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Abstract

Background: Dengue fever is a mosquito-borne infection transmitted by Aedes aegypti and mainly found in tropical
and subtropical regions worldwide. Since its re-introduction in 1986, Brazil has become a hotspot for dengue and has
experienced yearly epidemics. As a notifiable infectious disease, Brazil uses a passive epidemiological surveillance
system to collect and report cases; however, dengue burden is underestimated. Thus, Internet data streams may
complement surveillance activities by providing real-time information in the face of reporting lags.

Methods: We analyzed 19 terms related to dengue using Google Health Trends (GHT), a free-Internet data-source, and
compared it with weekly dengue incidence between 2011 to 2016. We correlated GHT data with dengue incidence at
the national and state-level for Brazil while using the adjusted R squared statistic as primary outcome measure (0/1).
We used survey data on Internet access and variables from the official census of 2010 to identify where GHT could be
useful in tracking dengue dynamics. Finally, we used a standardized volatility index on dengue incidence and
developed models with different variables with the same objective.

Results: From the 19 terms explored with GHT, only seven were able to consistently track dengue. From the 27 states,
only 12 reported an adjusted R squared higher than 0.8; these states were distributed mainly in the Northeast, Southeast,
and South of Brazil. The usefulness of GHT was explained by the logarithm of the number of Internet users in the last 3
months, the total population per state, and the standardized volatility index.

Conclusions: The potential contribution of GHT in complementing traditional established surveillance strategies should
be analyzed in the context of geographical resolutions smaller than countries. For Brazil, GHT implementation should be
analyzed in a case-by-case basis. State variables including total population, Internet usage in the last 3 months, and the
standardized volatility index could serve as indicators determining when GHT could complement dengue state level
surveillance in other countries.

Keywords: Google health trends, Digital epidemiology, Brazil, Volatility, Epidemiology, Internet data streams, Internet
penetration
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Background
Dengue fever is transmitted by the homonymous
arthropod-borne virus (i.e., arbovirus) from the family Fla-
viviridae [1]. There are four dengue virus (DENV) sero-
types with a potential fifth serotype described [2], all of
them distributed in tropical and subtropical regions world-
wide [3, 4] with emerging cases in northern latitudes [5, 6].
The pathogen is mainly transmitted by Aedes aegypti and
Ae. albopictus mosquitoes [1, 7, 8]. Dengue disease symp-
toms range from asymptomatic, mild fever, rash, and joint
pain (i.e., dengue with and without warning signs), to life
threatening syndromes involving hemorrhagic fever and
shock (i.e., severe dengue) [1]; severe clinical presentations
are related with immunological cross-reactivity between
dengue serotypes [9, 10]. As a viral infection, treatment is
based mainly on support measures during the acute and
critical phase of the infection [1, 11]. Although there has
been progress on the development of vaccines, more re-
search is needed before they are used as an effective public
health mechanism for control [1, 12, 13].
The burden of dengue fever is high; around half of the

world population is estimated to be at risk of infection [14]
and every year, ~ 100 million symptomatic cases are detected
[14, 15]. This poses a significant burden to the health sys-
tems in at least 128 countries worldwide [15] as well as eco-
nomic impacts [16] that likely will expand to new regions in
the future [3, 8, 17]. In Brazil, dengue was re-introduced in
1986 in the state of Roraima [18, 19] and quickly spread to
the rest of the country [13]. In 2018, the total number of
cases reported in Brazil was 265,934 [20] and so far 1,439,
471 cases have been reported in 2019 through August [21].
As a notifiable infectious disease, any case of dengue

detected in the Brazilian public health system must be re-
ported to the corresponding health authorities [22]. Case
notification relies on a passive surveillance framework in
which disease reporting builds on patients seeking medical
attention [23]. However, cases are often missed by the offi-
cial reporting system because of non-severe presentations,
lack of accessibility to health care infrastructure, misdiag-
nosis, or even misreporting. Thus, reported case counts are
assumed to be an underestimation of the true disease bur-
den [22]. Moreover, availability of health data based on
traditional public health surveillance is usually constrained
by time, bureaucracy, and staffing, with a lag of 2 weeks for
the best systems [24], partial notifications in high burden
settings [25], or even complete lack of reporting due to pol-
itical instability as recently evidenced [26]. Timely disease
reporting is critical for preparedness and executable real-
time interventions to curb outbreaks [27].
As a consequence, the exploitation of Internet data as a

source to characterize epidemiological patterns for commu-
nicable and non-communicable diseases has been promoted
since the mid-90’s under the concept of digital epidemiology
[28–31]. These efforts have focused on leveraging freely

available information from Twitter, Google, Wikipedia,
among others, to follow traces of disease patterns in the
population [32–34]. Following the pioneering work of
Eysenbach G. on using web-based search queries to track in-
fluenza [35] and other efforts that used Google-derived data
for influenza in the United States [36, 37] and dengue in dif-
ferent countries [38, 39], Google developed Google Flu
Trends (GFT) in 2009 and Google Dengue Trends (GDT)
in 2011, as specific disease surveillance tools for digital epi-
demiology. However, a close examination of the predicting
power of these algorithms, specifically GFT, showed signs of
over and under prediction and low performance [40–43]
cautioning against the broader implementation and applic-
ability of these tools. As a consequence, both GFT and GDT
were shut down in 2015 [44]. Nevertheless, two portals
remained open to harvest search queries from Google, Goo-
gle Trends (GT, https://trends.google.com/trends/?geo=US),
and Google Health Trends (GHT). GT was released in 2006
as a free and publicly available source, whereas GHT, al-
though free, it requires access through an application private
interface (API, https://www.google.org/flutrends/about/).
Many researchers have continued using Google-derived data
to assess epidemiological patterns and inform epidemio-
logical models for different pathogens with encouraging or
conflicting results [45–51].
For Brazil, digital tools to quantify dengue reporting have

