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Abstract

Background: Patients infected with HIV may experience a succession of clinical stages before the disease diagnosis and
their health status may be followed-up by tracking disease biomarkers. In this study, we present a joint multistate model for
predicting the clinical progression of HIV infection which takes into account the viral load and CD4 count biomarkers.

Methods: The data is from an ongoing prospective cohort study conducted among antiretroviral treatment (ART) naïve
HIV-infected women in the province of KwaZulu-Natal, South Africa. We presented a joint model that consists of two
related submodels: a Markov multistate model for CD4 cell count transitions and a linear mixed effect model for
longitudinal viral load dynamics.

Results: Viral load dynamics significantly affect the transition intensities of HIV/AIDS disease progression. The analysis also
showed that patients with relatively high educational levels (β = − 0.004; 95% confidence interval [CI]:-0.207, − 0.064), high
RBC indices scores (β = − 0.01; 95%CI:-0.017, − 0.002) and high physical health scores (β = − 0.001; 95%CI:-0.026, − 0.003)
were significantly were associated with a lower rate of viral load increase over time. Patients with TB co-infection (β =
0.002; 95%CI:0.001, 0.004), having many sex partners (β = 0.007; 95%CI:0.003, 0.011), being younger age (β = 0.008; 95%CI:
0.003, 0.012) and high liver abnormality scores (β = 0.004; 95%CI:0.001, 0.01) were associated with a higher rate of viral
load increase over time. Moreover, patients with many sex partners (β = − 0.61; 95%CI:-0.94, − 0.28) and with a high liver
abnormality score (β = − 0.17; 95%CI:-0.30, − 0.05) showed significantly reduced intensities of immunological recovery
transitions. Furthermore, a high weight, high education levels, high QoL scores, high RBC parameters and being of middle
age significantly increased the intensities of immunological recovery transitions.

Conclusion: Overall, from a clinical perspective, QoL measurement items, being of a younger age, clinical attributes,
marital status, and educational status are associated with the current state of the patient, and are an important
contributing factor to extend survival of the patients and guide clinical interventions. From a methodological perspective,
it can be concluded that a joint multistate model approach provides wide-ranging information about the progression
and assists to provide specific dynamic predictions and increasingly precise knowledge of diseases.
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Background
HIV infection is one of the leading causes of death from
infectious diseases globally and remains a serious global
public health issue [1, 2]. AIDS, the last progress stage of
HIV infection, leads to severe damage to the body’s im-
mune system [3]. The progression of HIV/AIDS is highly
variable between populations and individuals and is deter-
mined by immunological, genetic, environmental and
virological factors [4]. CD4 cell and viral load counts have
remained the two strongest correlates and surrogate
markers of HIV disease progression regularly used in the
clinical setting to monitor the infection [5]. Of the two,
CD4 count is a more accurate biomarker of the stage of
HIV and is recommended by all guidelines of HIV man-
agement [6]. Some studies also argue that CD4 cell count
predicts clinical information (event time data) [7] whereas
HIV viral load trajectories largely determine the time from
initial infection to AIDS: high initial viral load is a marker
for rapid progression [8]. Further, many studies report
that there is a relationship between these biomarkers,
often explaining the disease progression of one biomarker
according to the other [9–11].
HIV disease patients progress through normal, mild, ad-

vanced and severe clinical stages, and the disease diagnosis
can be considered as one of these states. So, instead of
modeling of CD4 count without binning into categories,
the CD4 count progression should be modeled as a multi-
state process, which takes into account viral load dynamics,
to explain the development of such diseases. Simultaneous
modelling of these two biomarkers may be a better way to
capture the complete disease process and progression of
HIV/AIDS than individual modelling. It is also essential to
understand and predict accurately the dynamic evolution of
the disease, which is of particular relevance to physicians
who need to distinguish the different types of intermediate
events in order to properly adapt treatment plans. Thus,
the research focus of the current study is to model viral
load dynamics and CD4 cell count progression in an ART-
naive cohort.
Previously, a multi-state Markov process modelling of

disease progression of HIV/AIDS has been examined by
several authors [12–15]. In particular, Binquet et al. [12]
estimated the impact of CD8 cell count, weight loss, drug
use, gender, viral load and haemoglobin on the progres-
sion of HIV/AIDS. Oliveira et al. [14] studied the degrees
of chronicity of HIV/AID and went further to examine the
impact of covariates; adherence, disease duration, and age
on CD4 cell count progression. Recently, Shoko et al. [15]
and Chikobvu and Shoko [13], also studied disease pro-
gression of HIV/AIDS. However, no previous study has
jointly modeled the transition intensity of sequential ad-
versity of the events and longitudinal viral load biomarkers
of HIV/AIDS. In addition to that, although the factors re-
lated to disease progression of HIV are multiple and

complex, very few studies have directly examined the ef-
fects of several clinical attributes (ie: white blood cell pa-
rameters, RBC parameters, blood chemistry parameters
and QoL domain scores) on both viral load trajectories
and transitions intensity of sequential events. This study
thus gives an insight on presenting a joint multistate
model for predicting the clinical progression of HIV infec-
tion which takes into account the viral load biomarker, to
study several factors that may affect the transition inten-
sities between sequential events.
During the last few decades, some joint models have

