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Abstract

Background: HIV-1 produces defective mutants in the process of reproduction. The significance of the mutants has
not been well investigated.

Methods: The plasmids of wild type (HIV-1y4-3) and Env-defective (HIV-1553 HIV-1 were co-transfected into
HEK293T cells. The progeny virus was collected to infect MT4 cells. The env gene and near-full-length genome
(NFLG) of HIV-1 were amplified and sequenced. The phylogenetic diversity, recombinant patterns and hotspots, and
the functionality of HIV-1 Env were determined.
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Results: A total of 42 env genes and 8 NFLGs were successfully amplified and sequenced. Five types of
recombinant patterns of env were identified and the same recombinant sites were detected in different patterns.
The recombination hotspots were found distributing mainly in conservative regions of env. The recombination
between genes of HIV-1y4-3 and HIV-15652™ increased the variety of viral quasispecies and resulted in progeny
viruses with relative lower infectious ability than that of HIVy 4 3. The defective env genes as well as NFLG could be
detected after 20 passages.

Conclusion: The existence of the defective HIV-1 promotes the phylogenetic evolution of the virus, thus increasing
the diversity of virus population. The role of defective genes may be converted from junk genes to useful materials

and cannot be neglected in the study of HIV-1 reservoir.
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Background

Human immunodeficiency virus type 1 (HIV-1) remains
a global threat to public health with an estimated 36.7
million peoples living with HIV-1 (http://www.unaids.
org). The genetic diversity of HIV-1 has continued to in-
crease, which poses an additional challenge to the treat-
ment and prevention of HIV-1 infection [1]. HIV-1
diversity can be attributed to low fidelity of reverse
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transcriptase in the process of biosynthesis of double
stranded DNA, as reflected in its high rate of mutation
as well as recombination between different viral strains
[2]. Therefore, a large proportion of HIV-1 strains may
be defective due to the spontaneous passage of lethal
mutations [3]. In long-term non-progressors, levels of
HIV-1 defectiveness have been reported to be as high as
64% in accessory genes and 41% in env V3 region [4].
Astonishingly, defective proviruses accumulate rapidly
during acute HIV-1 infection to make up over 93% of all
proviruses, regardless of how early antiretroviral therapy
(ART) is initiated [5]. Defective provirus mutants may
still play a role in HIV-1 pathogenesis through
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recombination and rescue of drug resistance phenotypes,
and viral recombination may take place with defective
viral forms among the quasispecies to increase viral fit-
ness and transmission capacity [6].

In contrast to the slow and steady change caused by mu-
tation, recombination is a much more powerful evolution-
ary force. First, recombination facilitates the repair of viral
genomes. Recombination can bypass Muller’s ratchet by
recreating mutation free individuals from a population of
mutants [7]. Second, recombination can both create and
maintain genetic diversity in a population [8]. Third, re-
combination can speed adaptation by eliminating compe-
tition among beneficial mutations [9]. Recombination is a
key mechanism that facilitates the persistence of virus
with latent envelope genomic fragments in the product-
ively infected cell population [10]. Compared with other
genes of HIV-1, env gene is undoubtedly the most variable
with higher rate of mutation, deletion, and insertion [11].
The Env glycoproteins are required when HIV-1 enters
into target cells, and the diversity of the env gene has been
shown to increase continuously and peaks at the onset of
AIDS [12]. It is clear that antiviral drugs unlikely have ef-
fect on integrated viral DNA, and the efficiency of CRIS
PR/Cas9 gene editing technology for integrated HIV-1
DNA may also reduce because of the mutations on the de-
fective virus [13]. Although the defective HIV-1 occupies
a considerable proportion in infections, the significance of
env-defective HIV-1 mutants has not been well investi-
gated. In this study, the evolution of superinfection of
env-defective and infectious wild type HIV-1 strains in
long-term in vitro passages was investigated.

