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Abstract

Background: Management of co-infections including cryptococcal meningitis, tuberculosis and other opportunistic
infections in persons living with HIV can lead to complex polypharmacotherapy and increased susceptibility to
drug-drug interactions (DDIs). Here we characterize the frequency and types of potential DDIs (pDDIs) in
hospitalized HIV patients presenting with suspected cryptococcal or tuberculous meningitis.

Methods: In a retrospective review of three cryptococcal meningitis trials between 2010 and 2017 in Kampala,
Uganda, medications received over hospitalization were documented and pDDI events were assessed. IBM
Micromedex DRUGDEX® online drug reference system was used to identify and describe potential interactions as
either contraindicated, major, moderate or minor. For antiretroviral DDIs, the Liverpool Drug Interactions Checker
from the University of Liverpool was also used to further describe interactions observed.

Results: In 1074 patients with suspected meningitis, pDDIs were present in 959 (overall prevalence = 89.3%) during
the analyzed 30 day window. In total, 278 unique interacting drug pairs were identified resulting in 4582 pDDI
events. Of all patients included in this study there was a mean frequency of 4.27 pDDIs per patient. Of the 4582
pDDI events, 11.3% contraindicated, 66.4% major, 17.4% moderate and 5% minor pDDIs were observed. Among all
pDDIs identified, the most prevalent drugs implicated were fluconazole (58.4%), co-trimoxazole (25.7%), efavirenz
(15.6%) and rifampin (10.2%). Twenty-one percent of the contraindicated pDDIs and 27% of the major ones
involved an antiretroviral drug. Increased likelihood of QT interval prolongation was the most frequent potential
clinical outcome. Dissonance in drug interaction checkers was noted requiring clinicians to consult more than one
database in making clinical decisions about drug combinations.
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(Continued from previous page)

Conclusions: The overall prevalence of pDDIs in this population is high. An understanding of drug combinations
likely to result in undesired clinical outcomes, such as QT interval prolongation, is paramount. This is especially
important in resource limited settings where availability of therapeutic drug monitoring and laboratory follow-up
are inconsistent. Adequate quantification of the increased likelihood of adverse clinical outcomes from multiple
drug-drug interactions of the same kind in a single patient is needed to aid clinical decisions in this setting.
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Key findings
The result of this analysis shows that potential drug-
drug interactions, ranging from minor to contradicted
interactions, in this subset of the population are signifi-
cant and sometimes unavoidable. Although frequency
and type of drug-drug interactions have been previously
characterized in various populations, this is to our know-
ledge the first description of potential drug-drug interac-
tions among hospitalized patients living with HIV and
presenting with co-morbidities like meningitis and tu-
berculosis. The findings will be of particular interest to
clinicians in similar settings as this information can in-
form their monitoring and care of these patients espe-
cially given the vulnerabilities they face due to their
comorbidities.

Background
The beneficial effects of medications for acute and
chronic management of HIV and comorbidities can be
lifesaving, but can also implicitly increase the risk of
drug related problems [1]. The complexity of the treat-
ment regimen for HIV patients presenting with sus-
pected meningitis further increases their risk of
polypharmacy. Polypharmacy is common among hospi-
talized adult patients and studies conducted in various
developed countries report rates of potential drug-drug
interactions ranging from approximately 1 to 66% [2].
Drug-drug interactions (DDIs) contribute significantly to
adverse drug events such as drug toxicity and ineffective
therapy, and can also lead to increased hospital admis-
sions [3, 4].
Potential drug-drug interactions (pDDIs) involve con-

comitant administration of two drugs identified as hav-
ing presumed or known clinically significant
consequences. Some potentially interacting drug pairs
are still likely to be prescribed in combination with rela-
tively high frequency due to limitations on alternative
medication therapy for specified treatment regimens [5,
6]. The incidence of actual DDIs (aDDIs) is consistently
lower than that of pDDIs [7, 8]. The clinical outcome of
a pDDI is often not well defined because available data
to track each potential interaction to its actual clinical
manifestation is often inconsistent. However, epidemio-
logical data suggest that the absolute number of patients