been developed to study longitudinal biomarker and
competing risks using scleroderma lung study data [16,
17]. Han et al. [18] and Cai et al. [19] also provided a
joint analysis of longitudinal markers and recurrent
events using Epileptic seizure data and Biocard data, re-
spectively. Chi and Ibrahim [20] extended the joint mod-
eling framework to multivariate repeated measurements
of longitudinal biomarkers and multivariate survival data
using breast cancer data. In contrast, the present work is
focusing on joint modeling of longitudinal biomarker
and time to transitions between sequential states with
application to HIV/AIDS. This is an important aspect
that has not been considered in many medical studies
particularly in HIV/AIDS cohort studies. This study con-
tains a multi-state model and a linear mixed model, both
linked by shared random effects. The goals of joint mod-
elling are to improve inference for the time to transition
between multistate events, whilst taking into account the
endogenous nature of a biomarker [21]. It also examines
the association between the two correlated outcomes
[22]. This will lead to an improvement in estimation for
a longitudinal biomarker response variable, subject to an
informative dropout mechanism that is not of direct
interest [23] and will improve inferences as compared to
the separate analysis of the two response variables [24].
The goals of this paper are thus threefold. Firstly, we

seek to present a joint model of a multistate and longitu-
dinal process, briefly describing previous approaches.
Secondly, we seek to apply this model to describe the
trajectory of HIV in ART-naive South African patients,
so as to aid a deeper understanding of the HIV disease
progression process and discover possible factors that
influence disease progression. Finally, we will compare
the parametric estimator (estimated from the joint mul-
tistate model) to nonparametric methods.

Methods
Data description
The data is from an ongoing prospective cohort study
conducted by the Centre for the AIDS Program of Re-
search in South Africa (CAPRISA) among ART naïve
HIV-infected women. The original study, which started
in 2004, enrolled a cohort of HIV uninfected women

Dessie et al. BMC Infectious Diseases          (2020) 20:246 Page 2 of 14



whose age was greater than 18 years with the aim to de-
scribe immunologic, clinical and virologic characteristics
of HIV-1 disease [25]. In this study, study enrollment was
conducted from August 2004 to December 2017. The par-
ticipant who seroconverted during the HIV uninfected stage
of CAPRISA_002 and other CAPRISA prevention and ser-
oincidences trials (including the CAPRISA_004 trials), were
enrolled into the Acute HIV Infection phase, and then
followed-up during chronic infection and up to ART initi-
ation. Participants were recruited at two sites in KwaZulu-
Natal-South Africa, a rural site in Vulindlela and an urban
site in the city of Durban. Women without well documented
estimated date of HIV infection, and those who did not have
at least two follow-up clinical attribute measurements were
excluded in this analysis. Finally, 219 participants were in-
cluded in the study. Further information about the above
mentioned ongoing prospective HIV cohort study
(CAPRISA_002), including women eligibility criteria and the
enrollment procedures were reported in [25–27].

Variables and measurements
Once HIV diagnosis was confirmed, participants
were followed-up for a maximum of 11 years up to
cART initiation. CAPRISA initially enrolled HIV-
negative (phase I) women into different study co-
horts. The women who seroconverted were enrolled
into acute infection (i.e. phase II: weekly visits up to
3 months post-infection), then into early infection
(i.e. phase III: monthly visits from 3 to 12 months)
subsequently into established infection (i.e. phase IV:
quarterly visits for more than 12 months) and after-
ward on cART (phase V). Patients were offered to
start cART according to South African (SA) treat-
ment guidelines. SA guidelines for ART eligibility
have changed over time during the study period: se-
vere clinical disease or CD4 cell count ≤200 cells/
mm3 until 2010; expansion to CD4 cell count ≤350
cells/mm3 for patients with TB and pregnant women
from 2010; further to all SA HIV infected patients
with CD4 cell count ≤350 cells/mm3 until 2015. In
2013, the WHO recommended treatment at ≤500
cells/mm3, which was then expanded to universal

treatment in 2015. South Africa moved to a thresh-
old of ≤500 cells/mm3 in 2016. For the purpose of
this study, samples of immunological, virological and
clinical attributes (such as viral load, WBC parame-
ters, RBC parameters, blood chemistry parameters,
CD4 cell count, etc.) were measured at each visit
(phase II-IV). These longitudinal immunologic, viro-
logic and clinical measurements, were recorded for
several followed-up visits.
There was a total of 8760 follow-up visits recorded

from 219 HIV infected black women with a median age
of 25 years (Interquartile range, IQR, 22–30). Of these
patients, 9.2% of them were co-infected with TB. Over
two-thirds (69.9%) reported having completed grades
11/12 of schooling. The follow-up time of the participants
ranged from 0-year to 11.10 years with a first quartile of
0.37 years, a median of 1.50 years and a third quartile of
4.04 years. The median baseline CD4 count of the partici-
pants included in the analysis was 519.0 cells/mm3 (IQR
419–655.5 cells/mm3) and the median CD4 counts at
ART initiation was 408.0 cells/mm3 (IQR 307.0–587.0
cells/mm3). The log10 copies/ml VL count of the partici-
pants ranged from 1.47 to 6.81 with a first quartile of 3.84,
a median of 4.46 and a third quartile of 5.06.
The main outcome variables in this current paper are

the transition times between multiple states and the longi-
tudinal viral load dynamics (baseline VL and long-term
viral load change). In line with the World Health
Organization (WHO) immunological classification cri-
teria, which is used to assess the degree of severity of the
HIV infection of patients, we have categorized CD4 count.
Medical practitioners and health workers also use such
WHO classifications to monitor HIV infected patients.
These HIV infection stages are defined as no adverse
events (CD4 ≥ 500), mild (350 ≤CD4 ≤ 499), advanced
(200 ≤CD4 ≤ 349) and severe (CD4 < 200) [6]. (See Fig. 1).
The effect of numerous possible factors on the transi-

tion times of sequential adverse events and longitudinal
viral load biomarkers were evaluated, including (1)
demographic variables, (2) risk variables, (3) past oppor-
tunistic infections, (4) health-related quality of life do-
main scores and (5) clinical attributes (see Fig. 2).

