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Abstract

Background: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in China at the
end of 2019 and it has since spread in few months all over the World. Italy was one of the first Western countries who
faced the health emergency and is one of the countries most severely affected by the pandemic. The diffusion of
Coronavirus disease 2019 (COVID-19) in Italy has followed a peculiar spatial pattern, however the attention of the
scientific community has so far focussed almost exclusively on the prediction of the evolution of the disease over time.

Methods: Official freely available data about the number of infected at the finest possible level of spatial areal
aggregation (Italian provinces) are used to model the spatio-temporal distribution of COVID-19 infections at local
level. An endemic-epidemic time-series mixed-effects generalized linear model for areal disease counts has been
implemented to understand and predict spatio-temporal diffusion of the phenomenon.

Results: Three subcomponents characterize the fitted model. The first describes the transmission of the illness within
provinces; the second accounts for the transmission between nearby provinces; the third is related to the evolution of
the disease over time. At the local level, the provinces first concerned by containment measures are those that are not
affected by the effects of spatial neighbours. On the other hand, the component accounting for the spatial interaction
with surrounding areas is prevalent for provinces that are strongly involved by contagions. Moreover, the proposed
model provides good forecasts for the number of infections at local level while controlling for delayed reporting.

Conclusions: A strong evidence is found that strict control measures implemented in some provinces efficiently
break contagions and limit the spread to nearby areas. While containment policies may potentially be more effective if
planned considering the peculiarities of local territories, the effective and homogeneous enforcement of control
measures at national level is needed to prevent the disease control being delayed or missed as a whole. This may also
apply at international level where, as it is for the European Union or the United States, the internal border checks
among states have largely been abolished.
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Background
Since the first cases occurred in Wuhan (China), Coron-
avirus disease 2019 (COVID-19) caused by SARS-CoV-2
virus, has raised serious concerns. The virus, which made
the inter-species jump to humans probably from bats
through another intermediate animal host [1], causes a
severe respiratory syndrome which is airborne transmit-
ted and is characterized by a high person-to-person risk of
contagion [2, 3]. Not surprisingly, SARS-CoV-2 has spread
throughout and outside China in a short time following an
uneven spreading pattern, despite the severe control mea-
sures put in place in theWuhan region. For several weeks,
Italy has been the second most affected country in the
World and the first in Europe, with more than 70000 con-
firmed cases one month after the first official diagnosed
case of COVID-19 [4]. The government reacted promptly
by setting a quarantine zone in the areas firstly involved
in the epidemic. Unfortunately, this was not enough to
contain the spread of infections and hence it was also nec-
essary to put the entire country on lockdown, which took
a long period to manifest its positive effects.
The reasons of Italy’s strong involvement are not yet

clearly identified, especially because it seems this was not
the first European country involved in the epidemic [5].
So far, the scientific literature has suggested different con-
current explanations, such as a higher share of elderly
people in the Italian population [6], a higher concentra-
tion of air pollution in the northern part of the country
[7], and an overwhelming unexpected pressure on the
healthcare system which has made some hospitals con-
tributing to the transmission of the virus in the early days
of the epidemic [6, 8]. Further studies will be necessary to
understand the anomalously strong Italy’s COVID-19 out-
break. What is evident at the moment is that the spread
of COVID-19 in Italy has not followed a uniform pattern
on the territory. After the first case not directly connected
with China has been discovered on 20 February 2020 in
the province of Lodi (north-west Italy), the disease spread
mainly throughout the northern regions of Lombardy,
Veneto and Emilia-Romagna, whereas as of 31 May 2020,
the 231382 cases recorded nationwide are divided mainly
between Lombardy (88096 cases, 38.1% of the total), Pied-
mont (30496 cases, 13.2% of the total), Emilia-Romagna
(27894 cases, 12.1% of the total) and Veneto (18838 cases,
8.1% of the total).
One of the elements which may have played a role is