been previously explored, in fact Chan et al. (2011) inspired
the creation of GDT in the first place, showing a strong
correlation with dengue cases in Brazil, among other coun-
tries [38]. Recently, Marques-Toledo et al. (2017) found
that Twitter was useful in characterizing dengue incidence
for different Brazilian cities [52], and the authors further
compared their results against GT and Wikipedia query
logs at the country level finding close agreement among
several models [52]. Moreover, Yang et al. (2017) recently
used an autoregressive model with Google search queries
as exogenous variables (ARGO) to predict dengue cases in
Brazil and showed good model performance at the country
level [53]. Neither of these studies examined the ability of
Google-derived data to characterize dengue incidence at
the state level, and in fact, only few studies have examined
Google-based algorithms at smaller political administrative
levels [39, 50, 54]. To address this gap, we explore the abil-
ity of GHT to characterize weekly dengue cases from 2011
to 2016 in Brazil. For this goal, we used 19 dengue-related
search terms for all 27 Brazilian states and quantified how
Internet penetration data, demographic variables, and a
standardized volatility index could determine a-priori where
GHT might be a reliable tool.

Methods
Dengue incidence data
We obtained weekly dengue case counts for Brazil and
all its 27 states from January 1st, 2011 to July 31st 2016.
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Data was given by the Brazilian Ministry of Health as a
weekly aggregated data sheet with cases identified as counts
without any identity information (e.g., names, gender, age,
etc) [55]. This data encompasses the number of confirmed
and suspected dengue cases reported by the official surveil-
lance system, which follows specific guidelines of
mandatory disease notification [22]. Incidence rates were
calculated as the number of cases per week divided by the
total population per state according to the official Brazilian
population census of 2010 [56, 57]; for our analysis we used
incidence instead of case counts to allow comparisons of
dengue burden between Brazilian states [57].

Google health trends data
The private API of GHT provides Internet search query
data starting in 2004. Queries are sampled from the over-
all Google dataset in the form of a relative proportion, div-
iding the number of searches for a specified term over a
particular time interval (i.e., days, weeks, months, or years)
by the total number of term searches in that time, and
multiplied by a predefined constant [58]. Thus, it differs
from GT which provides a ranked score from 0 to 100
based on the highest frequency of searches in a particular
period of time [58]. We obtained weekly GHT data for the
same timeframe of dengue cases using 19 disease and
mosquito vector related terms in Portuguese and English,
including: “aedes”, “Aedes aegypti”, “aedes egípcio”,
“aegypti”, dengue”, “dengue é vírus”, “dengue fever”, “den-
gue hemorrhagic fever”, “dengue sintomas”, “dengue
vírus”, “DENV”, “DHF” (i.e., dengue hemorrhagic fever),
“egípcio”, “mosquito”, “mosquito dengue”, “mosquitoes”,
“novo vírus da dengue”, “sintomas da dengue”, and “vírus
da dengue”. We downloaded the data on June 26th, 2017
and gathered information for the 27 Brazilian states and
for the whole country.

Statistical analysis
We fitted a linear regression model using GHT search
terms as predictors of dengue incidence at the state level
and recorded the adjusted R squared statistic as the pri-
mary outcome measure (0/1). Then, we fitted a multiple
linear regression model using all the terms retrieving in-
formation by state (i.e., all terms model). Due to the po-
tential overlap from conceptually related terms (e.g.,
“aedes” and “Aedes aegypti”), we also calculated Pear-
son’s correlation among terms and developed multiple
linear regression models with those with a correlation
less than 0.7 (i.e., uncorrelated terms model). Finally, we
fitted models using four terms: “dengue”, “dengue sinto-
mas”, “aedes”, and “mosquito”, which although corre-
lated, have the potential to capture the full spectrum of
searches considering the information they provide re-
lated to the disease and the mosquito vector (i.e., four
terms model). We addressed the statistical differences

between models with full vs. reduced number of terms,
and between full and individual terms per state using
pair-wise analysis of variance (ANOVA).
Given the heterogeneous Internet access throughout

Brazil, we analyzed the role that accessibility could play
in explaining our ability to track dengue incidence via
GHT. Since 2005, Brazil has monitored the accessibility
of their population to information and communication
technologies [59, 60] through the “Survey for Internet
Access, Television and Mobile Phone Possession for Per-
sonal Use (Acesso à Internet e a Televisão e Posse de
Telefone Móvel Celular para Uso Pessoal, Portuguese)”
[61]. The survey is part of the National Household Sam-
ple Survey (Pesquisa Nacional por Amostra de Domicí-
lios (PNAD), Portuguese) conducted by the Brazilian
Institute for Geography and Statistics (Instituto Brasi-
leiro de Geografia e Estatística (IBGE), Portuguese [61]).
We analyzed data from the 2015 survey, which included
a sample of 356,904 individuals and 151,189 households
distributed across the country and was subsequently ex-
trapolated to a total of 177,657 million people and 68,
037 million households [61, 62]. From all the available
variables provided in this survey (~ 150), we used: (1)
the total number of people above 10 years using Internet
in the last 3 months, (2) the number of households that
have used Internet in the last 3 months, (3) the number
of people with mobile phones, and (4) the number of
households with computers, as working predictors. In
addition to these four variables, we used their logarith-
mic transformation considering their positive (i.e., right)
skewed distribution, for a total of eight variables.
We explored all the available demographic variables