Fig. 1 Progressive four-state model based on CD4 counts: Immunological recovery (Green arrows) and Immunological deterioration (red arrows)
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Statistical method
Factor analysis
Since our data have a large number of clinical variables,
we used exploratory factor analysis in order to group and
minimize the number of variables. Factor analysis was
done by creating the principal components of the original
variables and then creating the eigenvectors. By using the
Kaiser-criterions, eigenvectors with eigenvalues greater
than 1 were kept [28]. A maximum likelihood extraction
method with varimax rotation was used. Factor loadings
describe the relationship of each clinical variable with each
factor. The Factor loading is considered strong if greater
than 0.6, moderate if 0.4–0.6, and weak if less than 0.4
[29]. Each observation was assigned a score for each ro-
tated factor on the basis of the loadings of the subject’s
original variable levels. Accordingly, from the 24 clinical
variables in the study, we managed to group them in order
to create 9 latent variables, defined as granulocytes com-
ponents, mononuclear components, eosinophils compo-
nent, RBC component, red blood cell indices, liver
abnormality component, electrolyte component, lipid
component and protein component. (See Table 1).

Joint multistate model formulation
Let a Markov process {S(t), t ∈ T} that has finite space,
denoted by ={1, 2, 3, 4}, be a representation of the transi-
tion process, where for each patient, a multistate process
is observed. Here T = [0, τ] for τ <∞. This Markov
process has an initial probability, denoted by P(S(0) =m),
m ∈ E, which evolves over time and with a history (HE),
which contains the state previously visited, durations
and times of transitions [30, 31]. The multi-state process
is defined through transition probabilities between two
states m and j relative to the given process history, as:

Pmj z; tð Þ ¼ P S tð Þ ¼ jjS zð Þ ¼ m;HEð Þ for m; j∈E and z; t∈T ; z < t:

Pm,j(z,t) thus denotes the transition probability of the
patient being in state j at time t, given that the patient
was in state m at time z.
In the current study, we consider a joint model for the

long-term trends of viral load biomarker and transition
times into the different adverse effect states based on
CD4 cell counts. This model consists of two related sub-
models: a Markov multistate model for the transition

Fig. 2 Graphical display of the hypothesized model
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times data and a linear mixed effect model for the longi-
tudinal data (longitudinal measurements of the viral load
marker) process, both linked by a function of the shared
random effects. HIV-infected ART-naive patients may
experience many CD4 cell count fluctuations mostly be-
fore ART initiations. This suggests that transition times
should be modelled by a multistate process. Figure 1
shows a flow diagram of the multi-state model.

Longitudinal submodel
To model the long-term trend of viral load dynamics, we
used a linear mixed effect model. Let yit (i = 1,2,…,n; t =
1,2,…,ni) be the viral load count of HIV infected patient
i at follow-up visit time t. Under Gaussian assumptions,

the longitudinal viral load dynamics yit is modelled using
the following model which is proposed by [32].

yi tð Þ ¼ x
0
i tð Þβþ z

0
i tð Þbi þ εi tð Þ 1ð Þ

where xi(t) and zi(t) represents a vector of potentially
time-varying covariates corresponding to the vector of
fixed effects β and random effects bi, respectively. The
model assumes that random effects are distributed as
multivariate normal with mean 0 and covariance matrix
D. We also assume that the errors are independent and
follow a normal distribution, εi(t)~N(0, σ), and that bi
and εi(t) are independent [33]. The normality assump-
tion of longitudinal biomarker measures was checked via

Table 1 Clinical parameters and Corresponding factor loadings from the rotated factors

WBC parameters Rotated Factors Loadings

1. Granulocytes component 2. Mononuclear component 3. Eosinophils component

Leucocyte 0.925 0.282 0.146

Neutrophils 0.936 −0.158 0.022

Total lymphocytes 0.226 0.838 −0.109

Monocytes 0.635 0.417 −0.032

Eosinophils 0.085 0.058 0.947

Basophils −0.035 0.616 0.339

RBC Parameters Rotated Factors Loadings

4. Hb and Haematocrit component 5. Red blood cell indices component

RBC counts 0.946 −0.130

Hb 0.886 0.439

Haematocrit 0.919 0.366

MCV 0.075 0.953

MCH 0.024 0.825

MCHC 0.201 0.521

RDW −0.382 −0.592

Blood Chemistry Rotated Factors Loadings

6. Liver enzyme abnormality component 7. Electrolyte component

Chloride −0.023 0.455

Alkaline 0.174 0.032

ALT (GPT) 0.829 −0.073

AST (GOT) 0.967 −0.122

Sodium 0.103 0.994

Calcium −0.020 0.213

Protein and related Rotated Factors Loadings

8. Lipid component 9. Protein component

Cholesterol 0.971 0.027

LDL 0.917 −0.129

Triglycerides 0.360 0.341

LDH 0.052 −0.769

Total protein −0.009 0.670
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the Q-Q plot using the transformed residuals errors
based on the fitted joint model [34]. The random-effects
represent the effects of each subject on the longitudinal
measures that cannot be explained by the observed
covariates.