Methods

Plasmids

HIV-1 infectious clone pNL4-3 and env-defective clone
pSG3“F™ were obtained from the AIDS Research and
Reference Reagent Program [14, 15]. pSG3““™ was de-
rived from pSG3 (L02317) by the introduction of four
nucleotides (CTAG) which generated a translational stop
codon after amino acid residue 142 in the env gene.
When the plasmid pSG3“°™ was transfected into HEK
293 T cells alone, all proteins of HIV-1 excepted Env
could be expressed functionally. If another plasmid ex-
pressing Env was co-transfected, the pesudovirus could
be generated. The intact env genes of recombinant
strains as well as NL4-3 and SG3 were amplified and
cloned into pcDNA3.1 vector (Cat No.: K4900-01, Invi-
trogen) to construct Env expression vectors and to
evaluate the infectious ability. Ethics approval was
deemed unnecessary according to national regulations.

Cell culture, transfection and infection
HEK293T cells purchased from ATCC were cultured in
Dulbecco’s modified Eagle’s medium (DMEM)
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supplemented with 10% fetal bovine serum (FBS),
100 pg/mL streptomycin and 100 IU/mL penicillin. The
pSG3“®™ and pNL4-3 were co-transfected into HEK
293 T cells. After 8h (h) of transfection, the medium
was discarded and the cells were washed twice gently
with phosphate buffer saline (PBS), followed by adding
fresh DMEM completed medium. The cells were cul-
tured for another 36 to 48 h, and virus supernatant was
collected. MT4 cells (obtained through the NIH AIDS
Reagent Program, originally acquired from Dr. Douglas
Richman) were seeded on 12-well culture plates at 1 x
10° cells per well with the RPMI 1640 medium contain-
ing 10% FBS and incubated with the virus supernatant
for 2h, then washed twice with PBS and resuspended
with the RPMI 1640 complete medium. The cells were
incubated at 37 °C with 5% CO,, and the medium was
half changed every 3 days until an extensive cytopathic
effect (CPE) was observed. Then, the progeny virus was
passaged on MT4 cells in four duplicate wells (Supple-
mental Fig. S1). As controls, the pSG3“°™ and pNL4—3
were respectively transfected into HEK 293 T cells. To
eliminate the potential effect of plasmid contamination,
the HEK 293 T cells were transfected with pSG34F™,
pNL4-3, pSG3“F™ + pNL4-3, and pcDNA3.1, respect-
ively. After 48 h, the cells and the supernatant were col-
lected. 500 ul of the virus supernatant or inactivated
virus (100 °C for 10 min) was in parallel used to infect
the MT4 cells. After 48 h, the MT4 cells were collected.
The genome DNA of the cells from each group was ex-
tracted. The env gene was amplified. The PCR gel elec-
trophoresis was carried out to identify the positive band
of the env gene. The MT4 cells and the supernatant of
each passage were collected and stored at —80°C for
subsequent assays.

Amplification of env gene and near-full-length genome
(NFLG)

The provirus DNA was extracted from the MT4 cells by
DNeasy Blood & Tissue Kit (Cat No.: 69504, QIAGEN).
The extracted DNA was properly diluted to avoid PCR-
induced recombination. The fold of optimum dilution

(D) was estimated according to the formula: D
:(NI/R)><D1+(N2/I§I){><D2+(N3/R)><D3+25%, where D1, D2