from the 2010 official census provided by the IBGE [56].
The census includes information at the municipality level
for multiple socio-economic factors including education,
sanitation, income, etc., with a total of 237 potential pre-
dictors. We aggregated the information to the state level
and examined them together with their logarithmic trans-
formations as explained above for a total of 474 variables.
Because they represent information with different magni-
tudes in the form of total counts, percentages, and rates,
we normalized all the variables before the analysis. We ex-
amined each variable individually with a pair-wise univari-
ate linear regression using the R squared for GHT against
dengue cases as a dependent variable; we selected those
variables with an adjusted R squared higher than 0.6, and
performed a Pearson’s correlation among those selected
to keep those with a score below 0.8. We then performed
a multiple linear regression using the same dependent
variable. We compared the ability of the selected variables
to quantify GHT usefulness in Brazil using a principal
component analysis (PCA) with the 474 predictors and
selecting those components recovering more than 90% of
the variance. The Pearson’s correlation statistic was also
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implemented in order to assess the relatedness between
Internet and demographic variables.
Finally, to determine if variability in the signal of den-

gue incidence influences GHT accuracy, we computed a
standardized volatility index for the dengue incidence
data in each state. First, we normalized the dengue inci-
dence time series, subtracting the mean and dividing it
by its standard deviation. For this normalized time
series, we averaged the absolute difference between each
point in the data for each state—incidence per week in
this case—to obtain a value representing the stability of
dengue incidence (i.e., stable vs. unstable). All analyses
were performed in R programming language [63] using
standard packages for statistical analysis.

Results
The Brazilian states with the overall highest yearly median
number of dengue case counts from 2011 to 2016 are: São
Paulo (829; min = 52; max = 61,944), Goiás (693; min = 29;
max = 9094), Minas Gerais (687; min = 13; max = 43,424),
and Rio de Janeiro (635; min = 12; max = 18,602), followed
by Ceará (526; min = 5; max = 6754), Bahia (507; min = 12;
max = 6654), Espírito Santo (382; min = 11; max = 4279),
and Pernambuco (326; min = 19; max = 5881; Fig. 1 and
Additional file 1: cases/incidences). States such as Rio
Grande do Sul and Santa Catarina had a median of 4 and 3
cases, with a minimum of 0 cases and a maximum of 324
and 561 respectively, during the whole study period (Fig. 1
and Additional file 1). Conversely, when considering the
weekly dengue incidence, there were two states with the
overall highest yearly median values: Goiás (1.154x10e-4;
min = 4.83x10e-6; max = 1.515x10e-3) and Espírito Santo
(1.087x10e-4; min = 3.129x10e-6; max = 1.217x10e-3),
followed by Rio Grande do Norte (8.996 × 10e-5; min = 0;
max = 1.893x10e-3), Tocantins (8.638x10e-5; min =
3.614x10e-6; max = 4.539x10e-4), Alagoas (8.236x10e-5;
min = 1.602x10e-6; max = 4.637x10e-4), Mato Grosso
(7.034x10e-5; min = 6.59x10e-7; max = 7.762x10e-4), Acré
(6.271x10e-5; min = 0; max = 2.931x10e-3), and Ceará
(6.223x10e-5; min = 5.915x10e-7; max = 7.991x10e-4; Fig.
1); Santa Catarina and Rio Grande do Sul remained the
states with the lowest median of weekly dengue incidence
in the whole study period (4.801x10e-7 and 3.740x10e-7,
respectively; Fig. 1 and Additional file 1).
From the 19 GHT terms, seven were useful in recover-

ing information for all the Brazilian states, namely: “ae-
des”, “dengue”, “mosquito”, “aegypti”, “Aedes aegypti”,
“sintomas da dengue”, and “dengue sintomas”. From the
remaining 12 terms, five never provided information and
therefore were discarded in further analysis (Table 1). Six
terms tracked dengue for some but not all the states; for
example, the word “mosquitoes” were valuable for Distrito
Federal, Minas Gerais, and Paraná, but unimportant for
Acré, Mato Grosso, or Santa Catarina. Two terms were

informative in only one case: “dengue hemorrhagic fever”
for São Paulo, and “DENV” for Brazil (Table 1).
As expected, models developed with all the available

terms per state fitted better to the weekly incidence den-
gue data than models developed with only four terms, un-
correlated terms, or with any of the individual terms when
measuring the adjusted R squared statistic (Fig. 2, Table 2,
and Additional file 2: adjusted R squared for individual
terms). Individually, the most informative terms among
those conceptually related with the disease included “den-
gue sintomas”, “dengue”, and “sintomas da dengue”
(Fig. 2). Among the terms related with the vectors, “mos-
quito dengue” and “mosquito” were the most informative
(Fig. 2). Correlated and uncorrelated terms for each state
are shown in Additional file 3. We used a pair-wise
ANOVA between models developed with all terms vs.
models developed with reduced combination of terms
(i.e., four terms and uncorrelated terms), and the individ-
ual terms for each state. From 328 comparisons—different
number of terms were available for different states (Ta-
bles 1 and 2)—only in ten comparisons a reduced model
was statistically comparable (i.e., not different, F statistic
with a p > 0.05) to the model with all the terms, namely:
the models based on four and uncorrelated terms and the
model with the word “dengue” for Amapá, models devel-
oped with four terms for Distrito Federal, Maranhão, Pará,
Rio Grande do Norte, Santa Catarina, and Sergipe, and
models developed with uncorrelated terms for Roraima.
Thus, for the subsequent analysis we used the adjusted R
squared statistic from the models built using all the avail-
able terms in each state.
As demonstrated previously, GHT fit the aggregated