Multistate submodel
In this sub-section, we model the transition intensities
defined by CD4 cell count which takes into account the
viral load biomarker. The standard approach of model-
ling the event history data [35], in which, for patient i,
the instantaneous hazard rate of moving to state j condi-
tioned on state m is defined as follows

hmj tð Þ ¼ lim
δt→0

P S t þ δtð Þ ¼ jjS tð Þ ¼ mð Þ
δt

2ð Þ

hmj t;Xð Þ ¼ hmj;0 tð Þ exp X
0
mjαmj

� �
3ð Þ

where hmj is the transition intensity for m = 1,…, 4 and
j =m ± 1 sequential states defined by CD4 counts. hmj,

0(t) is the baseline intensity from state m to state j and
can either be left unspecified or modelled parametrically,
Xmj representing a matrix of covariates. αmj is the effect
of the covariates on the hazard intensity hmj. For this
model, if m < j, then a transition from m to j is defined
as an immunological deterioration transition and a tran-
sition where m > j is defined as immunological recovery.
In the extension of joint modelling, we used a Markov
multistate model that takes into account the viral load
biomarker through the shared subject-specific random
effects bi. Thus, the instantaneous hazard, for a patient
moving from state m ∈ E to state j ∈ E, at time t will be
modeled as:

hmj t; bð Þ ¼ hmj;o tð Þ exp X
0
mjαmj þWmj b; tð Þγmj

� �
: 4ð Þ

Wmj(b, t) defines a multivariate function that repre-
sents the dependence structure between the longitudinal
viral load trajectory and multistate CD4 count transi-
tions. We can choose Wmj(b, t) as the true baseline and
slope of the viral load of HIV-infected patients. γmj rep-
resents the impact of the longitudinal viral load bio-
marker on the CD4 cell count progressive form state m
to state j.

Association parameters
As one of our objectives is to examine the relationship
between transient states defined by CD4 cell count pro-
gression and the longitudinal viral load dynamics, we
followed the approach adopted by Ferrer et al. [36],
where the two sub-models are linked by Wmj(b, t). This
dependence function was the same for all the CD4 cell
count transitions and resulted in combining the true

baseline and rate of change of the viral load fitted to
capture the association between viral load dynamics and
the instantaneous hazard rate to transitions between se-
quential events.

Estimation
To estimate the parameters in the shared parameter
model, we used maximum likelihood estimation. A joint
model can be estimated using the independence between
the multi-state and longitudinal processes conditionally
on the random effects. So, the likelihood for all the ob-
served longitudinal viral load trajectory (yi) and multi-
state CD4 count transitions (Si) is given by

L θ; y; Sð Þ ¼
Yn
i¼1

Li θ; yi; Sið Þ

¼
Yn
i¼1

Z

bi

f VL yijbi; θð Þ f CD4 Sijbi; θð Þ f b bijθð Þdbi 5ð Þ

θ = (γ, β, α, σ,D),representing all the parameters con-
tained in Eqn. (1) and (4); and the corresponding density
functions, is then given by

f VL yijbi;θð Þ ¼ 1

2πσ2ð Þni=2
exp −

∥yi−x
0
iβ−z

0
ibi∥

2

2πσ2

� �

f CD4 Sijbi; θð Þ¼
Yk−1
r¼0

PS Trð Þ;S Trþ1ð ÞðTr;Trþ1 bj Þ�hS Trð Þ;S Trþ1ð ÞðTrþ1 bj Þδrþ1

n o

¼
Yk−1
r¼0

exp −
Z Trþ1

Tr

hS Trð Þ;S Trþ1ð ÞðU bj Þdu
� �

�hS Trð Þ;S Trþ1ð ÞðTrþ1 bj Þδrþ1

� �

f b bijθð Þ ¼ 1

2πð Þq=2 Dj j1=2
exp −

b
0
iD

−1bi
2

( )

where fVL(yi| bi, θ) representing the conditional function
for the longitudinal viral load trajectory, ||x|| represents
the Euclidean norm of a vector, fCD4(Si| bi, θ) is the con-
ditional function for the multistate CD4 count transi-
tions, k denotes the number of transitions,
PSðTrÞ;SðTrþ1ÞðTr ;Trþ1Þ represents the probability of
remaining in state S(Tr) between times Tr and Tr + 1,
hSðTrÞ;SðTrþ1ÞðTrþ1Þ denotes the transition intensity to
state S(Tr + 1), δ denotes transition indicator and fb(bi| θ)
the joint distribution of the random effects.
Since the dimension of the random effects bi is often

high and the density functions of the multi-state Markov
process can be highly complicated, evaluation of the
above integral (Eqn. 5) can be a major challenge and
very intensive. Therefore, for the computations of the
above function (eq. 5), a multi-step pseudo-adaptive
Gaussian-hermit quadrature rule [24, 36] can be applied
to estimate the integrals and to avoids intensive compu-
tations of the adaptive quadrature.
The estimation approach was implemented under R

(mstate and JM). With JM package initializing the
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parameters for the longitudinal and multistate sub-
models, then, an extended JM() function, called JMstate-
Model(), which was mainly implemented by Ferrer et al.
[36], can carry out the estimation process of the joint
model for viral load dynamics and multistate CD4 cell
count progression.

Results
The completes disease progression situation is visualized and
explained by Fig. 1, which shows all possible transitions both
immune deterioration (red arrows) and immune recovery
(green arrows). In particular, using nonparametric Aalen-
Johansen estimation, we calculate the transition probabilities
from all starting states to all possible states, between the start-
ing time t = 0 and all event times successively. Thus, Fig. 3
(panels A-C) displays the estimated transition probability from
higher CD4 count states to lower CD4 count states (immune
deterioration) in HIV-infected women. From Fig. 3 (panels A-
C), we note that as the years since enrolment increased, the
probability of immune deteriorates (particularly from mild to

advanced and advanced to severe stages of the diseases), while
the transition probability from lower CD4 count states to
higher CD4 count states (immune recovery) not remarkably
increasing Fig. 3 (panels D-F). In other words, women who
enrolled with a CD4 cell count < 350 (severe and advanced
disease stage) had a far smaller chance of immune recovery,
and a considerably greater chance of immune deterioration
(recurrence) compared to women with higher CD4 cell counts
(mild and normal disease stage) at enrollment.