who do experience some kind of drug interaction-based
adverse event is high, especially in the presence of
known risk factors like older age or polypharmacy [9].
Hence, recognition of pDDIs is valuable as it creates
knowledge that aids clinicians to prevent aDDIs.
Resource-limited settings in sub-Saharan Africa often

lack adequate therapeutic drug monitoring and other la-
boratory follow up to monitor outcomes from poten-
tially interacting drugs. Identification of common pDDIs
in this population, in addition to risk factors that can
predict the likelihood of an adverse effect is crucial for
patient safety. For patients on antiretrovirals (ARVs),
pDDIs have been reported in the outpatient settings in
low and middle income countries [10, 11]. However,
there is currently no data available for pDDIs in hospi-
talized HIV-infected patients presenting with life threat-
ening co-infections such as meningitis. The aim of this
study was to characterize the frequency and types of
pDDIs involving HIV patients presenting with suspected
meningitis in a hospital setting in Uganda.

Methods
Study setting and population
This study was a retrospective review of three HIV-
associated cryptococcal meningitis trials that enrolled
patients between 2010 and 2017 in Kampala, Uganda.
The first trial enrolled antiretroviral (ARV)-naïve pa-
tients living with HIV with no previous history of
cryptococcal meningitis (NCT01075152, COAT) and
randomized participants to initiate antiretroviral therapy
(ART) either early (1-week) or late (4–6 weeks) after
diagnosis of cryptococcal meningitis [12]. The second
trial consisting of an open-label pilot and the third a
randomized phase 3 trial, enrolled both ART-naïve and
ART-experienced patients living with HIV and followed
both those presenting with first episode of cryptococcal
meningitis and those with previous history of cryptococ-
cosis (NCT01802385, ASTRO) [13, 14]. In these three
trials, ART was generally initiated or switched 1–6 weeks
after diagnosis of cryptococcal meningitis. All partici-
pants had documented HIV-1 infection. Subjects with
no available medication therapy record during their hos-
pital stay were excluded. The original trials that provided
the data used for this analysis received written, informed
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patient consent and were approved by the Mulago Re-
search Ethics committee, the Uganda National Council
of Science and Technology and the National Drug
Authority.

Data collection
Drug utilization review for de-identified patients were
extracted for the patient’s hospital stay (maximum of 30
days drug record). Patients who were screened but not
enrolled for either of the above mentioned original stud-
ies, but who had documented drug therapy during their
hospital stay were also included in this analysis. A pDDI
was recorded if the patient received the interacting drug
pair on the same calendar day and were included regard-
less of drug dose or administration time. Fixed dose
combination (FDC) drugs such as tenofovir/lamivudine
(TDF/3TC) are considered two individual drugs for the
purposes of identifying pDDIs. Extracted data was col-
lated on Java with programming language on IntelliJ
IDE®.

Classification of drug interaction and strength of scientific
evidence
IBM Micromedex DRUGDEX® system was used to de-
fine the types of pDDIs [15]. The software has been pre-
viously validated [16]. Drug interactions were classified
into 4 main categories based on the likelihood and se-
verity if the interaction were to occur; (i) contraindicated
– the two drugs should not be used concurrently; (ii)
major – the interaction may be life-threatening and/or
require medical intervention to minimize or prevent ser-
ious adverse effects; (iii) moderate – the interaction may
result in exacerbation of the patient’s condition and/or
require an alteration therapy; and (iv) minor – the inter-
actions have limited clinical effects that may include an
increase in the frequency or severity of the adverse ef-
fects, but generally would not require a major alteration
in therapy.
Specifically for interactions involving an antiretroviral

drug, clinical significance was further assessed and com-
pared to recommendations from Micromedex using the
online University of Liverpool HIV drug interaction
checker [17]. This database has been curated for HIV
drugs and provides guidelines for management of clinic-
ally significant HIV drug interactions. This database is
continuously updated as new information becomes avail-
able and clinicians can search this database either by in-
dividual drug name or by drug class.