the heterogeneity amongst Italian regions, which is par-
ticularly marked between southern and northern regions,
with the latter representing the industrial, economic and
financial epicentre of the country [9]. Furthermore, on
the northern Italian territory insists large flows of people
coming from other areas because of labour commuting,
and also of people looking for a more efficient health-
care, which is located right in the area where the virus has

occurred with greater force [10]. These differences might
have obvious influences on the spread pattern of COVID-
19. Strict measures to prevent and contain the epidemic,
including social distancing, closure of businesses and
schools, prohibitions of travel and going outdoor, were
enforced starting from the cited regions and later applied
to the entire country. It is therefore of striking impor-
tance to trying to understand the contagion phenomenon
and to predict its spatial diffusion as well as its temporal
trend.
Many scholars are trying to give a contribution to the

problem, both in open online venues and on scientific
publications, debating about reproductive number, mor-
tality distributed for age and gender and, more in general,
epidemic features, without neglecting to avail of math-
ematical and statistical models. The main contributions
use deterministic epidemiological models — see [11–13]
among others —, all focussing on the time evolution of
the phenomena, especially with predictive purposes. The
prediction of new infected, deceased and healed is cer-
tainly essential for health policy in order to estimate the
capacity of a health system to cope with the stress caused
by a pandemic. Nevertheless, in the recent literature the
relevance of space in the diffusion of the COVID-19 is
treated only marginally [14, 15], although the importance
of spatial and spatio-temporal autocorrelation in epidemi-
ology was already highlighted in the seminal book by [16].
The authors show the effectiveness of statistical meth-
ods in analyzing the incidence of some epidemics, such as
e.g. measles in Cornwall, 1969–1970, cholera in London
in 1849, and tuberculosis and bronchitis in Wales, 1959–
1963. In the last 20 years, spatial epidemiology has been
evolved rapidly, and it has found a great response in med-
ical applied research. — For a recent review on methods
and applications in the field, see [17].
The importance of the space in the study of disease

transmission, like all natural phenomena, answers to the
first law of geography [18], according to which “every-
thing is related to everything else, but near things are
more related than distant things”. Reformulating this con-
cept, it could be said that the phenomenon external to
an area of interest affects what goes on inside. In light
of this, we found imperative to include a component that
can account for spatial dependence among areal units in
the study of COVID-19 diffusion, in order to explain the
strength and direction of the spreading on the territory
as well as in time. This is particularly relevant in coun-
tries such as Italy or Germany in which the local health
systems interested by the disease are strongly regional-
ized. The territorial specificity, which can result in more
or less drastic containmentmeasures, cannot be neglected
in a model construction that has the ambition to explain
how the contagion moves in space and time and to allow
reliable spatio-temporal predictions.
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Fig. 1 Time series of daily COVID-19 infections in Italy between 26 February 2020 and 31 May 2020, according to data released by the Department of
Civil Protection

The purpose of the present paper is to model and pre-
dict the number of COVID-19 infections, drawing out the
effects of its spatial diffusion. Forecasts about where and
when the disease will occur may be of great usefulness
for public decision-makers, as they give them the time to
intervene on the local public health systems.

Methods
Data The Civil Protection Department of Italian Govern-
ment according with the Ministry of Health, has begun to
release a daily bulletin about COVID-19 infections in Italy
since 26 February 2020, and made publicly available data
on daily infections in ItalianNUTS-3 regions (provinces).1
Data used in this paper come from the official GitHub

repository of the Civil Protection Department on COVID-
19 [4], and extend over 96 days, from 26 February to

1Acronym “NUTS” stands for Nomenclature of Territorial Units for Statistics,
and refers to the hierarchical classification of European regions (https://ec.
europa.eu/eurostat/web/nuts/background) as defined by the European
Commission. The NUTS classification is based on four nested levels of
aggregation: sovereign countries are referred to as NUTS-0 regions, whereas
the smallest territorial units are NUTS-3 regions.