and D3 were dilution gradients, N1, N2 and N3 were the
number of positive bands in each gradient, R was the
number of duplicate wells for each gradient and NR was
the number of positive gradient in which at least one
positive band was observed. For env, the fold of dilution
carried out in the study was initially set to 120, but for
NFLG, we didn’t perform the dilution due to the lower
amplification efficiency. The env gene was amplified by
nested polymerase chain reaction (nest-PCR) with the
first round primers HIOF (5'- TAGAGCCTTGGAAG
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CATCCAGGAAGTCAG-3’, 5583-5881, refer to HXB2:
K03455) and HI1OR (5'- CTCCATGTTTTTCCAGGT
CTCGAGAT -37, 8920-8895) and the second round
primers HIIF (5'-CACCAAAGGCTTAGGCATCTCC
CATGGCAGGAAGAAG-3’, 5947-5983) and H1IR (5'-
TCCCACCCCATCTGCTGCTGGCTCAG-3",  8889-
8864). The PCR amplification conditions were con-
ducted with one cycle of pre-denaturation at 94 °C for 5
min, followed by 35 cycles of denaturation at 94 °C for
30s, annealing at 60°C for 30s and extension at 72°C
for 3 min, and with a final extension at 72 °C for 10 min.
For Env expression vector construction, the primers
Env-F (5'-CAAGCTTGACAGTGGCAATGAGAG
TGAAGGAG-3’, 6215-6239) and Env-R (5'- GCTC
TAGAATACTGCTCCCACCCCATCTGCTG-3’, 8896—
8873) were used as the second round primers with the
same amplification condition. The amplified env gene
was inserted into the pcDNA3.1 vector through the nu-
cleotide endonuclease HindIIl and Xbal. The near-full-
length genome amplification was conducted as previ-
ously described [16]. The first round PCR was carried
out using the primers FL1.5 (5'-CCTTGAGTGC
TTCAAGTAGTGTGTGCCCGTCTGT-3,  538-571)
and FL1.3 (5'-ACTACTTGAAGCACTCAAGGCAAG
CTTTATTG-3’, 9642-9611), and the second round
primers FL2.5 (5'-AGTAGTGTGTGCCCGTCTGTTG
TGTGACTC-3" 552-581) and FL2.3 (5'- TGAAGCAC
TCAAGGCAAGCTTTATTGAGGC -3, 9636-9607).
The PCR thermo-cycling conditions were as follows: one
cycle of pre-denaturation at 94 °C for 2 min; 10 cycles of
a denaturing step at 94 °C for 10 s and an extension step
at 68°C for 8.5min; 20 cycles of denaturation at 94 °C
for 10 s and extension at 68 °C for 8.5 min with an incre-
mental of 20 s for each successive cycle; a final cycle of
extension at 68 °C for 20 min.

Sequence analysis

The positive PCR products were purified and sequenced
by the cycle sequencing and dye terminator methods on
an ABI 3730xl genetic analyzer (Applied Biosystems,
Foster City, CA). Individual sequences were assembled
and edited using Sequencher v4.9 (Gene Codes, Ann
Arbor, MI). The sequences were aligned using CLUS-
TAL W, and the manual adjustment for optimal align-
ment was performed using BioEdit. Phylogenetic analysis
was performed to determine the evolution of HIV-1 pro-
virus with the reference sequences of NL4-3 and SG3.
The maximum likelihood (ML) tree was constructed
using the general time reversible (GTR) plus gamma
model by PhyML [17]. Branches with bootstrap values
higher than 0.9 were considered as phylogenetic clusters.
Branch significance was analyzed with 200 bootstrap
replicates. Sequences that cannot be clustered into
NL4-3 or SG3 group were further verified by bootscan
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analysis using Simplot [18] with window size of 180 bp
and step size of 10bp for env genes, and with window
size of 300 bp and step size of 30 bp for NFLGs. The re-
combinant breakpoints were identified and the recom-
binant sequences were mapped by Recombinant HIV-1
Drawing Tool (https://www.hiv.lanl.gov/content/se-
quence/DRAW_CRF/recom_mapper.html). The possible
hotspots of recombination across env gene was evaluated
by RAPR [19] (https://www.hiv.lanl.gov/content/se-
quence/RAP2017/rap.html).

Single cycle infection assay

The infectious ability mediated by HIV-1 recombinant
Env protein was measured by a single-cycle infection
assay as described previously [20]. Briefly, HIV-1 pseu-
dovirus was generated by co-transfecting 293 T cells
with an Env-expressing plasmid and a backbone plasmid
pSG3“™. The supernatant was harvested 48h after
transfection, and 50% tissue culture infectious dose
(TCIDso) was determined using TZM-bl cells (NIH
AIDS Reagent Program). The infectious ability of recom-
binant strains was determined by infection of TZM-bl
cells with 100 TCIDs, virus dose. The cells were incu-
bated for 48 h at 37 °C, and the luciferase activity (rela-
tive light unit, RLU) was measured using luciferase assay
reagents (Cat No.: G7941, Promega) and a luminescence
counter GloMax (Promega). Student t test was per-
formed to compared the difference. p value less than
0.05 was considered significant statistical difference.