Statistical analysis
Descriptive statistics were used and presented as means
and percentages unless otherwise specified. We analyzed
continuous variables with t test or Mann-Whitney U
test, and we analyzed categorical variables with chi-

square. We defined significance (p < .05) in univariate
analysis. We conducted our statistical analysis using
RStudio® Version 1.1.456 [18].

Results
Medication administration records were available for
1074 patients presenting with suspected meningitis and
screened. The median age of participants was 35 years
(IQR, 30, 41 years). Fifty-seven percent (617/1074) were
males. There was an average (range) of 8 (1–27) drugs
prescribed per patient during the 30-day window. Table 1
compares demographic characteristics of patients who
had at least one pDDI versus those who did not have
any. Significant differences in the two groups were ob-
served in the number of medications administered, base-
line CD4, initial diagnosis of tuberculosis and
cryptococcal meningitis. Outcome characteristics such
as days of stay in hospital and total number of adminis-
tered drugs were also significantly different between
groups. (Table 1) No difference was noted between the
two groups for age, gender and diagnosis of malaria.
Of the total patients included in this sub-analysis, at

least one pDDI were in 959 (overall prevalence = 89.3%).
In total, 278 unique interacting drug combinations were
identified resulting in 4582 pDDI events. (Supplemental
Table 1) For all patients included in this study, there
was a mean frequency of 4.27 pDDIs per patient with an
overall range of 0–23 pDDIs. The majority (60%) of pa-
tients had 1–4 pDDIs, 31.3% had 5–10 pDDIs and 8.7%
had > 10 pDDIs. For severity classification of the 4582
events, 11.3% were contraindicated, 66.4% were major,
17.4% were moderate and 5% were minor pDDIs. Table 2
summarizes the most frequently occurring pDDIs for
each level of severity along with level of scientific evi-
dence and proposed summary of expected clinical ef-
fects. Eighty percent of the top occurring
contraindicated drugs were classified as having the po-
tential to cause QT interval prolongation (Table 2). No
differences with respect to incidence of pDDIs was ob-
served between the three study timelines included.
Among all pDDIs identified, the most prevalent drugs

implicated are represented in Fig. 1. Fluconazole was the
most prevalent drug interacting with other drugs at
58.4% of overall pDDI events. Some of the other more
prevalent drugs also interacted with each other. For ex-
ample, the most common interaction observed in this
study is a major interaction between fluconazole and co-
trimoxazole (18.3% of the 4582 events) (Table 2). Poten-
tial effects of concurrent use of this drug pair per litera-
ture is an increased risk of cardiotoxicity including QT
prolongation, torsades de pointes and cardiac arrest. Any
interaction involving two individual medications that
can prolong the QT interval is classified as a major or
contraindicated interaction on Micromedex.
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Even though the design of the original trial studies ex-
cluded ART-experienced patients in COAT and ART initi-
ation was delayed for half of the randomized patients in all
three studies, interactions involving at least one antiretro-
viral were still prevalent at 30.9% of overall pDDI events
(regardless of severity). Antiretrovirals were involved in
20.9% of contraindicated pDDIs and 27% of major pDDIs.
Table 3 summarizes frequently occurring contraindicated
and major pDDIs involving an antiretroviral drug. Add-
itionally, this table takes into consideration clinical recom-
mendations for approaching each drug combination as
identified by the University of Liverpool HIV drug inter-
action website. For comparison, interactions involving anti-
retrovirals as identified by IBM Micromedex DRUGDEX®
system are included in Supplemental Table 1.