31 May 2020. The Civil Protection Department daily
updates the dataset to new infections, and revises previ-
ous records so that possible errors due to misreported or
under-reported infections, when detected, are regularly
corrected.
The overall temporal evolution of daily counts of

COVID-19 infections is depicted in Fig. 1,2 while the spa-
tial distribution is showed in the map of Fig. 2. The first
graph shows that the temporal evolution of the number
of daily infections has followed an increasing trend until
the end of March, which was then followed by a first slow
decrease and then by a more rapid decline, according to
the desired effect of control measures. In particular, the
decline has regarded also the last four weeks of the series,
despite the relaxation of containment measures started
step-by-step from 3 May 2020. The second graph shows
that the geographical distribution of the phenomenon is

2The overall time series here depicted is given by the aggregation of regional
time series and may not correspond exactly to the national time series because
some cases could not being assigned to the province where they occurred.
Anyway, the difference between the two series is negligible.

https://ec.europa.eu/eurostat/web/nuts/background
https://ec.europa.eu/eurostat/web/nuts/background
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Fig. 2 Italian provinces coloured according to cumulative COVID-19 daily incidence (total number of infections per 1000 inhabitants) in the Italian
provinces (26 February 2020 – 31 May 2020). Colors toward red indicate a relatively higher incidence; colors toward green indicate a relatively lower
incidence

quite inhomogeneous, being characterized by a clear spa-
tial pattern. (The plots of the disaggregated time series
for all Italian provinces are reported in the Supplementary
Material p. 3).

Methodology The evolution of the number of daily
infections is studied by means of the count model pro-
posed in [19] and [20], which belongs to the family of
Spatial Generalised Linear MixedModels (SGLMM). (See
[21, 22] for two implementations of the model in epidemi-
ology.)
The model treats the number of infections (denoted

by Yr,t) recorded in a province (r) on a given day (t)
as a realisation of a negative binomial random variable,
conditionally on the infections observed in the previous
periods. The adoption of the negative binomial distri-
bution enables the variance of the number of infections
to vary freely with respect to the mean, as opposed to
what happens for the Poisson distribution (where they
must be equal), and this allows to account for possible
underdispersion or overdispersion of the distribution.

On the other hand, the mean of the distribution
(μr,t) is additively decomposed into three different terms,
which describe three distinct statistical characteristics
of the phenomenon under investigation: the temporal
dependence (temporal autocorrelation), the geographi-
cal dependence (spatial autocorrelation) and the geo-
graphical heterogeneity. In the following, each compo-
nent is briefly outlined, whereas the interest reader is
referred to the Supplementary Material (p. 1 ff.) for
details.
The first component catches the number of infections

which are attributable to the temporal evolution of con-
tagions within each province and depend on province-
specific speed of propagation of the disease. Since the
component determines the temporal dynamics of the con-
tagion within each province, it is referred to as epidemic-
within and formally is modelled by including the number
of infections recorded in the same province the day before
(Yr,t−1). The multiplicative coefficient (λr,t) which deter-
mines the contribution of past infections to the expected
number of infections is allowed to vary across provinces
by means of a random effect.
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The second component of the model accounts for the
number of infections which are explained by the inci-
dence of COVID-19 in neighbouring regions. The spread
of contagion amongst provinces which are geographically
close to each other substantially contributes to this term,
as it is proved by the diffusion of the virus from a lim-
ited number of foci to a wider area, which interested, with
unequal intensity, all the country. Formally, this compo-
nent is included into the model as a weighted average of
incidence rates (Qr′,t) of provinces (r′, r′′, . . . ) which share
a border with the reference region (r). The multiplicative
coefficient (φr,t) that modules the effect of neighbours’
average incidence rate on the expected number of conta-
gions (μr,t) is allowed to vary amongst provinces through
a random effect (like in case of the temporal autore-
gressive coefficient λr,t). In the following, this source of
contagion is referred to as epidemic-between component,
as it concerns the inter-province spread of COVID-19.
The last portion of cases is attributed to province-