country-level dengue incidence well (All terms adjusted
R squared = 0.888, Table 2 and Additional file 4: all plots
for Brazil). For Distrito Federal, GHT data was only
available starting November 24th, 2013; thus, for this
case we performed all the analysis starting that date
(Additional file 5: all plots for the 27 states). When ana-
lyzing each state separately, GHT was useful in some
states but uninformative in others (Fig. 3). The highest
adjusted R squared was for Minas Gerais (0.923) and
São Paulo (0.930), while the worst fit was for Amapá
(0.096) and Roraima (0.093; Fig. 3 and Table 2). Overall,
by using all the terms combined, GHT was able to track
weekly dengue incidences for 12 states with an adjusted
R squared higher than 0.8, namely: Amazonas, Ceará,
Distrito Federal, Maranhão, Minas Gerais, Paraiba, Per-
nambuco, Paraná, Rio Grande do Norte, Rio Grande do
Sul, Santa Catarina, and São Paulo (Table 2). Consider-
ing an adjusted R squared value of 0.7, we can include
four more states in this list: Espírito Santo, Goiás, Mato
Grosso do Sul, and Rio de Janeiro, for a total of 16 states
were GHT might be implemented for tracking dengue
dynamics (Table 2).
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All the Internet data variables were highly correlated
with each other (Additional file 6: correlation plot). The
logarithm of the number of Internet users per state par-
tially explains when GHT will be able to track dengue
incidence (all terms adjusted R squared = 0.621, Fig. 4).
For instance, in the case of São Paulo and Minas Gerais,

with the highest number of Internet users [61], the ad-
justed R squared for GHT and dengue incidence was
high (Fig. 4, log scale); on the other hand, states such as
Acré, Amapá, or Roraima with low numbers of Internet
users [61] had a lower R squared value (Fig. 4, log scale).
States such as Rio Grande do Norte, Amazonas, Paraiba,

Fig. 1 Dengue weekly incidence and case counts at the state level in Brazil aggregated across 2011–2016. States with low (yellow) and high (red)
weekly incidence (top panel) and case counts (bottom panel) are depicted according to the median for the whole study period from 2011 to
2016. Boxplots (right panel) represent the variability of each state during the same time period. Maps were created with shape files from https://
www.naturalearthdata.com/. Labels are the official abbreviations of Brazilian states: AC: Acré, AL: Alagoas, AP: Amapá, AM: Amazonas, BA: Bahia,
CE: Ceará, DF (arrow): Distrito Federal, ES: Espírito Santo, GO: Goiás, MA: Maranhão, MT: Mato Grosso, MS: Mato Grosso do Sul, MG: Minas Gerais,
PA: Pará, PB: Paraiba, PR: Paraná, PE: Pernambuco, PI: Piauí, RJ: Rio de Janeiro, RN: Rio Grande do Norte, RS: Rio Grande do Sul, RO: Rondônia, RR:
Roraima, SC: Santa Catarina, SP: São Paulo, SE: Sergipe, TO: Tocantins
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Table 1 Availability of Google Health Trends to track dengue trends in Brazil and its states by term

Terms Number of
terms

States

Informative terms “aedes”, “dengue”, “mosquito”, “aegypti”, “Aedes aegypti”,
“sintomas da dengue”, “dengue sintomas”

7 Brazil and all states

Uninformative terms “aedes egípcio”, “egípcio”, “vírus da dengue”, “novo
vírus da dengue”, “dengue é ‘virus”

5 Brazil and all states

Ambiguous terms “dengue fever” 6 Brazil and BA, CE, ES, GO, MG, PB, PR, RJ, RS, SP (10
states)

“dengue hemorrhagic fever” SP (1 state)

“DENV” Brazil

“DHF” Brazil and BA, GO, MT, MG, PR, PR, PE, RJ, RS, SP (10
states)

“dengue vírus” Brazil and AM, BA, CE, DF, ES, GO, MA, MS, MG, PA, PB,
PR, PE, RJ, RN, RS, RO, SC, SP (19 states)

“mosquitoes” Brazil and DF, MG, PR, RJ, RS, SP (6 states)

From the 19 terms explored, only seven were able to consistently track dengue incidence from Google Health Trends in Brazil (i.e., national level) and its
individual states. Abbreviations of Brazilian states: AC: Acré, AL: Alagoas, AP: Amapá, AM: Amazonas, BA: Bahia, CE: Ceará, DF: Distrito Federal, ES: Espírito Santo,
GO: Goiás, MA: Maranhão, MT: Mato Grosso, MS: Mato Grosso do Sul, MG: Minas Gerais, PA: Pará, PB: Paraiba, PR: Paraná, PE: Pernambuco, PI: Piauí, RJ: Rio de
Janeiro, RN: Rio Grande do Norte, RS: Rio Grande do Sul, RO: Rondônia, RR: Roraima, SC: Santa Catarina, SP: São Paulo, SE: Sergipe, TO: Tocantins