Discussion
The present study shows that the overall prevalence of
pDDIs in this population is high at 89.3%. Our current
study findings are affected by the class of medications
that are required for this patient population due to the
unavailability of alternate drugs for management of com-
plications of cryptococcal meningitis. For example, flu-
conazole and cotrimoxazole accounted for 18% of
overall pDDIs events but both of these agents are war-
ranted in this population. The incidence rate observed in
this study is, however, still congruent with published lit-
erature on pDDIs in developing countries. Overall preva-
lence of pDDIs in reports from hospital settings in
Uganda, Ethiopia, Pakistan and Iran range from 23 to
86% [19–24]. In our study, moderate and minor

Table 1 Comparison of characteristics of patients with and without at least one potential drug-drug interaction

One or more pDDI in study period
n = 959

No pDDI in study period
n = 115

p value*

Demographics

Age 0.477

17–30 316 (32.9) 42 (36.5)

31–40 403 (42.0) 48 (41.7)

41–50 203 (21.2) 20 (17.4)

51+ 37 (3.9) 5 (4.3)

Gender 0.070

Male 560 (58.4) 57 (49.6)

Female 399 (41.6) 58 (50.4)

Baseline diagnostics and investigations

CD4 (cells/mm3) 18 (7–55) 35 (16–209) 0.040

Diagnosis of cryptococcal meningitis <.001

No 364 (38.0) 105 (91.3)

Yes 595 (62.0) 10 (8.7)

Diagnosis of tuberculosis 0.049

No 852 (88.8) 109 (94.8)

Yes 107 (11.2) 6 (5.2)

Diagnosis of malaria 0.209

No 946 (98.6) 115 (100)

Yes 13 (1.4) 0

GCS on admission 0.003

15 588 (61.4) 54 (47)

< 15 369 (38.6) 61 (53)

CSF QCC (log10 CFU/mL) 4.58 (2.9–5.4) 0 (0–6.6) 0.053

In-patient data

Number of administered drugs 7 (5–9) 3 (2–4) <.001

Days of stay in hospital 16 (11–19) 8 (4.5–13) <.001

Number of administered drugs, days in hospital, CD4, CSF QCC =median (25th -75th percentile)
Category of age, gender, diagnoses and GCS
CSF Cerebral Spinal Fluid, QCC Quantitative Cryptococcal Culture, CFU Colony Forming Units – for patients presenting with suspected cryptococcal meningitis and
for whom CSF culture was collected and quantified (N = 947 with at least one DDI; N = 112 with no DDI)
* t test of means for continuous variables and chi-square for categorical variables with significance at p < .05
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Table 2 Most occurring potential drug-drug interaction for each level of severity

Severitya Drug 1 Drug 2 % pDDI
overallb

Level of
evidencec

Proposed effect summary

Contraindicated

Fluconazole Ondansetron 3.6 Fair Risk of QT interval prolongation

Fluconazole Haloperidol 2.8 Fair Increased haloperidol exposure, risk of QT interval
prolongation

Fluconazole Ritonavir 1.1 Fair Increased ritonavir exposure, risk of QT interval
prolongation

Artane Potassium (oral) 0.8 Fair Gastrointestinal lesions

Fluconazole Atazanavir 0.8 Fair Increased atazanavir exposure, risk of QT interval
prolongation

Fluconazole Artemether-
lumefantrine

0.7 Fair Risk of QT interval prolongation

Dihydroartemisinin-
piperaquine

Efavirenz 0.2 Fair Risk of QT interval prolongation

Fluconazole Dihydroartemisinin-
piperaquine

0.2 Fair Risk of QT interval prolongation

Haloperidol Metoclopramide 0.2 Fair Increased extrapyramidal reactions and neuroleptic
malignant syndrome

Fluconazole Quinine 0.1 Fair Increased quinine levels, risk of QT interval prolongation

Major

Co-trimoxazole Fluconazole 18 Fair Cardiotoxicity (QT prolongation, torsades)

Efavirenz Fluconazole 8.6 Fair Risk of QT interval prolongation

Codeine Fluconazole 4.8 Fair Increased codeine concentration

Isoniazid Rifampin 4.5 Good Hepatotoxicity

Co-trimoxazole Haloperidol 2.4 Fair Cardiotoxicity (QT prolongation, torsades)

Pyrazinamide Rifampin 2.4 Good Hepatotoxicity

Fluconazole Metronidazole 2.3 Fair Risk of QT interval prolongation and arrhythmias

