -19.25% -17.19%

6.1.1 0.27* 2 0.8 0.75 0.05 -20.19 -56.43%

6.1.2 0.27* 2 0.8 0.75 0.01 -20.88% -89.17%

6.2.0 0.27* 2 0.8 1 0.10* -23.79% -19.81%

6.2.1 0.27* 2 0.8 1 0.05 -23.55% -60.44%

6.2.2 0.27* 2 0.8 1 0.01 -23.96% -91.83%

18.1.0 0.243 3 0.8 0.75 0.10* -35.16% -27.12%

18.1.1 0.243 3 0.8 0.75 0.05 -35.55% -62.96%

18.1.2 0.243 3 0.8 0.75 0.01 -36.27% -92.90%

18.2.0 0.243 3 0.8 1 0.10* -38.88% -26.37%

18.2.1 0.243 3 0.8 1 0.05 -38.85% -64.25%

18.2.2 0.243 3 0.8 1 0.01 -39.38% -92.83%

22.1.0 0.216 2 0.2 0.75 0.10* -29.71% -20.95%

22.1.1 0.216 2 0.2 0.75 0.05 -30.28% -60.47%

22.1.2 0.216 2 0.2 0.75 0.01 -31.49% -92.20%

22.2.0 0.216 2 0.2 1 0.10* -34.83% -23.00%

22.2.1 0.216 2 0.2 1 0.05 -35.05% -61.37%

22.2.2 0.216 2 0.2 1 0.01 -35.52% -92.23%

25.1.0 0.216 3 0.2 0.75 0.10* -37.21% -26.47%

25.1.1 0.216 3 0.2 0.75 0.05 -38.73% -64.58%

25.1.2 0.216 3 0.2 0.75 0.01 41.87% -92.38%

25.2.0 0.216 3 0.2 1 0.10* -41.87% -29.20%

25.2.1 0.216 3 0.2 1 0.05 -42.34% -63.98%

25.2.2 0.216 3 0.2 1 0.01 -42.91% -93.08%

*Baseline value

ranked restriction of high-risk antibiotics as more effec-
tive compared with reduction on the overall antibiotic
use.
Overall, antibiotic stewardship has been rarely evalu-

ated in mathematical models for C. difficile; when eval-
uated, antibiotic stewardship was found to have low
effectiveness in decreasing CDI [48]. Yacob et al. [49]
reported that antibiotic stewardship was ineffective in
reducing clinical diseases. Their model was an ordinary
differential equations model with an overall rate of antibi-
otic prescription. Sensitivity analysis of similar models
showed that these equation-based models were not very
sensitive to the rate of antibiotic prescription [36, 50].
The discrepancy in antibiotic stewardship predictions is
likely due to the difference on the representation of the
level of antibiotic heterogeneity. Our results suggest that

including a stratified risk of CDI is necessary to fully
capture antibiotic stewardship effects.
Vaccination had a large impact on disease incidence

with little impact on nosocomial colonizations since the
modeled C. difficile toxoid vaccine does not prevent col-
onization, but only subsequent infection. This is also not
considering a community-administered vaccine, so we are
not lowering the spread in the community. We then still
have the same percentage of colonized (15%) and dis-
eased (1%) patients being admitted to the hospital and
contributing to the contamination. This assessment of
vaccination is preliminary as it comes with strong assump-
tions and is considered a best case scenario. Our tested
reductions on the probability of lacking protective immu-
nity would be equivalent to a vaccine efficacy of 50% and
90% with a 100% coverage. Although some vaccines have
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reached phase III clinical trials, vaccination against C. dif-
ficile has yet to be implemented in healthcare settings.
Therefore, there are limited studies against which we can
compare our results. A previous modeling assessment of
vaccination predicted a 43% decrease in infections when
several high-risk groups were targeted including patients
with previous episodes of CDI, long-term care facility res-
idents, and patients with planned elective surgery [51].
Achieving high efficacy may be challenging in patients
lacking protective immunity and in elderly patients; there-
fore, future vaccine evaluation may need to consider also
more modest vaccine efficacy at the individual patient
level.
Within transmission-blocking interventions, increased

HCW contact precaution compliance was more effective
than environmental terminal cleaning. Previous ABMs
for C. difficile had ranked transmission-blocking inter-
ventions differently. Rubin et al. [28] ranked also hand
hygiene as more effective than terminal cleaning, whereas
Barker et al. [30] ranked environmental cleaning as the
most effective intervention. Surface-mediated transmis-
sion and transmission through contaminated hands of
HCWs are tightly connected as HCWs can be contam-
inated by touching contaminated equipment and sur-
faces near patients, and surfaces can be contaminated
by HCWs. ABMs are discrete-time models. Therefore, it
is plausible that the order of which the events related
to transmission take place may influence the relative
contribution of environment versus HCW on transmis-
sion, and hence the predicted effectiveness of differ-
ent transmission-blocking interventions. Barker et al.
[27] summarized studies reporting bundle interventions
against C. difficile. The studies had considerable hetero-
geneity in the selection of bundle components, but all
studies reported a decline in CDI rates independently of
the composition of the bundle [27].
The model as described has some limitations and

assumptions worth noting. First, we do not allow for
patients to leave their rooms. This was implemented for
computational feasibility and under the assumption that
the model captures additional patient exposure pathways
through HCWs and their movement. The model could
also offer more heterogeneity in cleaning of rooms relative
to the type of patient in the room, which has potential to
impact the assessment of environmental decontamination
as an intervention. We could assess daily cleaning proce-
dures in addition to the terminal cleaning currently imple-
mented. Additionally, the model assumes that if HCWs
comply with proper compliance protocol with quaran-
tined patients, then there is a 0% chance of pathogen
transfer and if not there is a 100% of transfer. The structure
of this setup could explain the effectiveness of improved
HCW compliance with quarantined patients and is some-
thing that could be further explored. Finally, the model

was not designed to focus on details such as what types
of precautions and compliance orders HCWs are imple-
menting. Instead, our model focuses on quantifying the
results of what could happen if HCWs are able to achieve
improved overall compliance.

Conclusion
We developed an ABM (a modification and extension of
the ABM in [19]) that explicitly incorporates HCWs as
vectors of transmission, tracks individual patient antibi-
otic histories, incorporates varying risk levels of antibi-
otics with respect to CDI, and tracks contamination of
ward rooms by C. difficile. We use this ABM to simu-
late and evaluate the impact of different control strategies
on the resulting numbers of nosocomial colonizations
and infections by C. difficile. The control strategies con-
sidered included two forms of antimicrobial stewardship
(overall reduction in antibiotics and a reduction of specif-
ically high-risk and very high-risk antibiotics), increased
environmental decontamination through terminal room
cleaning, improved HCW compliance with quarantined
and non-quarantined patients, and a preliminary assess-
ment of vaccination.
Interventions that modified patient susceptibility–

reduction of the use of very high- and high-risk antibiotics
and vaccination–had greater effect on reducing new infec-
tions than transmission-blocking interventions. Addition-
ally, we determined that when the control strategies are
combined in various ways, a more extreme version of one
control could often compensate for a less extreme version
of another to effectively reduce nosocomial colonizations
and infections. The resulting impact of the control scenar-
ios on nosocomial colonizations and infections were not
completely additive. In particular, the reduction in noso-
comial colonizations (or infections) made by a particular
combination strategy was not equal to the sum of the
reduction made by the strategies individually.
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