specific conditions, such as the demographic structure of
population, which determined the first centres of infec-
tions and the initial exposure to the risk of contagion. We
modeled this local component of the overall daily province
infections as a function of time and of share of popula-
tion over 65, whereas heterogeneity amongst provinces is
included into the model by means of a random effect.
[20] refers to this third component as endemic, nev-

ertheless, this term does not imply in this context any
epidemiological qualification of the COVID-19 in the
population of Italian provinces. Both terms epidemic and
endemic have been inherited from [20], whereas terms
within and between are introduced in this paper in order to
distinguish between the temporal and spatial terms which
[20] jointly refer to as epidemic component.
All analyses presented in this paper have been car-

ried out using R [23] and package surveillance [24] in
particular.

Results
The estimated model provides useful insights about the
evolution and spread of COVID-19 occurrences across
Italian provinces. The most striking evidence is that
the epidemic potential across areas is, on average, very
strong; however, it is also highly heterogeneous among
provinces.
To better assess the degree of spatial heterogeneity,

Fig. 3 shows three maps depicting the composition of the
estimated expected number of infections in terms of the
within-epidemic, between-epidemic and endemic compo-
nent. For each province, the three fitted components are
expressed as proportions of their sum.
It can be clearly seen that only few provinces, the most

affected by the disease until now, are mainly influenced by
the local endogenous transmission of the contagion (map

on the left). For a relatively higher number of provinces,
mostly located in the north and centre parts of the
country, a relevant number of cases is instead explained
by the transmission from neighbouring provinces (map
in the centre). For the majority of provinces, located
mainly in the south, the contagions follow essentially
the endemic trend (map on the right). The compari-
son among provinces in terms of the three investigated
components is robust to spuriousness because the Ital-
ian population is entirely and homogeneously susceptible,
being immunologically “naïve” to this new virus. More-
over, being vaccines still missing, there are no differ-
ences among provinces deriving from vaccination cover-
age. There could be, however, other structural differences
due to, for example, an uneven territorial distribution of
medical sources, and this is one of the reasons why the
province-level random effects has been included into the
model.
To gain further insights about the relative importance

of the three components, we take into consideration some
paradigmatic provinces located in the part of the coun-
try with the highest number of cases, that is the northern
areas (see Fig. 4). In particular, we focus the attention
on the northern part of Italy because after the illness
started to occur in the country, it took several days to
spread throughout the territory, thus leading to an unbal-
anced spatial distribution of infections. Figure 5 depicts
the mean number of cases estimated by the model along
with the observed number of cases for the paradigmatic
provinces. First of all, the province of Lodi (Lombardy
region), which is the first area that reported cases, sees
a predominance of the component related to the inter-
nal diffusion of the disease. This evidence agrees with
the quarantine to which some of its municipalities under-
went since the beginning of the outbreak and with the
hypothesis that the epidemic in Italy started right there.
The province of Lodi shares the eastern border with the
province of Cremona (Lombardy region), that in turn
shares the northern border with the province of Berg-
amo (Lombardy region), as depicted in Fig. 4. The lat-
ter two are so far some of the most severely affected
provinces in Italy. Their proximity with the province of
Lodi makes them widely susceptible to the contagion
effect between neighbouring regions. This suggests that
the infections among inhabitants occurred before con-
tainment measures were carried out and that the disease
remained undetected before patient 1 was discovered.
However, between the start of the national lockdown
(on 11 March) and 31 May, both in province of Cre-
mona and in province of Bergamo, the expected number
of infections due to the between-epidemic component
has decreased by 66%. A similar situation arose for the
province of Parma (Emilia-Romagna region), which share
the northern border with the province of Cremona. Even
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Fig. 3Maps of the three fitted mean number of infections components, averaged over all days between 26 February 2020 and 31 May 2020, by
province. The values of components are represented as proportions of the total mean in order to show the relative importance of each term. Colors
toward red indicate a relatively high role of the component; colors toward green indicate a relatively low role of the component
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Fig. 4 Locations of the paradigmatic provinces in the north of Italy, namely Torino (with a population density of 331 residents per square kilometer),
Bergamo (404 residents/km2), Lodi (294 residents/km2), Cremona (203 residents/km2), Parma (131 residents/km2), Padova (437 residents/km2),
Venezia (345 residents/km2) and Trieste (1103 residents/km2). These provinces cover a total area of 20411 square kilometers