Efavirenz Ondansetron 1.3 Fair QT interval prolongation

Codeine Efavirenz 1.1 Fair Decreased codeine efficacy

Codeine Metoclopramide 1.1 Fair Increased CNS depression

Azithromycin Fluconazole 1.1 Fair Risk of QT interval prolongation

Ciprofloxacin Fluconazole 1.1 Fair Risk of QT interval prolongation

Fluconazole Tramadol 0.9 Fair Increased tramadol exposure and increased risk of
respiratory depression

Acetaminophen Isoniazid 0.9 Excellent Hepatotoxicity

Efavirenz Rifampin 0.9 Fair Decreased serum efavirenz concentration

Moderate

Fluconazole Zidovudine 4.2 Good Increased zidovudine serum concentration

Fluconazole Rifampin 2.2 Excellent Decreased fluconazole serum concentration

Artane Haloperidol 1.2 Good Excessive anticholinergic effects

Acetaminophen Zidovudine 0.9 Good Hepatotoxicity (acetaminophen driven)

Minor

Co-trimoxazole Zidovudine 3.6 Good Increased zidovudine serum concentration
a Severity classification for clinical purposes per IBM Micromedex DRUGDEX® database definitions
b Percent of overall pDDI for study, % reported as (n/ 4582 total pDDI events) * 100
c Strength of scientific data for the interaction per IBM Micromedex DRUGDEX® database; (i) excellent – clearly documented well controlled studies support the
interaction; (ii) good – studies strongly suggest that interaction exists however there are not well controlled studies; (iii) fair – available evidence is poor but
clinicians suspect the interaction exists based on pharmacology or the available evidence is good for a pharmacologically similar drug; and (iv) unknown –
interaction documentation is unknown
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Fig. 1 Drugs most implicated for any potential drug-drug interaction by percentage of occurrence in overall analysis. *Percentage calculated by
dividing number of interactions involving identified drug with the total number of observed pDDI events (4582 total). Note that some of the
identified drugs also interact with each other

Table 3 Comparison of recommendation from drug interaction checkers for frequently occurring antiretroviral (ARV)- associated
contraindicated and major potential drug-drug interactions

Drug 1 Drug 2 Proposed effect summary – Micromedexa Scientific evidence; clinical
significance – Liverpoolb

Recommended adjustment- Liverpoolb

Atazanavir Fluconazole Increased atazanavir exposure and risk of
QT interval prolongation

Low; no interaction expected No prior dose adjustment necessary

Efavirenz Codeine Decreased opioid efficacy Very low; potential weak
interaction

No prior dose adjustment but monitor
analgesic effect

Efavirenz Fluconazole Increased risk of QT interval prolongation Moderate; no interaction
expected

No dose adjustment necessary

Efavirenz Haloperidol Decrease in drug 2 exposure; QT interval
prolongation

Very low; potential weak
interaction

No prior dose adjustment is
recommended

Efavirenz Metronidazole Increased risk of QT interval prolongation Very low; no interaction
expected

No dose adjustment necessary

Efavirenz Ondansetron Increased risk of QT interval prolongation Very low; no interaction
expected

No dose adjustment necessary

Efavirenz Rifampin Decrease in drug 1 serum concentration High; potential weak interaction No dose adjustment recommended in
patients weighing < 50 kg

Ritonavir Fluconazole Increased ritonavir exposure and risk of
QT interval prolongation

Very low; no interaction
expected

No prior dose adjustment recommended

Tenofovir-
DF

Atazanavir Increase in drug 1 exposure and decrease
in drug 2 exposure

Moderate; do not co-administer Avoid co-administration, if necessary,
monitor for adverse effects

Zidovudine Pyrazinamide Decrease drug 2 serum concentration Very low; no interaction
expected