Results of the joint multistate model
The results of the joint multistate model are presented
in Table 2. For longitudinal sub-model results, patients
with TB-coinfection (β = 0.15; 95%CI: 0.045, 0.249) were
significantly associated with a higher baseline viral load,
as compared to those who were not co-infected with TB.
Similarly, higher educational levels (β = − 0.12; 95%CI: −
0.207, − 0.064), higher weight (β = − 0.02; 95%CI: −
0.057, − 0.018), higher RBC indices (β = − 0.01; 95%CI: −
0.017, − 0.002), higher physical health score (β = − 0.01;

Fig. 3 Estimated transition probability using Aalen-Johansen estimator. A) The probability of transition from normal to mild disease state, B) The
probability of transition from mild to advance, C) The probability of transition from advance to severe, D) The probability of transition from severe
to advance, E) The probability of transition from advance to mild and F) The probability of transition from mild to normal disease state
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Table 2 Estimates and the 95% confidence intervals for parameters of joint multistate and longitudinal model

Variables Longitudinal
Process

Multi-State Process

β (95% CI) Transition 1: Normal
to Mild,
β (95% CI)

Transition 2:
Mild to
Advanced,
β (95% CI)

Transition 3:
Advanced to
Severe,
β (95% CI)

Transition 4:
Severe to
Advanced,
β(95% CI)

Transition 5:
Advanced to
Mild,
β (95% CI)

Transition 6:
Mild to
Normal,
β (95% CI)

Intercepts 2.197 (2.016,
2.377)***

1.41
(0.53, 2.28)*

1.21
(0.52, 1.91)*

2.08
(0.71, 3.46)*

2.46
(0.13, 4.79)*

− 0.01
(− 0.84, 0.83)

1.71
(0.79, 2.62)*

TB: Yes 0.147 (0.045,
0.249)**

0.61
(− 0.14, 1.37)

0.15
(− 0.43, 0.74)

1.50
(− 0.39, 3.39)

0.41
(− 2.42, 3.23)

− 0.47
(− 1.06, 0.12)

0.98
(− 0.24, 1.72)

Marital status:
Married (stable sex
partner)

− 0.119 (−
0.170, −
0.068)*

0.44
(− 0.15, 1.03)

− 0.58
(− 1.17, 0.01)

−1.11
(− 2.15, −
0.06)*

−0.13
(− 1.50, 1.24)

−0.09
(− 0.64, 0.46)

0.05
(− 0.54, 0.64)

Marital status: Many
sexual partners

− 0.020 (− 0.117,
0.078)

−0.07
(− 0.40, 0.27)

0.001
(− 0.99, 1.00)

− 0.50
(− 1.23, 0.22)

−0.61
(− 0.94, −
0.28)*

−0.09
(− 0.47, 0.30)

− 0.02
(− 0.36, 0.32)

Education: 9–10th
Grade

− 0.053 (− 0.132,
0.027)

−0.90
(− 1.34, 0.46)

−0.26
(− 0.67, 0.15)

−0.32
(− 1.13, 0.49)

1.02
(− 0.10, 2.15)

0.34
(− 0.13, 0.81)

0.28
(− 0.21, 0.77)

Education: ≥ 11th
Grade

−0.136(− 0.207,
− 0.064)**

−1.20
(− 1.66, − 0.74)*

0.03
(− 0.42, 0.48)

0.80
(− 0.06, 1.66)

0.71
(0.50, 1.91)*

0.19
(− 0.31, 0.68)

0.59
(0.15, 1.03)*

Age_Cat: < 20 years 0.018(− 0.039,
0.075)

0.36
(0.01, 0.70)**

0.34
(− 0.03, 0.70)

0.15
(− 0.61, 0.92)

0.55
(− 0.44, 1.53)

0.22
(− 0.18, 0.62)

0.17
(− 0.15, 0.48)

Age_Cat: 21–39
years

− 0.119(−
0.229, −
0.009)*

0.08
(− 0.47, 0.63)

0.11
(− 0.58, 0.79)

−1.36
(− 3.17, 0.45)

1.23
(− 0.58, 3.04)

1.09
(0.32, 1.85)***

1.01
(0.48, 1.53)**

Sex while drunk: No −0.060(− 0.134,
0.015)

0.10
(− 0.31, 0.51)

−0.23
(− 0.67, 0.20)

−0.55
(− 1.29, 0.18)

1.23
(0.28, 2.17)*

− 0.17
(− 0.58, 0.23)

0.17
(− 0.26, 0.59)

Weight −0.037(− 0.057,
− 0.018)**

− 0.23
(− 0.33, − 0.12)*

−0.30
(− 0.42, −
0.17)*

0.03
(− 0.27, 0.33)

0.21
(− 0.24, 0.65)

− 0.03
(− 0.19, 0.13)

−0.03
(− 0.12, 0.07)

Level of
independence score

− 0.006(− 0.017,
0.005)

− 0.48
(− 0.60, − 0.37)*

−0.11
(− 0.23, 0.01)*

−0.37
(− 0.65, −
0.09)*

−0.05
(− 0.35, 0.26)

−0.03
(− 0.16, 0.09)

0.14
(0.03, 0.26)*

Social relationship
score

−0.015(− 0.026,
− 0.003)*

−0.12
(− 0.24, 0.01)

−0.04
(− 0.16, 0.08)

−0.25
(− 0.49, 0.01)

−0.14
(− 0.44, 0.17)

0.001
(− 0.13, 0.14)

−0.26
(− 0.38, 0.14)