Results

Diversity and phylogenetic analysis of HIV-1 provirus

The plasmids pSG3°°™ and pNL4-3 were co-
transfected into HEK 293 T cells and the progeny virus
was used to infect MT4 cells. Since the recombination
could have occurred during co-transfection or during
viral replication in MT4 cells, we conducted single gen-
ome amplification with the genome DNA from the co-
transfected HEK 293 T cells. Phylogenetic analysis re-
vealed that there was no recombination between NL4-3
and SG3 (Supplemental Fig. S2). Meanwhile, to elimin-
ate the possibility of plasmid contamination, the inacti-
vated supernatant was used to infect the MT4 cells. The
corresponding genome DNA of MT4 cells was extracted
and the env gene was amplified (Supplemental Fig. S3).
It was found that the env gene was successfully amplified
in the transfected HEK 293 T cells as well as the MT4
cells infected with the non-inactivated supernatant. As a
control, no positive band was found in the MT4 cells in-
fected with the inactivated supernatant. A total of 42
HIV-1 env genes were successfully amplified and se-
quenced from the cell genomes of the 5th to 24th pas-
sages (GenBank: MG837222 - MG837263). An initial
alignment was performed using Clustal W, and then
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adjusted manually using BioEdit. Phylogenetic tree ana-
lyses were implemented by PhyML [17] and branches
with bootstrap values higher than 0.9 were considered as
phylogenetic clusters (Fig. 1). The parent strains NL4-3
and SG3 were bold marked. As the phylogenetic tree
displayed, the sequences could be divided into several
clusters. There were 18 sequences grouped into the
NL4-3 cluster, in which the genetic distance of all the
sequences was extremely small. Unexpectedly, two se-
quences amplified in the 20th and 21st passages were
grouped into the SG3 cluster. The alignment of the
three sequences found that the two sequences in the
clade were almost the same with SG3, except for an in-
sertion of four-nucleotides after the position of 423 T,
which was the characteristic of pSG3“¥™ env gene. Be-
sides the NL4-3 and SG3 clusters, there were 22 se-
quences distributed between the two clusters indicating
the emergence of recombination between HIVy4_3 and
HIVSGgAenV.

Determination of recombinant patterns and breakpoints

The potential recombinant sequences between the par-
ent clusters were verified by bootscan analysis, and the
recombinant and breakpoints were identified using Sim-
plot [18]. The env genes of NL4-3 and SG3 were used
as the parent reference sequences and a CRFOI1_AE
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strain (AY008714) was used as an outgroup reference se-
quence. All env genes were evaluated and 5 types of re-
combinant patterns named rEnvl, rEnvll, rEnvlIl,
rEnvIV and rEnvV were identified (Fig. 2). Among them,
rEnvland rEnvIl detected in different passages were the
main recombinant patterns, which cover 81.8% (18/22)
of the sequences. The different recombinant patterns in-
dicated that either the replacement of the corresponding
recombinant fragments of NL4—3 with that of SG3*°™
or the repair of the SG3%°™ defective with the normal
NL4-3 genome. Furthermore, there were several identi-
cal breakpoints were found between different recombin-
ant patterns, such as the position 6905, position 7745,
position 8174, position 8247 and position 8669 (refer to
HXB2). These recombinant strains were detected from
different duplicate wells. The similar recombinant sites
found in different passages from the same well might be
due to the expansion of the recombinant, but that from
the different wells represented higher possibility of re-
combination in this region, and this region might be a
hot area of recombination. Thus, it was inferred that the
same breakpoints in the recombinant strains suggested
the existence of recombination hotspots. The signifi-
cance of each breakpoint in the study was revalued by
RAPR [19] and the hotspots of recombination across the
env gene were calculated (Fig. 3). It was found that
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Fig. 2 Determination of recombinant patterns and breakpoints. The env genes of parent strains NL4-3 and SG3 as well as a CRFO1_AE strain were
used as reference sequences when performing the bootscan analysis with window size of 180 bp and step size of 10 bp using Simplot software.
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tion was red marked indicating where the nucleotide acids CTAG inserted.