No dose adjustment necessary

aEffect summary from IBM Micromedex DRUGDEX® system
bClinical recommendations as provided in the University of Liverpool HIV drug interaction website
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interactions that may require no changes to drug regi-
men represented ~ 25% of the overall pDDIs observed.
A further look at studies considering only Clinically Sig-
nificant Drug Interactions (CSDI), defined as drug inter-
actions that require a dosage adjustment or are
contraindicated due to high potential for clinical adverse
effects, report lower overall prevalence. CSDI incidence
observed in Kenya and Uganda (both in outpatient set-
tings) range from 18.8 to 33.5% [10, 11]. In the United
States and Europe, studies have shown that pDDIs may
affect 40–65% of all hospitalized patients [25, 26].
While there is a relatively high prevalence of pDDI in

reporting studies, actual drug-drug interactions (aDDIs)
that lead to patient harm are often reported as being
lower [8]. However, the studies that show lower rates of
aDDIs have mostly been done in high-income countries
with reliable access to monitoring [8, 9]. While lower
aDDIs can be expected in resource limited settings as
well, it is not clear to what extent. Identifying pDDIs
continues to reinforce measures to keep aDDI low in
these settings. Other DDI studies in the literature concur
with our results that identify a significant difference in
likelihood of having a pDDI for patients with higher
total number of medications, extended hospital stay, and
high risk diagnoses [4, 7, 19, 27].
The patient population in this present study is unique

as all those included had a confirmed HIV diagnosis.
Hence, the pDDI observed warrant further discussion. In
contrast to the current study, potential drug-drug inter-
actions reported in a general referral hospital in Uganda
identified a different set of drug pairs as the most fre-
quently occurring interactions. Lubinga et al identified
non-steroidal anti-inflammatory drugs (NSAIDS) in
combination with oral corticosteroids; loop diuretics
with ACE-inhibitors; and loop diuretics with NSAIDS as
the top three occurring potential drug interactions in
their Ugandan cohort [19]. This is different in our study
population where we have observed that medications
used in the management of chronic HIV comorbidities,
ARVs and medications used for acute opportunistic in-
fections such as cryptococcal meningitis or tuberculosis
presented as the most implicated pDDI drugs. Further-
more, this difference is expected due to treatment guide-
lines that recommend specifically avoiding the use of
NSAIDS in our very ill population with a high risk of
concurrent renal impairment, gastrointestinal bleeding,
and anemia.
The most frequently occurring pDDI in this study is

considered a major interaction between fluconazole and
co-trimoxazole. These two agents are used often in pa-
tients living with HIV in sub-Saharan Africa and is also
a preferred combination for certain disease states. Flu-
conazole at high doses is used for induction therapy for
acute management of cryptococcal meningitis and at

lower doses for consolidation therapy. With unavailabil-
ity of flucytosine, which is now the recommended first
line agent for treatment of cryptococcal meningitis, high
dose fluconazole remains mainstay induction and con-
solidation therapy in many resource limited settings. Co-
trimoxazole is the preferred drug for both the treatment
and prophylaxis of pneumocystis pneumonia in patients
living with HIV. Individually, these two medications can
cause QT interval prolongation and hence a combin-
ation is presumed to increase this risk. QT interval pro-
longation is an electrocardiographic (ECG) abnormality
that has the potential to cause severe arrhythmias in-
cluding torsade de pointes (TdP) and ventricular fibrilla-
tion. The extent of QT interval prolongation that is
expected and further translation to TdP has not been
specifically quantified for this drug combination but
there is pharmacological speculation that this combin-
ation increases risk [15, 28]. Often the risk of QT inter-
val prolongation can be mitigated in high resource
settings if the patient is monitored for cardiac abnormal-
ities during the induction phase with high dose flucona-
zole. In low resource settings however, continuous
cardiac monitoring is often not feasible. With little pro-
spective studies available to offer real world translation
of the relative risk of this combination, it is often used
with no adjustment to dosage. This practice will likely
continue unless further research becomes available
which suggests changes should be made.
Some studies have described a higher prevalence of