Fig. 2 Adjusted R squared according to Google Health Trends search terms. All available terms per state and combined terms (i.e., all, four, and
uncorrelated terms) were assessed in their ability to track weekly dengue incidences during 2011–2016. Combined terms showed the median
highest adjusted R squared values (purple)
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and Distrito Federal, had high GHT fit and a low num-
ber of Internet users, and viceversa for Rio de Janeiro
and Bahia (Fig. 4).
From the 474 census demographic predictors, only 49

had an adjusted R squared higher than 0.6, all of which
corresponded to variables related to the logarithmic trans-
formation of the state population (see Additional file 7: 49
demographic variables). The 49 variables were highly cor-
related with each other (minimum r = 0.946); thus, a model
including only the logarithm of the total population per
state (Fig. 5 top-left panel) was similar to the one using the
logarithm of the total number of Internet users (Fig. 4—ad-
justed R squared = 0.6218—vs. Fig. 5 top-left panel—ad-
justed R squared = 0.6143), a consequence of the high
correlation between the predictors involved: population

and number of Internet users (r = 0.98). Within the PCA
framework, the first six PCs recovered 91% of the variance
and a model developed with these components yielded
similar results as the ones obtained using either the loga-
rithm of the number of Internet users or the logarithm of
total population per state (Adjusted R squared = 0.654;
Additional file 8: PCA results).
States with the highest standardized volatility index, or

high variability in reported dengue incidence, had less
informative adjusted R squared when fitting GHT to in-
cidence. States with smoother signals of dengue inci-
dence, and therefore low volatility, had a better fit of
GHT to incidence, resulting in adjusted R squared values
above 0.8 (Fig. 4 and Fig. 5). However, even with a stable
dengue incidence signal, GHT was not able to track

Table 2 Adjusted R squared for multiple linear models using all, uncorrelated, and four available terms

State Adjusted R squared
– All terms model (n)

Adjusted R squared –
Uncorrelated terms model (n)

Adjusted R squared –
Four terms model (n = 4)

Acré (AC) 0.126 (7) 0.110 (6) 0.092

Alagoas (AL) 0.481 (8) 0.418 (3) 0.470

Amapá (AP) 0.096 (7) 0.099 (6) 0.103

Amazonas (AM) 0.847 (9) 0.590 (2) 0.821

Bahia (BA) 0.647 (11) 0.603 (3) 0.624

Ceará (CE) 0.839 (10) 0.746 (3) 0.812

Distrito Federal (DF) 0.829 (10) 0.433 (2) 0.830

Espírito Santo (ES) 0.725 (10) 0.537 (3) 0.688

Goiás (GO) 0.785 (11) 0.660 (3) 0.768

Maranhão (MA) 0.859 (9) 0.615 (2) 0.856

Mato Grosso (MT) 0.573 (9) 0.453 (3) 0.559

Mato Grosso do Sul (MS) 0.713 (9) 0.583 (3) 0.694

Minas Gerais (MG) 0.923 (12) 0.718 (4) 0.919

Pará (PA) 0.600 (9) 0.277 (2) 0.596

Paraiba (PB) 0.837 (10) 0.683 (3) 0.832

Paraná (PR) 0.845 (12) 0.741 (4) 0.821

Pernambuco (PE) 0.819 (10) 0.714 (2) 0.808

Piauí (PI) 0.553 (8) 0.377 (3) 0.542

Rio de Janeiro (RJ) 0.765 (12) 0.704 (5) 0.744

Rio Grande do Norte (RN) 0.890 (9) 0.706 (2) 0.891

Rio Grande do Sul (RS) 0.804 (12) 0.724 (4) 0.779

Rondônia (RO) 0.568 (9) 0.415 (4) 0.544

Roraima (RR) 0.093 (7) 0.091 (6) 0.058

Santa Catarina (SC) 0.826 (9) 0.788 (2) 0.825

São Paulo (SP) 0.930 (13) 0.861 (6) 0.919

Sergipe (SE) 0.308 (8) 0.216 (3) 0.300

Tocantins (TO) 0.415 (8) 0.342 (4) 0.401

Brazil 0.888 (14) 0.852 (7) 0.850

Different numbers of terms (n) were available depending on the state (e.g., São Paulo vs. Acré) and were correlated considering a state-by-state basis (e.g., Amapá
vs. Maranhnão; Additional file 3: terms per state). Four terms model was developed with “dengue”, “dengue sintomas”, “aedes”, and “mosquito”. Bold represent
adjusted R squared values above 0.8. Data for Brazil is shown in the last row
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dengue in Acré (Fig. 5 top-right panel). A model using the
logarithm of the number of Internet users, the volatility
index, and their interaction as predictors of GHT had the
highest adjusted R squared among all the variables ex-
plored (= 0.694, Fig. 5 bottom-right panel). The same
model with the logarithm of population instead of Internet
users showed a similar adjusted R squared (= 0.688, Fig. 5
bottom-left panel). These models were comparable to those

using the individual terms of the logarithm of total popula-
tion, the number of Internet users, or the selected PCs
(Figs. 4, 5, and Additional file 8). Eliminating Acré, the state
with low volatility but low GHT accuracy (i.e., outlier), we
saw an improvement in the models using the standardized
volatility index plus its interactions with Internet users or
total population (All terms vs. volatility index model, ad-
justed R squared = 0.717; all terms vs. Internet users (log) +

Fig. 3 Google Health Trends and weekly dengue incidence in four Brazilian states, 2011–2016. Models built with all the terms available per state
were useful for tracking dengue incidence during the study period for some (top panel) but not all (bottom panel) Brazilian states. The states that
are not well predicted have noisier signals and lack strong seasonal dengue case counts, which may account for poor correlation with Google
Health Trends in these regions. Lower access to Internet may also be a factor (Fig. 4)
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standardized volatility index, adjusted R squared = 0.793;
and all terms vs. population + standardized volatility index
adjusted R squared = 0.809).