here the between-epidemic component is relevant and it
may be explained with the strong social and economic ties
existing among the areas. The second in time discovered
outbreak of COVID-19 in Italy was detected in a small
town in the province of Padova (Veneto region). Even in
this case, strong control measures to reduce transmission
outside have been carried out, as evidenced by the almost
total influence of the within-epidemic component. This
shows that there have been no “return infections” from the
surrounding areas but it does not mean that, before the
quarantine, the infection could not have circulated in the
neighbouring provinces. In fact, the province of Venice
(Veneto region), which is geographically, culturally and
economically near to that of Padova demonstrates to be
affected by these form of interactions. The cases of the
provinces near the national borders are also of particu-
lar interest, such as the province of Trieste (Friuli Venezia
Giulia region), adjoining with Slovenia. This province may
be affected by the so-called boundary problem for which
the analysis of a phenomenon may be biased by the pres-
ence of arbitrary administrative geographic borders. Thus,
on one hand, we might lose information regarding what
happens beyond the country border, due to different ways

of collect information and monitor the diffusion of the
disease. One the other hand, we might not have a clear
overview about cross-border phenomena as job trajecto-
ries. In addition, this province seems to be not connected
with the aforementioned outbreaks originated in Lom-
bardy and Veneto. Due to these reasons, the province of
Trieste shows a limited effect of epidemic components
and a prevalence of the endemic component, which is only
due to the general trend of the disease and the specific
characteristics of this territory, such as the overwhelmed
local medical sources or the population structure. There-
fore, if we focus on the country as a whole, and hence
on the national aggregated counts, the contribution of
the three components seems quite balanced. For the indi-
vidual provinces, instead, they can exert a very different
role.
Moreover, to check the ability of the proposed model

in explaining the spatio-temporal distribution of the
COVID-19 occurrences in Italy, we examine how it is good
at predicting the future daily counts of infections. There-
fore, we re-estimate the model using the data between
26 February 2020 – 30 May 2020 and we make pre-
diction for 31 May 2020. The observed total number
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Fig. 5 Fitted means of the three submodels for the selected provinces between 26 February 2020 and 31 May 2020. The vertical axis represents the
daily number of infections and the horizontal axis represents the time in days. The dots represent the observed daily counts. The blue area represents
the within-epidemic component. The orange area represents the between-epidemic component. The gray area represents the endemic component

of cases at 31 May 2020, obtained by aggregating the
province data, is 354; the model provides a prediction of
358 cases. Therefore, the model overestimates by only 4
units. Naturally, the advantage of the proposed model is
that it provides predictions for each individual province
(point predictions can found in Tables 2 and 3 of the
Supplementary Material ) but it is clear that the use of
predictions at local level can have positive effects on the
prediction of total number at country level. We report
(in Fig. 2 of the Supplementary Material ) the 95% pre-
diction intervals of the provincial counts of infections
at 31 May 2020. Despite the fact that the intervals are
quite wide, the results are promising if compared with the
known observed counts. Indeed, the root mean squared
prediction error and median absolute prediction error of
provincial counts are, respectively, 51.139 and 239.453.
We expect that the level of precision will improve as the
data are updated and the observed time series become
longer.