QT interval prolongation in HIV positive patients when
compared to HIV negative patients [29–31]. In addition
to this baseline increase, there is additional risk due to
numerous drugs that are administered to HIV infected
patients presenting to acute care settings. Arizona Cen-
ter for Education and Research on Therapeutics
(AZCERT) is an evidence based classification system
that provides additional clinical guidance to clinicians
for evaluating QT prolonging drugs. Drugs with QT
prolonging properties are classified to one of four classes
- “known risk”, “possible risk”, “conditional risk” (under
specific clinical conditions) and “special risk” (in patients
with congenital Long QT syndrome) [32]. Drugs in the
“known risk” category have sufficient evidence to show
that they can cause QT prolongation and are also associ-
ated with TdP even at recommended doses while drugs
in the “possible risk” category could potentially cause
QT interval prolongation but lack evidence of associ-
ation with TdP at recommended doses. Mied et al. noted
in their pharmacological model, that drugs in the
“known risk” category are associated with multiplicative
effects when combined. A phenomenon not observed
when drugs in the other categories are combined [33].
In the second cryptococcal cohort used for this sub ana-
lysis, electrocardiogram QT intervals were measured in
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53 patients at baseline, day 7, and day 14 of therapy, be-
cause a higher dose of sertraline was administered to
these patients. The results showed that QT intervals ac-
tually decreased over time [34]. It is interesting to note
that sertraline is in the “conditional risk” category for
QT prolongation. Hence, it might be prudent for clini-
cians to become more familiar with drugs in the “known
risk” category or have access to tools that can easily
identify these drugs. In our study, prevalent drugs in the
“known risk” category include fluconazole, ondansetron,
levofloxacin, erythromycin, ciprofloxacin, azithromycin,
and haloperidol [32].
Treatment of other comorbidities such as malaria and

tuberculosis (TB) also contributed to the pDDIs. For in-
stance, pDDI of hepatotoxicity was identified with stand-
ard tuberculosis medicines of rifampin, isoniazid and
pyrazinamide [35]. Liver function tests are a standard to
monitor for potential toxicity from these commonly pre-
scribed combination that is part of first-line regimens
for tuberculosis. Guideline recommends that clinicians
perform liver function tests for those with symptoms of
hepatotoxicity [36]. Furthermore, hepatotoxicity is also a
concern when isoniazid is combined with high doses of
acetaminophen (> 4 g/day) and thus this combination
should be used cautiously [37]. Management of patients
admitted with malaria also requires caution as there are
potential contraindicated and major interactions with
anti-malarials. Artemether/lumefantrine and
dihydroartemisinin-piperaquine were the most com-
monly implicated anti-malarials [38]. In combination
with efavirenz, there is potential for reduced antimalarial
efficacy and hence caution is advised with these
combinations.
Other important pDDI events that were observed in

this study includes the contraindicated interaction be-
tween artane (trihexyphenidyl or benzhexol) and oral
potassium potentially causing gastrointestinal lesions
due to GI arrest of the potassium tablets [39]. When
feasible this combination should be avoided. The pack-
age insert for Klor-con® (potassium chloride extended
release tablets) warns against the combination of all solid
oral dosage forms of potassium with anticholinergic
agents. Potential central nervous system (CNS) adverse
effects could also occur with specific drug pairs includ-
ing CNS depression due to increases in opioid concen-
trations, or on the flip side, opioid withdrawal symptoms
due to decreased opioid efficacy [15, 17]. Metoclopra-
mide in combination with haloperidol or sertraline is
also classified as a contraindicated pDDI that could lead
to extrapyramidal effects and possible neuroleptic malig-
nant syndrome [40].
The University of Liverpool HIV drug interaction web-

site provides clinicians with recommendations for neces-
sary dose adjustments when potentially interacting drugs