Physical health
score

− 0.014(−
0.027, −
0.001)*

− 0.45
(− 0.64, − 0.27)*

−0.36
(− 0.54, −
0.17)*

−0.25
(− 0.61, −
0.11)*

−0.49
(− 0.93, 0.06)

−0.36
(− 0.53, 0.19)

−0.36
(− 0.52, 0.20)

Psychological well-
bing score

0.005(− 0.008,
0.018)

0.51
(0.32, 0.70)

0.14
(− 0.04, 0.32)

0.13
(− 0.19, 0.45)

0.50
(0.11, 0.90)**

0.07
(− 0.10, 0.23)

0.37
(0.19, 0.55)*

Liver enzymes
abnormality
component

0.006(−0.002,
0.013)

− 0.08
(− 0.18, 0.03)

−0.04
(− 0.15, 0.08)

0.04
(− 0.15, 0.22)

0.11
(− 0.16, 0.38)

−0.17
(− 0.30, −
0.05)*

0.04
(− 0.07, 0.16)

RBC indices −0.009(− 0.017,
− 0.002)*

−0.03
(− 0.13, 0.07)

−0.19
(− 0.30, −
0.07)*

0.04
(− 0.19, 0.26)

−0.07
(− 0.35, 0.21)

−0.08
(− 0.21, 0.04)

0.16
(0.04, 0.27)*

Granulocytes
component

−0.002(− 0.009,
0.006)

−0.08
(− 0.18, 0.02)

−0.13
(− 0.25, −
0.02)*

−0.05
(− 0.28, 0.18)

0.001
(− 0.31, 0.32)

0.12
(0.001, 0.25)*

0.12
(0.01, 0.23)*

Mononuclear
component

0.017(−0.009,
0.024)

− 0.35
(− 0.48, − 0.23)*

−0.45
(− 0.58, −
0.33)*

−0.56
(− 0.84, −
0.28)*

0.03
(− 0.23, 0.28)

0.33
(0.22, 0.45)***

0.32
(0.21, 0.43)*

Time Slope Associations between Transitions and Longitudinal Outcomes

Visit −0.007(− 0.015,
0.001)

Transitions based on
CD4 count Vs Viral
Load

Coefficient 95% CI of β P-value

Weight 0.001(−0.001,
0.001)

Trans 1 vs baseline VL 0.51 (−0.35, 1.37) 0.054
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95%CI: − 0.026, − 0.003), higher social relationship score
(β = − 0.12; 95%CI: − 0.027, − 0.001) and patients with
stable sex partners (β = − 0.12; 95%CI: − 0.207, − 0.064),
were significantly associated with lower baseline viral
load. When we consider the effects of covariates on the
long-term viral load trajectories (the slope), patients with
higher educational levels and higher physical health scores
were significantly associated with a lower rate of viral load
increase over time. Similarly, patients with many sex part-
ners, of younger age (< 20 years) and with higher liver ab-
normality scores were significantly associated with a
bigger increase in viral load in ART-naïve patients.
For the multi-state sub-model results, patients with higher

educational levels had statistically significantly increased in-
tensities of transitions from mild to normal (β= 0.59; 95%CI:
0.15, 1.03) and severe to advanced (β= 0.71; 95%CI: 0.50,
1.91) disease stages, but had reduced the intensities of

transitions from normal to mild (β=− 1.20; 95%CI: − 1.66,
− 0.74) disease stages. Patients with many sex partners had
significantly decreased the intensities of transitions from se-
vere to advanced (β=− 0.61; 95%CI: − 0.94, − 0.28) disease
stages. Middle-aged patients were significantly associated
with a higher intensity of transitions from advanced to mild
(β= 1.09; 95%CI: 0.32, 1.85) and from mild to normal (β=
1.01; 95%CI: 0.48, 1.53) disease stages, compared to those pa-
tients in the older age group. The psychological wellbeing
score had significant effects on severe to advanced (β= 0.50;
95%CI: 0.11, 0.90) and mild to normal (β= 0.37; 95%CI: 0.19,
0.55) transitions. Patients with high scores of latent variable
related RBC indices had significantly increased the intensity
of transition from mild to normal (β= 0.16; 95%CI: 0.04,
0.27) disease stage, but decreased the intensity of transition
from mild to advance (β=− 0.19; 95%CI: − 0.30, − 0.07) dis-
ease stage. Moreover, having high weight, high physical

Table 2 Estimates and the 95% confidence intervals for parameters of joint multistate and longitudinal model (Continued)

Variables Longitudinal
Process

Multi-State Process

β (95% CI) Transition 1: Normal
to Mild,
β (95% CI)

Transition 2:
Mild to
Advanced,
β (95% CI)

Transition 3:
Advanced to
Severe,
β (95% CI)

Transition 4:
Severe to
Advanced,
β(95% CI)

Transition 5:
Advanced to
Mild,
β (95% CI)

Transition 6:
Mild to
Normal,
β (95% CI)

Psychological well-
bing score

0.001(−0.001,
0.002)

Trans 2 vs baseline VL −0.33 (−0.66, −
0.001)

0.043*

Physical health
score

−0.004(− 0.008,
− 0.001)*

Trans 3 vs baseline VL 0.18 (− 0.11, 0.47) 0.227

Level of
independence score

0.001(−0.001,
0.001)

Trans 4 vs baseline VL 0.56 (0.24, 0.88) 0.001**

Social relationship
score

0.001(−0.001,
0.002)

Trans 5 vs baseline VL 1.14 (0.75, 1.54) 0.000***

Marital Status:
Married (stable sex
partner)

0.005(−0.003,
0.007)