hotspots were mostly clustered in relatively conservative
regions after the variable loops of gpl20 or the C-
terminal helical repeat region and cytoplasmic tail region
of gp41.

Env-mediated HIV-1 infectivity

The env gene of each recombinant pattern was amplified
and merged into the pcDNA3.1 expression vector to
construct recombinant Env expression vectors. The in-
fectious ability mediated by recombinant Env was deter-
mined and compared with that of the wild-types NL4-3
and SG3. Pseudoviruses were generated using pSG3“°™
as the package vector. 100 TCIDs, of viruses were used
to infect TZM-bl cells. It was found that all expressed

recombinant Envs were functional, and the Env-mediated
infectivity was significantly different between recombinant
and parent strains. Compared with the HIVyz4_3, all other
strains showed lower infectious ability, especially the
rEnvV (all p<0.05). However, the infectious ability of
rEnvIIl and rEnvIV was markedly increased compared to
HIVggs (all p<0.05). The results demonstrated that the
infectious HIV-1 strain could alter its biological character-
istic by recombining its own gene fragment with the intact
part of a defective virus (Fig. 4).

Recombination of HIV-1 near-full-length genome
Since the recombination positions might have occurred
anywhere of HIV genome, the near-full-length genome
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Fig. 3 Identification of the significant hotspots in env. Recombination hotspots were shown in red across the env gene. Each line represented a
position, and the thickness of the colored regions represents consecutive positions. Position numbering is relative to HXB2. SP, signal peptide. FP,
fusion peptide. NHR, N-terminal helix repeat region. CHR, C-terminal helix repeat region. TM, Transmembrane domain
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(NFLG) was amplified to further understand the recom-
bination of HIVyis 3 and HIVgg®™. A total of 8
NFLGs were amplified and sequenced from the cell gen-
ome of the 21st, 22nd and 24th passages (GenBank:
MG837264 - MG837271). The recombinant patters and
breakpoints of the NFLG sequences were identified
(Fig. 5). In all the NFLGs, there were 7 recombinants
and 1 pure subtype stain. FL-21d and FL-22b share the
identical recombinant pattern and breakpoints, and the
recombinant patterns and breakpoints between FL-21c
and FL-22a, as well as FL24-a and FL24-b were almost
the same but with some difference in the end of 3’LTR
and gag regions, respectively. The same recombination
sites could be found between different recombinant
strains, as exemplified by the positions 2542, 3960, 6905,
8427and 8669.

Long term persistence of defective HIV-1

Besides the recombinant strains, pure env sequences
G20R1 and G21R1 and near-full-length genome FL-21a
with an identical nucleotide acid sequence of HIVggs**™
were determined from HIV-1 provirus genome. By align-
ment with the mask sequence of SG3 and SG3“*™, an
insertion of four nucleoid acids (AGCT) after T at the
position 423, which was identical with the sequence of
SG3“F™ (Fig. 6). Considering that the pure sequences
were amplified from the genomes of the 20th and 21st
passages, it was ascertained that the defective gene of
HIV-1 might persist and passage in the host cell genome
with the help of infectious strains.