involving ARVs are combined. Although the IBM Micro-
medex DRUGDEX® system has been validated to provide
accurate information, disagreements still persist among
drug interactions checkers [41]. Hence, consulting a
database curated specifically for HIV drug interactions
was done to provide additional information for the man-
agement of various ARV-associated pDDIs observed in
the present study. Atazanavir and tenofovir-DF, for ex-
ample, is one drug combination that should be avoided
but if it is absolutely necessary to combine, Atazanavir
should be boosted and monitoring of renal function will
be needed. Of interest, the Liverpool drug interaction
website does not identify interactions that could lead to
QT interval prolongation in the same way that IBM
Micromedex DRUGDEX® does. Hence, many of the con-
traindicated and major interactions identified on Micro-
medex with the potential to cause QT interval
prolongation are classified as likely having no potential
interaction or needing additional monitoring per Liver-
pool interaction website. This disagreement is likely due
to the focus on CYP-based interactions by the Liverpool
interaction website. This dissonance makes it difficult
for clinicians to solely rely on just one interaction
checker. It, however, creates an opportunity for further
collaboration between drug interaction database crea-
tors. It is our observation that for chronic monitoring of
patients living with HIV, the Liverpool drug interaction
checker provides more nuanced information as it is spe-
cialized towards specific population(s). However, when
patients present to acute settings and require other non-
ARV drugs, IBM Micromedex® drug interaction checker
still offers valuable drug information that clinicians can
use in determining drug-drug interactions that may re-
quire additional caution.
Overall, there were only a few potentially life-

threatening risks seen among all pDDIs. Many of the
drug combinations are essential for treatment and are
recommended by clinical guidelines. However, given the
unique study setting, the breadth of knowledge from this
study could potentially direct future prospective case
studies that analyze these identified drug interactions to
better document the extent of laboratory monitoring
that should be implemented. Furthermore, about 40% of
the patients in this study had five or more pDDI. Hence,
identifying the overall prevalence of certain drug combi-
nations and the likelihood of multiplicative increases in
adverse effects can help inform clinicians. Inclusion of a
pharmacist in a patient’s care team have also been
shown to aid in identification and reduction of pDDI
events [42].
There were strengths to this analysis. This study was

unique from previous DDI reports in that we reported
prevalence of pDDIs in an acute setting for patients liv-
ing with HIV and presenting with suspected meningitis.
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The information obtained from this large study sam-
ple also spanned various years (2010 to 2017) and a
spectrum of practitioners and prescribing patterns.
While this study only looked at a 30-day window for
each patient, the variability of the two trial studies
adds a strength to data generalization to other set-
tings managing patients in this population. There
were also limitations to our analysis. Since pDDI were
only assessed as drugs that were co-administered on
the same calendar day rather than at specific times
during the day, there could have been underestimat-
ing or overestimating of concurrent drug exposure.
Drugs with a short-life that were administered in the
morning could have cleared from the patients system
prior to an interacting drug administered later at
night. On the flip side, drugs with longer half-life or
undergoing other pharmacodynamic processes could
still have an effect on an interacting drug beyond the
24 h window. Additionally, the pDDIs were classified
regardless of dose adjustments that may or may not
have happened. In line with this, the study mainly fo-
cused on theoretical drug-drug interactions. Since the
data source did not consistently match immediate re-
sults of laboratory tests and other mortality defining
clinical measurements, there was no way to evaluate
true clinical significance or mortality outcomes of
pDDI exposure. There may have also been selection
bias because the analysis only included patients from
the original studies with available drug information,
although the percentage of excluded patients were
low (< 5%).

Conclusions
Our findings suggest that the prevalence of potential
drug-drug interactions as classified by the IBM Micro-
medex DRUGDEX® system in our study population is
high. A closer look at these drug interactions suggest
that only a few present with significant immediate life
threatening risks such as CNS depression. However, un-
derstanding the drug pairs that could lead to undesired
outcomes such as increases or decreases in drug concen-
trations leading to adverse toxic events or loss of thera-
peutic efficacy is important. Understanding the extent of
unwanted drug effects such as GI lesions, extrapyramidal
reactions, hepatotoxicity, QT interval prolongation and
other cardiac toxicities is paramount especially while
working in resource limited settings like Uganda. We ad-
vocate for additional research into dose adjustments ne-
cessary for some of the identified pDDIs, as well as
further documentation of potential harm and possibly
mortality implications from multiple drug-drug interac-
tions of the same effect in a single patient, as these could
provide better guidance to clinicians.
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