Trans 6 vs baseline VL 2.21 (1.20, 3.21) 0.000**

Marital Status: many
sex partners

0.007 (0.003,
0.011)*

Trans 1 vs Time slope
VL

0.06 (−0.93, 1.05) 0.909

RBC indices −0.01(− 0.09, −
0.002)*

Trans 2 vs Time slope
VL

−0.32 (− 1.30, 0.67) 0.528

TB: Yes 0.002 (0.001,
0.004)*

Trans 3 vs Time slope
VL

0.62 (−1.92, 3.16) 0.632

Sex while drunk: No 0.0001(−0.003,
0.003)

Trans 4 vs Time slope
VL

3.34 (0.26, 6.42) 0.034*

Age_Cat:< 20 0.008 (0.003,
0.012)*

Trans 5 vs Time slope
VL

2.15 (0.69, 3.61) 0.004**

Age_Cat: 21–39
years

0.001(−0.001,
0.003)

Trans 6 vs Time slope
VL

1.22 (0.05, 2.40) 0.042*

Education: 9–10th
Grade

0.001(−0.002,
0.004)

Education: ≥ 11th
Grade

−0.001(−0.004,
− 0.0003)*

Liver enzymes
abnormality
component

0.004 (0.001,
0.01)*

Keys:- Statistical significance: (*)P < 0.05; (**)P < 0.01; (***)P < 0.001; Reference category: Age [> 40]; Education [≤8 grade]; Marital status [single]; TB [No] and Sex
while drunk [Yes]
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health score and high level of independent score significantly
reduced the intensities of transitions from normal to mild,
mild to advanced and advanced to severe disease stages. Fur-
thermore, having a high liver abnormality score significantly
reduced the intensities of transitions from advanced to mild
disease stage.
Regarding the association parameters between the longi-

tudinal viral load biomarker process (baseline and time
slope) and disease progressions of HIV/AIDS, viral load
dynamics had a significant effect on the intensities of tran-
sitions of HIV/AIDS disease progression. As the baseline
viral load of women in the study increased, the likelihood
that women transited from advanced to mild (aHR =
0.72 = exp.(− 0.33)) stages of the disease decreased. Simi-
larly, a higher baseline viral load significantly increased
the intensities of immunological deterioration transitions.
Moreover, as the long-term viral load trajectories of
women in the study increased, the likelihood that women
transited from normal to mild, mild to advanced and ad-
vanced to severe stages of the disease increased.

Assessment of the fitted model
The estimates of the joint longitudinal viral load bio-
marker and multistate CD4 cell count transition model
were validated by using the graphical methods presented
in Figs. 4 and 5. For the mixed effect submodel, the plot-
ted fitted values versus residuals (standardized) of the
viral load marker confirmed no heteroscedasticity error
(see Fig. 4). For the multistate submodel, the estimates
of these multistate models were compared with a non-
parametric Aalen-Johansen estimate to assess model fit
(as discussed by Ieva et al. [37] and Titman and Sharples

[38]). The summary results are presented in Fig. 5 and
the six plots showed overall good performances of the
joint multistate model in terms of the fit for the transi-
tions cumulative hazard estimate.

Discussion
In this study, we have presented a joint model for multi-
state and longitudinal biomarker data. Such data are
common for many medical and clinical studies in moni-
toring chronic diseases. Simultaneous modelling of this
multistate and longitudinal biomarker outcome in joint
models offers advantages over a separate model of each
outcome, including more clinically meaningful adjusted
association parameters, improved predictive accuracy,
and more efficient parameter estimates. Also, using this
joint multistate model not only an improved inference
but also the opportunity for dynamic prediction. Król
et al. [39] developed dynamic prediction tools for their
recurrent events joint model. Others have also presented
dynamic prediction in the context of joint models in-
volving multiple event time data [36, 40, 41]. Hence, in
this article the joint model for multistate CD4 cell count
progression and longitudinal viral load outcomes provides
a complete model of HIV/AIDS disease progression in an
ART-naive cohort, which takes into account longitudinal
viral load dynamics, to study possible factors that affect
time to transition between sequential adverse events of
HIV/AIDS. We assumed that the dependency between the
transitions time for a given patient is entirely explained by
the longitudinal viral load biomarker and the prognostic
factors. This assumption could be relaxed by including
frailty term in the multistate submodel.

Fig. 4 Goodness-of-fit plots for longitudinal viral load biomarker
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Our results showed that older age has been associated
with a higher baseline viral load, which is in agreement
with the previous studies [42, 43]. We also found that a
faster rise in viral load was significantly associated with
young adolescents (age < 20 years) compared to those pa-
tients in the older age group (age > 40 years). Having mul-
tiple sexual partners significantly increased patients’ viral
load throughout the follow-up time. This might be due to
patients with high-risk behaviors, such as an increased
number of sexual partners, have been associated with de-
pression [44], and patient with chronic depression was sig-
nificantly associated with an increase in viral load [45]. In
other words, viral load has a mediating effect through de-
pression caused by having multiple sexual partners. More-
over, patients with a higher quality of life domain score
and higher educational levels were associated with a lower
rate of viral load increase over time.
Patients with opportunistic infections and tuberculosis

infection, in particular, are associated with increases in

HIV viral load [46, 47]. These studies have also been
interpreted as tuberculosis accelerating the loss of CD4
count and promote progression from HIV infection to
AIDS. Our data add to this literature by showing pa-
tients with TB co-infection were associated with a bigger
increase in viral load in ART-naïve patients. Contrary to
our findings, studies from Nigeria [48] showed that there
was no significant relationship between TB co-infection
and HIV viral load. Possible explanations for this contro-
versial report might be that data for our study was con-
ducted in a cohort of acutely infected patients and
followed up repeatedly over an extended ART-free
period. Therefore, patients with active TB should thus
be prioritized for viral load monitoring.
Latent variable related to aminotransferase were sig-

nificantly associated with the change in viral load. Faster
rises in the rate of change of viral load over time were
observed in patients with higher liver enzymes abnor-
mality. This finding concurs with the prior report [49],