Discussion

HIV-1 displays in the form of guasispecies which is one
of the hallmarks of HIV-1 infection [21, 22]. Previous
studies demonstrate that a single viral particle can lead
to infection [23, 24]. During the HIV-1 replication, the
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rate of nucleotide misincorporation was 3.4 x 10” °/base/
cycle [25]. With the high rate of mutation, the defective
viruses can rapidly accumulate during acute HIV-1 in-
fection and continue to increase as the process of the
disease [4, 5]. Even though the defective virus exists in
the whole life cycle of HIV-1 infection, its effects on evo-
lution, fitness and disease progression are rarely studied
because of its non-infectious characteristic. It has been
reported that morn then 1 HIV copy is found in infected
spleen cells; as well, a single cell can harbor several dif-
ferent copies of HIV-1 NDA [26]. Therefore, cells con-
tain defective HIV-1 may still produce defective viral
particles. Moreover, it has been revealed that HIV-1 in-
fected cells with 5 copies of defective provirus are able
to generate highly infectious viral progeny [27]. In this
study, co-transfection of the plasmids of the Env-
defective virus HIVggs®®™ and the infectious virus
HIVyr4_3 in HEK 293 T cells resulted in a large number
of recombinant progeny strains. The recombination be-
tween genes of HIVy 4 3 and HIVggs®®™ increased the
variety of the infectious HIV-1 strain, and the variation
of HIVyni4_3 or HIVggs"®™ was promoted by replacing
its genome fragments with that of HIVggs"®™ or
HIVy\rL4_3, respectively.

HIV-1 superinfection can occur at any stage of the dis-
ease process despite the preexisting host immune re-
sponse to the initial virus and rates of superinfection
have been estimated to be close to the rates of initial in-
fection, indicating a lack of protective immunity against
newly acquired HIV-1 infection by preexisting infection
[28-30]. However, superinfection may be difficult to be
detected when the superinfecting virus is of the same
subtype as the initial virus, and recombination between
these viruses is often ignored. In the study, phylogenetic
analysis and bootscan breakpoint analysis were per-
formed using HIVyr4_3 and HIVgsgs as parent strains,

410 420

~

430 440 450

SG3 CTACTAATACCACT

SG34Ev CTACTAATACCACTAGCTAGTACTAATACCCCTAGTGGTAG
G20R1 CTACTAATACCALTAGCTAGTACTAATACCCCTAGTGGTAG
G21R1 CTACTAATACCACTAGCTAGTACTAATACCCCTAGTGGTAG
FL-21a CTACTAATACCACTAGCTAGTACTAATACCCCTAGTGGTAG

AGTACTAATACCCCTAGTGGTAG

Fig. 6 Identification of env-defective gene after 20th passage. The env-defective sequences G20R1 and G21R1 as well as the NFLG sequence FL-
21a were aligned with the sequence of SG3 and SG32°™. The characteristic of the 4-nucleoid acid (AGCT) insertion after position 423 T was
identified in the sequences isolated from the 20th and 21st passages in the host cell genome. Position numbering is relative to the env of SG3
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and the recombinant env genes were firstly detected in
the 11th progeny virus infected cells. By analyzing re-
combinant pattern and breakpoint of env genes, it was
found that the same recombinant sites appeared in dif-
ferent recombination patterns with one to three gene
fragments replacement, implying the possibility of a sec-
ond or multiple recombination. Indeed, Simon-Loriere
and coworkers identified the same pattern [31]. Due to
the limited sequences amplified, the bias of recombinant
hotspots might exist. However, when compared with the
recombination sites identified by bootscan analysis, the
results are consistent, where most of the recombination
breakpoints are in the recombinant hotspots. Further-
more, recombination in the other regions of HIV-1 gen-
ome was also observed. Thus defective virus resulted
from gene mutation, deletion and insertion may pro-
mote the evolution of replication-competent HIV-1 by
superinfection or coinfection.