Discussion
Digital surveillance systems have been shown to be useful
for predicting country-wide dengue incidence in several
countries [38, 53, 64]. Here, we evaluate the usefulness of
GHT in tracking dengue incidence both at the country and
the state level in Brazil, by evaluating GHT correlation with
weekly dengue incidence data over 6 years. We have shown
that the performance of GHT varies across states (Fig. 3,
Table 2, and additional file 3); however, it is highly corre-
lated with dengue incidence (adjusted R squared > 0.8) in
12 Brazilian states that are geographically dispersed. More-
over, we showed that proxies of Internet penetration such
as the number of Internet users in the last 3 months only
partially explain the usefulness of GHT (Fig. 4). In fact, the
logarithm of the total population, from among 474 poten-
tial demographic predictors, allowed us to build a model

that quantified GHT usefulness with similar accuracy to
that of Internet penetration data (Fig. 5). The standardized
volatility index in combination with the number of Internet
users or the total population provided the highest accuracy
when predicting GHT usefulness (Fig. 5).
Harvesting epidemiological information from Internet-

data streams remains an active area of research for health
purposes [31, 46, 49]. Despite its caveats [40], it has the po-
tential to improve and complement traditional disease sur-
veillance methods. In particular, they may be useful in
timely outbreak detection and in settings where health sur-
veillance is underdeveloped [31, 65]. However, before im-
plementation, tools such as GHT should be explored at
spatial resolutions smaller than countries [39, 50, 54]. Ours
is one of the few studies addressing this gap showing that
GHT usefulness will be heavily impacted by the political
boundaries at which we wish to predict [52, 54]. In our
case, GHT had an adjusted R squared score higher than
0.8 in 12 states, distributed among the five macro-regions
of Brazil. The majority of states where GHT successfully

Fig. 4 Logarithm of Internet users and Google Health Trends adjusted R squared. Maps (right panels) depict the adjusted R squared statistic per
state when assessing Google Health Trends with their corresponding dengue incidence (linear regression plot). Twelve of 27 states showed
values above 0.8 (top, dark blue). The logarithm of Internet users shows that the majority of the Brazilian states with high numbers of Internet
users were concentrated at the southeast of Brazil (bottom, dark blue), but the remaining states show limited Internet penetration (pale green).
Some states showed low number of Internet users but high GHT data fit (e.g., Amazonas, Maranhão, Paraiba, Distrito Federal). Maps were created
with shape files from https://www.naturalearthdata.com/. Abbreviations of Brazilian states: AC: Acré, AL: Alagoas, AP: Amapá, AM: Amazonas, BA:
Bahia, CE: Ceará, DF: Distrito Federal, ES: Espírito Santo, GO: Goiás, MA: Maranhão, MT: Mato Grosso, MS: Mato Grosso do Sul, MG: Minas Gerais, PA:
Pará, PB: Paraiba, PR: Paraná, PE: Pernambuco, PI: Piauí, RJ: Rio de Janeiro, RN: Rio Grande do Norte, RS: Rio Grande do Sul, RO: Rondônia, RR:
Roraima, SC: Santa Catarina, SP: São Paulo, SE: Sergipe, TO: Tocantins
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track dengue incidence were located in the Southeast—
Minas Gerais and São Paulo—, South—Paraná, Santa Cat-
arina, Rio Grande do Sul—, and Northeast of the coun-
try—Ceará, Maranhão, Paraiba, Pernambuco, Rio Grande
do Norte—, with the latter concentrating states with higher
incidences (Figs. 1 and 4, Table 2). In general, these three

macro-regions are considered the most economically de-
veloped of Brazil [66]. The Southeast and the South
macro-regions have, in general, lower dengue incidence
despite having the majority of cases (Fig. 1), highlighting
the importance of normalizing measures to allow disease
burden comparisons [57]. We calculated incidence rates

Fig. 5 Total population and volatility index as predictors of Google Health Trends adjusted R squared. From 474 predictors, variables related with
population where the most informative anticipating GHT behavior (top-left). The volatility index was useful detecting GHT accuracy although
imprecise in some states such as Acré (top-right). Models considering the standardized volatility index and either the total population (bottom-
left) or the number of Internet users (bottom-right) were the most informative anticipating GHT accuracy. Abbreviations of Brazilian states: AC:
Acré, AL: Alagoas, AP: Amapá, AM: Amazonas, BA: Bahia, CE: Ceará, DF: Distrito Federal, ES: Espírito Santo, GO: Goiás, MA: Maranhão, MT: Mato
Grosso, MS: Mato Grosso do Sul, MG: Minas Gerais, PA: Pará, PB: Paraiba, PR: Paraná, PE: Pernambuco, PI: Piauí, RJ: Rio de Janeiro, RN: Rio Grande
do Norte, RS: Rio Grande do Sul, RO: Rondônia, RR: Roraima, SC: Santa Catarina, SP: São Paulo, SE: Sergipe, TO: Tocantins
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based on the total population of each state to compare
dengue burden, showing that high number of dengue cases
in the Southeast are explained by the presence of high-
density populations. Among the Southeast, Rio de Janeiro
state might benefit from integrating GHT surveillance into
dengue modeling and prediction efforts, considering an ad-
justed R squared of 0.765 (Fig. 1 and Fig. 4, Table 2). At
the Northeast, Ceará and Rio Grande do Norte showed
higher dengue incidence (= 6.223x10e-5 and 8.996x10e-5,
respectively) with a high GHT fit to incidence data (ad-
justed R squared = 0.839 and 0.890, respectively) followed
by Paraiba and Pernambuco (adjusted R squared = 0.837
and 0.819, respectively; Figs. 1 and 4, Table 2).
The remaining states where GHT was able to track den-