Fig. 5 Goodness-of-fit plots. Parametric cumulative hazard estimates (red solid line) and its 95% CI (red dotted line) overlaid on nonparametric
Aalen-Johansen estimates (blue solid line)
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which noted that a positive correlation exists between
viral load and aminotransferase (ALT and AST). Thus,
there is a need to monitor alanine aminotransferase and
aspartate aminotransferase levels before initiation of
ART, mainly in high-risk patients, to reduce side effect
concerns. Furthermore, we found that patients with
higher RBC indices scores were associated with a lower
rate of viral load increase over time.
The rate of change of immune recovery of a patient

with higher education levels increased with greater rates,
compared to those with low levels of education. This is
supported by the findings of Maurya et al. [50], who
found that the level of education significantly affects
CD4 cell count and wellness of HIV infected patients.
This could be explained as access to education provides
a better understanding of hygiene and sanitary practices.
Subsequently, proper hygiene and sanitation practices in-
crease the CD4 count. We further observed that patients
in the middle-age group experienced higher rates of im-
munological recovery compared to those patients in the
older age group. Consistent with the finding of this study,
some studies showed that patients seroconverting at older
ages progress more quickly to lower CD4 cell count cat-
egories [43, 51]. Furthermore, we found that patients hav-
ing a high weight significantly increased the intensities of
immunological recovery transitions.
The results showed there was a significant positive re-

lationship between QoL domain scores and intensities of
recovery of HIV-infected patients. Studies conducted in
South Africa [52] and China [53] revealed a similar find-
ing where a better QoL score significantly associated
with a higher CD4 count.
Among the different hematological parameters for HIV in-

fected patients, as expected, high scores of latent variable re-
lated to total lymphocytes and basophils counts in the blood
had significantly reduced intensities of immunological deteri-
oration transitions, a finding that is in accordance with the
literature [54], where it was found that total lymphocytes and
basophils are positively and independently associated with
CD4 cell count responses. Many studies also suggested that
total lymphocytes can adequately serve as a surrogate bio-
marker for predicting CD4 count progression in resource-
limited settings [55–57]. Similar results have been found for
latent variable related to neutrophils, monocytes, and leuco-
cytes. Patients having a high score of latent variable related
to neutrophils, monocytes and leucocyte count in the blood
had significantly reduced intensities of immunological deteri-
oration transitions. This was supported by the previous study
[58], where absolute neutrophils and total white cell (leuco-
cyte) counts are independently associated with CD4 cell
count responses. Moreover, we found that patients having
high RBC parameters score significantly increased the inten-
sities of immunological recovery transitions, but reduced the
intensities of immunological deterioration transitions.

Furthermore, patients with a high liver abnormality score
and with many sex partners showed significantly increased
intensities of immunological deterioration transitions.
Viral load biomarker significantly affects the transition

intensities of HIV/AIDS disease progression. Having a
high baseline viral load significantly decreased the inten-
sities of immunological recovery transitions, but in-
creased the intensities of immunological deterioration
transitions. This was supported by previous studies, Far-
ahani et al. [9] and Martinson et al. [59], where higher
baseline viral load in early infection has been associated
with faster CD4 count decline. Moreover, patients ex-
periencing a higher rate of viral load increase over time
have been associated with increased intensities of im-
munological deterioration transitions. This was sup-
ported by a previous study [60], where viral load
increases over time were strongly associated with CD4
cell decline. Furthermore, in agreement with the world
health organization treatment guidelines [61], which rec-
ommends ART in all PLHIV regardless of CD4 cell
count, early identification of patients with poor clinical
characteristics and initiation of treatment will improve
programmatic success and treatment prognosis.
This study has some limitations, including the missing

data, which are expected for a study conducted on data
collected from patients’ files and when dealing with a
long term follow-up period. We did not evaluate model
performance with an alternative multistate sub-model,
such as a full parametric multistate sub-model (includ-
ing accelerated failure time models). However, model
diagnostics have been performed and the residual and
influence diagnostics affirmed no violation of implicit
and explicit assumptions in our model. The other limita-
tion is that the study was limited to adult females. More-
over, this joint model did not take into account the
simultaneous modeling of many biomarkers and multi-
state outcomes before and after cART initiation. Bayes-
ian multivariate joint models for analyzing many
biomarkers (i.e. viral load and quality of life scores) and
multistate outcomes before and after cART initiation,
will be our future research work.

Conclusions
Overall, from a methodological perspective, it can be
concluded that the joint multistate model approach pro-
vides wide-ranging information about the progression
and assists to provide specific dynamic predictions and
increasingly precise knowledge of diseases. Joint multi-
state modelling is necessary to explore the impact of the
longitudinal biomarker outcome on the transitions be-
tween clinical states. Joint models are also an improve-
ment over separate multisite models because they
consider all the longitudinal observations that are pre-
dictive of the transition event of interest. Though this
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research presented the usefulness of the joint multistate
model for analyzing the HIV/AIDS cohort data, the ap-
proach is applicable to a wide variety of chronic diseases.
There is a need for increased research in terms of
methods, so hopefully, this article will be helpful applied
researchers (for medical research) to familiarize with the
method and interpretation of the results therefrom.
From a clinical perspective, the findings of this study
contribute to extend the survival of the patients and
guide clinical interventions.
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