Previous studies suggest an association between HIV-1
fitness, diversity, recombination, rate of transmission,
and disease progression [32, 33]. The very fit viruses
have to adapt to a given environment in order to survive.
The most fit virus in an ex vivo culture suggests an in-
creased virulence in a host. However, rapid disease pro-
gression is also related to faster extinction of this viral
isolate in the human population [34]. Ex vivo fitness of
primary HIV-1 isolates typically maps to the env gene
and is largely controlled by the efficiency of host cell
entry [35]. It was shown that the recombinant Env pro-
teins presented various infectious abilities. Compared
with the HIV-1y14 s strain, the fitness of all other vi-
ruses was lower, especially the rEnvV. However, the in-
fectious ability of rEnvIIl and rEnvIV was significantly
increased compared to that of HIV-1gg3 HIV-1y14_3 is
an ex vivo fitness strain, and the nucleotide acid of env
gene is the result of an ex vivo culture adaptation. The
replacement with env gene of HIV-1555*™ results in a
large number of mutations. Therefore, the decline of fit-
ness of recombinant strains is predictable.

Highly active antiretroviral therapy (HAART) can ef-
fectively inhibit HIV-1 in the patients, but due to the
high variation of the virus, the emergence and epidemic
of drug resistant strains have become a serious problem
that has to be faced. Meanwhile, the patient must take
the drug for whole life in that the virus will proliferate
again because of the persistence of a small reservoir of
infected cells. It is reported that defective genomes were
systematically detected in all patients on long-term
HAART in both PBMCs and rectal tissues, and a high
level of defective genomes was correlated with a small
size of HIV-1 provirus DNA [36]. Furthermore, latent
HIV-1 can be activated by exosomes from cells infected
defective HIV-1 [37]. In the present study, two env se-
quences and one NFLG with the characteristic inserted
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fragment of HIVgg3 were identified after 20 passages,
suggesting that the defective HIV-1 could persist in the
host and passage with the help of infectious one and
served as a kind of latent HIV-1. The persistence of
HIV-1 reservoir has been one of the obstacles to eradi-
cate HIV-1 infection. The Shock/Kick and Kill strategy
and CRISPR/Cas9 gene editing technology play an im-
portant role in eradicating the HIV-1 reservoir [38—40].
Nevertheless, the coinfection or superinfection of defect-
ive and functional HIV-1 and high rate of recombination
between them put forward a higher requirement for the
elimination of the HIV-1 reservoir.

Conclusion

The evolution of HIV-1 in the host is complex and sub-
ject to the pressure of the immune system. Defective vi-
ruses are produced in the process of continuous
evolution of HIV-1. However, the role of those defective
genes might be converted from junk genes to useful ma-
terials as the immune status changed. Defective species
can potentially be a part of the HIV-1 reservoir and may
contribute over time to fully infectious viral progeny
through recombination. Therefore, the existence of the
defective HIV-1 promotes the evolution of the virus, in-
creases the diversity of HIV-1 population, and to a cer-
tain extent, may affect the immunization effect and the
clearance of the HIV-1 reservoir.
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Additional file 2: Figure S2. Recombination identification of the
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293 T cells co-transfected with pNL4-3 and pSG3AEnv was extracted and
the single genome amplification was performed. A total of 40 sequences
were obtained and subsequent for phylogenetic analysis to investigate
whether there were recombinant proviruses. The evolutionary history was
inferred using the Neighbor-Joining method. The percentage of replicate
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test (1000 replicates) are shown next to the branches. The tree is drawn
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ary distances used to infer the phylogenetic tree. The evolutionary dis-
tances were computed using the Kimura 2-parameter method and are in
the units of the number of base substitutions per site. The analysis in-
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Evolutionary analyses were conducted in MEGA?7.

Additional file 3: Figure S3. The env gene amplification. The HEK 293 T
cells transfected with pSG3AEnv, pNL4-3, pSG3AEnv + pNL4-3 and
pcDNA3.T respectively. After 48 h, the cells and the supernatant were
collected. Partial of the supernatant was inactived at 100 °C for 10 min.
Then the equal volume (500 pl) of the fresh supernatant and the
inactived one was used to infect the MT4 cells. After 48 h, the MT4 cells
were collected. The genome DNA of the cells from each group was
extracted. The env gene was amplified. The PCR gel electrophoresis was
carried out to identify the positive band (red box). NC, negative control,
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