Discussion
In this article, we analyzed, by modeling, the trend of
COVID-19 epidemics along time and space. The use of
spatio-temporal models can greatly improve the estima-
tion of the number of infected and can help the public
decision-makers to better plan health policy interven-
tions. Italy has viewed a massive spread of the disease
with peculiar patterns on the territory. Started from
some provinces in the northern area, this serious ill-
ness descended down the Boot and is nowadays present
in all 107 Italian provinces. Containment measures in
Italy have followed an application in three steps: first,
some municipalities in Lombardy and Veneto regions
underwent to quarantine; second, the entire Lombardy
and some provinces in other northern regions (Veneto,
Piedmont, Emilia-Romagna and Marche) were isolated
from the rest of the country; third, all Italian territories
were subjected to a complete lockdown. Such a stepwise
approach in imposing hard control measures to the entire
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national territory might have conducted to a temporal
shifting of the contagion dynamics.
Emblematic is the case of the province of Lodi, the first

area submitted to the quarantine. In that province, the
number of recorded daily infections reached 85 when the
illness began to be systematically discovered, it settled the
average value of 30 cases per day onemonth after the lock-
down of the area (thus the new detected contagions have
been more than halved), and finally it dropped to 9 cases
per day on 31May. These numbers suggested that policies
of contagion containment exert a mild success in the areas
where there was an effective enforcement of the control
measures. This is the case of the province of Milan, which
faced a large number of cases and is still not experienc-
ing a final and decisive reduction in the number of new
infections.
Central and south provinces have viewed a delayed start

of the epidemics but also the arrival, in the last two
weeks, of flows of people escaped from northern regions
undergone to lockdown. As an example, the province of
Florence went from an average increment of 3 new cases
in the first period to an average increment of 110 cases
after one month and to 5 cases at the end of the study
period. Similarly, the province of Naples has gone from an
average increment of 4 new cases, to an average increment
of 96 new cases after one month, and to 3 cases at the end
ofMay. This evidence confirms the hypothesis of downhill
race of the disease along the peninsula and that the expe-
rience of quarantine in the north of Italy has avoided its
spread in centre-south Italy.
These differences in the dynamics of the epidemics

in Italy demonstrate the crucial importance of a strong
national coordination level for the homogeneous enforce-
ment of control measures, but also reveal how essential
predictions at local level are. Since the epidemics started, a
frequent question of the public decision-maker concerned
when the peak of contagions will manifest. As our findings
suggest, a more appropriate question should have dealt
with the emergence of different local peaks in different
moments, since the very heterogeneous shape of the ill-
ness diffusion. The dramatic events in northern provinces
served as a test bench for the health system, offering an
overview about what southern provinces might be con-
fronted and probably other European countries that share
with Italy similar systems. Analyses and predictions both
in space and time offer a decisive perspective about which
areas may be more affected and when, given the time
to the central decision-makers to intervene on the local
policies.

Conclusions
In this article the trend of COVID-19 epidemics has
been analyzed along time and space. The use of spatio-
temporal models at provincial level greatly improves the

predictions of the number of infected people and can help
the public decision-makers to better plan health policy
interventions.
Italy has viewed a massive spread of the disease

with peculiar patterns on the territory. Started from
some provinces in the northern area, this serious ill-
ness descended down the Boot and is nowadays present
in all 107 Italian provinces. Differences emerged in the
dynamics of the epidemics in Italy demonstrate the crucial
importance of a strong national coordination level for the
homogeneous enforcement of control measures, but also
reveal how essential predictions at local level are. Since
the epidemics started, a frequent question of the pub-
lic decision-maker is about when the peak of contagions
will manifest. Probably a more appropriate request should
concern the emergence of different local peaks in differ-
ent moments, which Italy should expect in next weeks.
The dramatic events in northern provinces can serve as
a test bench for the health system, offering an overview
about what southern provinces might be confronted and
probably other European countries that share with Italy
similar systems. Analyses and predictions both in space
and time offer a decisive perspective about which areas
may be more affected and when, given the time to the
decision-makers to intervene on the local policies.
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