gue incidence were found in the Central-West—Distrito
Federal—, and the North—Amazonas—macro-regions,
with one state each (Fig. 1 and Fig. 4, Table 2). Both
macro-regions represent the fourth and fifth economies of
Brazil, respectively [66]. GHT for the Amazonas state
could complement traditional clinical surveillance ap-
proaches (adjusted R squared = 0.847) considering its large
area extent, moderate dengue incidence aggregated across
all years (= 3.014x10e-5), and geographical location (West-
ern portion of the North macro-region and far from the
developed Brazilian Southeast; Fig. 1 and Additional file 1).
The North macro-region also included the states of Acré,
Amapá, Roraima, and Tocantins where GHT showed a
poor behavior due to the low number of Internet users
(Table 2 and Fig. 4). Both the North and Central-West
areas include states with high dengue incidence consisting
of Acré, Goiás, Mato Grosso, and Tocantins (Fig. 1, Add-
itional file 1); among them, only Goiás showed a high
GHT fit (adjusted R squared = 0.785); meanwhile the other
states showed adjusted R squared values lower than 0.5
(Table 2 and Fig. 4).
Among the North and Northeast Brazilian macro-

regions, Maranhão, Pará, and Sergipe have the lower den-
gue incidence (Fig. 1). For these states, only Maranhão
showed a good GHT fit (adjusted R squared = 0.859). The
state of Alagoas showed a moderate dengue incidence ag-
gregated across all years (=8.236x10e-5; Fig. 1 and Add-
itional file 1) but poor GHT behavior (adjusted R
squared = 0.481) despite being surrounded by states with
good GHT performance (e.g., adjusted R squared Pernam-
buco = 0.819 and Bahia = 0.647; Figs. 1 and 4, Table 2).
We expected Alagoas to have similar dynamics as the rest
of its surrounding states due to similar environmental and
epidemiological trends, all limited by the Atlantic Ocean
with a comparable area extent (Fig. 1). However, variabil-
ity in local surveillance and mosquito control strategies
might account for the differences [13, 22].
We suggest that multiple search terms should be ex-

plored when using GHT. In our case, only 7 from the initial
19 terms, retrieved information consistently in all the

Brazilian states within our study period (Tables 1 and 2,
Additional file 3), from the other terms, information was
recovered only in specific instances (e.g., “dengue virus”,
“dengue fever” for Bahia but not for Acré; Table 1). Models
developed with all terms were statistically different from
models developed with any of the subset term schemes
(i.e., uncorrelated terms, four terms, individual terms) with
the exception of ten comparisons. From them, Distrito Fed-
eral, Maranhão, Rio Grande do Norte, and Santa Catarina
were states in which GHT adjusted R squared was higher
than 0.8 (Fig. 4 and Table 2) and the four term model was
not statistically different from the full term model (p > 0.05
in an ANOVA pair-wise comparison). Still, this was not the
case for any of the other comparisons (i.e., 318), and more
importantly, not for any of the terms individually. We rec-
ommend gathering GHT data using multiple terms in
order to track dengue incidence dynamics at the state level
in Brazil, potentially, this approach would be useful in other
countries. While the approach for determining search
terms vary, we posit that they should include both key-
words (e.g., “dengue”) and conceptual words (e.g., “dengue
sintomas”) [35] and should be selected according to the of-
ficial and common languages of the country studied, Portu-
guese and English in our case; for instance, in Singapore
searches using English terms were superior than searches
using the Malay or Tami local languages [39].
Intuitively, the ability to determine if Internet data is go-

ing to be useful should depend on access to information
and communication technologies. In this study, we found
that the number of Internet users acts as a moderate pre-
dictor for GHT performance (Fig. 4). Similarly, Internet
penetration has been demonstrated as a dubious variable
for data derived from Google search engines [53, 54], and
here, we showed that at least for states with both high and
low Internet access (e.g., São Paulo, Minas Gerais vs. Acré,
Roraima, Fig. 4), this variable can be regarded as a good
predictor. However, for states such as Amazonas, Distrito
Federal, Paraiba, and Rio Grande do Norte, only relying
on the number of Internet users would have been an
equivocal signal of GHT usefulness; thus, our data support
a case-by-case investigation of Internet data.
Variables related to the total population per state were

informative in determining GHT performance (Add-
itional file 7: demographic variables) and these predic-
tors were highly correlated with the total number of
Internet users (r = 0.98). As Internet penetration in-
creases worldwide [67], the total population per studied
political unit, might be a reliable predictor to inform
whether or not dengue surveillance based on digital epi-
demiology tools can complement traditional surveillance.
However, other demographic predictors could also serve
as indicators of GHT performance. We explored this
possibility using various variable selection methods in-
cluding Pearson’s correlation on the full 474 variables, a
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stepwise (i.e., forward and backward) multiple linear regres-
sion, and an elastic net regression with L1 normalization
(i.e., Least Absolute Shrinkage and Selection Operator or
Lasso) using leave-one-out cross validation fashion (Add-
itional file 9: variable selection). Although a combination of
five demographic variables allowed us to develop an im-
proved prediction than total population alone (adjusted R
squared = 0.670), how those variables may translate to other
countries is not immediately clear (e.g., percentage of popu-
lation that lives in urban households with garbage collecting
services; Additional files 9 and 10: other demographic vari-
ables). In addition, models developed using multivariate
linear regressions with different variable combinations
never outperformed the model developed using PCA (Add-
itional files 8 and 9), or those involving population and the
standardized volatility index (Fig. 5, bottom-left panel).
The volatility index discussed here might also aid on

addressing when to use GHT predictions for dengue
(Fig. 5). In the context of detailed Internet access data, a
model considering volatility and Internet users might be
a straightforward exploration (Fig. 5). From a practical
perspective, due to the potential lack of fine-resolution
data on Internet accessibility in other countries, the total
number of people plus the described standardized vola-
tility index might be useful indicators of GHT perform-
ance. Finally, as has been discussed previously, we also
explored if the total number of dengue cases would be a
useful predictor to assess GHT performance [31, 54],
but this predictor was less useful than any of the others
explored (i.e., GHT for all terms vs. logarithm of total
number of dengue cases, adjusted R squared = 0.274).
There are some limitations and caveats to our study.

For the Distrito Federal state, GHT data was available
for half of the study period, thus, we tested the GHT
against weekly dengue incidence only for the corre-
sponding timeframe, which involved ~ 3 years. The state
of Distrito Federal corresponds to a small geographical
region established as the capital of the country in 1960
(Fig. 1); we hypothesize that the lack of data was an
artifact of Google’ algorithm missing the corresponding
state before November 2013. Although we do not have
any specific evidence of this, it is possibly related to what
has been called “blue team dynamics” [40], that is,
changes on the search engine can affect how and when
GHT gathers data. In the same way, GHT retrieves in-
formation as a relative proportion of search volumes, as
a consequence GHT data for the Brazilian states will not
sum up to the same data at the country level and there-
fore GHT data for the whole country should be evalu-
ated as an independent unit from its states [58]. This
explains issues such as those presented in Table 1 where,
for example, the term “DENV” was only available for the
whole country and not for any particular state. Regard-
less, GHT’s relative proportion volume represents search

patterns in an improved way than the ranked scores
from GT. In the majority of studies using the latter, a
transformation is needed in order to continue with the
analysis [45], this step might add noise to prediction
studies with GT.
In the present work, we did not split our data on

training-testing datasets, which is a limitation of our ap-
proach. However, instead of dealing with prediction ability
(i.e., forecasting [39, 49, 53, 54]), we based our evaluation
on how GHT reflects dengue incidence in the Brazilian
states and where it could inform and complement trad-
itional epidemiological surveillance. Further, we did not in-
clude environmental variables known to alter dengue
dynamics [54]. To implement GHT as complementary
surveillance tool, other sources of uncertainties should be
considered, among them, dengue information-seeking
behavior might be confounded by the surge of other
arbovirus-diseases such as chikungunya or Zika [68], or less
well-known pathogens such as Mayaro, Oropouche, or
West Nile viruses [69–71], all transmitted by different vec-
tors from the order Diptera, which could trigger local web
search behavior. This is especially true because of unspe-
cific initial clinical presentations for those pathogens,
media-induced panic or interest [72], and because health
campaigns are often aimed towards vector control due to
the lack of specific treatments [11]. Moreover, the GHT
platform is unstable and could potentially be altered by any
update or improvement on Google’s search algorithm itself
[40] hindering replicability of these kind of studies [65].
Although GHT and other digital tools might be also cap-

turing information from non-infected individuals, searching
for the disease terms with different goals or induced by
panic related media, it is likely also capturing a portion of
the population that is missing medical care for multiple rea-
sons. As has been shown for dengue surveillance in Brazil,
the number of patients that are hospitalized and recorded
as true “dengue” cases are more than ~ 50% the number of
patients that are actually registered in the official epidemio-
logical surveillance system [22], which is a broad phenom-
ena described also for other countries [73]. Thus, an
agreement between suspected dengue cases and GHT
would indicate at least the presence of an outbreak.
Despite critics of models based on Google-derived data,

several studies are demonstrating the potential usefulness
of this approach for epidemiological research and how it
can complement other forecasting models [49, 51, 53, 74].
Nonetheless, further studies face another problem: the
availability of reliable health data, which is seldom shared
in homogeneous user-friendly formats for representative
timeframes [75, 76]. Only by assuring a constant supply of
sound, consistent, and truly open access health reports,
digital epidemiology could exploit the potential of big data
considering the massive, but usually inaccessible, informa-
tion from the public health domain [76].
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Conclusions
Digital epidemiology approaches based on GHT or other
tools should be explored beyond country level to consider
its actual ability to inform local public health departments.
In the case of dengue in Brazil, 12 out of 27 states showed
an adjusted R squared higher than 0.8, which suggests the
potential ability of GHT to complement classical epi-
demiological surveillance, even though some states had
low incidence during the 6-year study period (i.e., 2011–
2016). Models developed with multiple terms were most
informative than models using reduced sets or individual
terms. Variables such as number of Internet users and
total population per state are useful in determining where
GHT could complement current surveillance strategies in
several Brazilian states. Moreover, both variables benefit
from the use of a standardized volatility index for selection
of areas of GHT usefulness. The methods proposed here
might be applied in other countries to test the ability of
GHT to support dengue surveillance. Future studies might
also explore the ability of GHT to track dengue using de-
tailed measures of dengue transmission such as the force
of infection, only confirmed cases, finer political boundar-
ies (e.g., GHT data is available to particular cities in the
world), or different temporal schemes.
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