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Abstract

Background: Antibiotics remain the cornerstone of modern medicine. Yet there exists an inherent dilemma in their
use: we are able to prevent harm by administering antibiotic treatment as necessary to both humans and animals,
but we must be mindful of limiting the spread of resistance and safeguarding the efficacy of antibiotics for current
and future generations. Policies that strike the right balance must be informed by a transparent rationale that relies
on a robust evidence base.

Main text: One way to generate the evidence base needed to inform policies for managing antibiotic resistance is
by using mathematical models. These models can distil the key drivers of the dynamics of resistance transmission
from complex infection and evolutionary processes, as well as predict likely responses to policy change in silico.
Here, we ask whether we know enough about antibiotic resistance for mathematical modelling to robustly and
effectively inform policy. We consider in turn the challenges associated with capturing antibiotic resistance
evolution using mathematical models, and with translating mathematical modelling evidence into policy.

Conclusions: We suggest that in spite of promising advances, we lack a complete understanding of key principles.
From this we advocate for priority areas of future empirical and theoretical research.
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Background
Mathematical modelling is a tool that allows us to inte-
grate our mechanistic understanding of biological pro-
cesses—such as the spread of antibiotic resistance
(ABR)—in a precise and logical structure. A correctly-
specified model can not only reproduce the empirical
patterns that we observe, but also enable us to predict
how changing conditions may impact upon real-world

outcomes. Since ABR is a priority issue for global health,
policymakers are increasingly concerned about how best
to manage the spread of ABR, and are engaged in de-
signing new guidelines and policies for doing so. Math-
ematical modelling has the potential to help inform
these policies because it can quickly and inexpensively
predict the outcomes of different actions, including in-
action. Here we discuss some of the progress that has
been made in using modelling to shape policy, highlight-
ing the challenges facing the field and identifying future
research priorities. We do this by first considering how
far mathematical models have come in capturing anti-
biotic resistance evolution and discussing the remaining
challenges. Then we evaluate how these models have
been successful in guiding decision-making and the
questions that remain.
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Main text
Capturing antibiotic resistance evolution with
mathematical models
Before a mathematical model is deployed in decision-
making, it must first convince us of its explanatory capabil-
ities. In other words, before a model can be used as a reliable
guide for policy, it must be able to recapitulate the
empirically-observed prevalence of resistance — typically re-
ported as either the number of cases of resistant infections
or the proportion of bacterial isolates exhibiting resistance
— at the appropriate local, regional, national or international
level. This is not a simple task. Fully capturing these obser-
vations ‘from the ground up’ requires understanding: (i)
how bacteria acquire resistance, whether by horizontal
transfer of resistance genes or de novo mutation [1]; (ii) how
these resistant cells proliferate, both within and between
hosts; (iii) which forces, including antibiotic exposure, select
for the transmission of resistant over non-resistant strains
across diverse environments; (iv) how the circulation of re-
sistant strains translates to reported numbers of infections
or carriage episodes of resistant strains in different settings,
for each “bug-drug” combination; and (v) how diagnostic,
sampling, culture and typing methods affect our data on
ABR incidence and prevalence.

What we know

Selection for and against antibiotic resistance The
basis for the dynamics of antibiotic resistance is Darwinian
evolution. The presence of an antibiotic selects for a higher
frequency of organisms resistant to that antibiotic, because
resistance to treatment confers those strains a benefit over
susceptible strains [1]. Conversely, many models have as-
sumed that resistance genes impose costs for the bacteria
that carry them, resulting in resistant bacteria having lower
fitness in the absence of antibiotics [2] — an assumption
which is generally, but not universally, borne out by obser-
vation [3, 4]. Accordingly, the strength of selection for re-
sistance depends upon the balance between the benefits
and costs of resistance. A corollary of assigning a cost to re-
sistance is the ‘time-reversibility’ of evolution — that is, if
antibiotic use is removed, resistance is counterselected and
should equilibrate to the same frequency as before the
introduction of the antibiotic [5]. Further, the between-host
transmission of resistant bacterial strains, as opposed to de
novo mutation or horizontal acquisition of resistance genes
by bacteria, is generally assumed to be an important driver
in the maintenance of antibiotic resistance [6]. These prin-
ciples are naturally articulated within mathematical models
that capture the dynamical processes of transmission,
colonization, and treatment.

Competition (likely) exists between resistant and
sensitive strains While some models of ABR account

only for the transmission of resistant strains, there is
growing recognition that tracking the dynamics of sensi-
tive strains is important as well [6], especially if these
strains are competing for limited resources: a finite niche
within an individual person, and a finite number of
people to colonise. These competitive dynamics substan-
tially impact resistance evolution in both empirical stud-
ies [7–9] and theoretical mathematical models [10–12].
These modelling studies emphasize that competition be-
tween resistant and sensitive strains can occur both at
the within- and the between-host level, and the relative
importance of competition at these two levels can drive
resistance evolution in opposing directions [13]. Compe-
tition also occurs between commensal and pathogenic
bacteria occupying the same niche, with some uncultur-
able competitors that are also affected by antibiotic ex-
posure; this has only recently come to light with the
advent of rapid affordable deep sequencing technology
and associated analysis [14]. Further theoretical work
and empirical investigation will permit a more precise
characterisation of the competitive dynamics between
resistant and sensitive strains, allowing us to establish
ecologically sound principles for modelling competition
both within and between hosts.

Transmission networks and heterogeneity of
exposure to antibiotics Modelling is beginning to help
us understand the geographic networks of ABR trans-
mission [15, 16] in hospitals, communities, agricultural
settings, and the environment. Paired with analysis of
UK patient movement data, modelling has revealed the
importance of locally circulating ABR [17]. Local out-
breaks in ABR hotspots such as hospitals and long-term
care facilities, which feature high antibiotic use and,
often, immunocompromised patients, are generally bet-
ter documented than broader patterns of community ac-
quisition. Where detailed patient data do exist – often in
the intensive care setting – stochastic mathematical models
are now being used to assess the extent of transmission at-
tributable directly to patients, healthcare workers or indir-
ectly to the facility’s environment [18]. Combining
mathematical and phylodynamic modelling in the advent of
cheaper sequence data is likely to present new opportunities
to further understand the sources of health care-acquired re-
sistant infections [19]; a better understanding of the role that
non-patients and healthcare workers can play in resistance
outbreaks may follow. Further, modelling has also been used
to suggest that a greater proportion of antibiotic resistant
bacteria is acquired in the community than in the hospital
setting [20, 21], and hence that antibiotic stewardship efforts
should include the community. While the importance of
agricultural antibiotic use for human health is debated, mod-
elling results have suggested that curtailing antibiotic growth
promotion in livestock will be of less benefit than reducing

Knight et al. BMC Infectious Diseases         (2019) 19:1011 Page 2 of 9



animal-to-human transmission [22, 23]. Sequence data is
likely to further our understanding of transmission from
agricultural sources [24, 25]. All told, mathematical model-
ling is helping us to understand how resistance spreads in
specific settings and within specific groups.

Challenges remaining

Lack of precise understanding of selection pressure
Beyond the empirically well-supported hypothesis that
greater antibiotic use by individuals in a population selects
for a higher frequency of resistance among bacteria circu-
lating in that population [26, 27], we have not yet convin-
cingly identified the major drivers of the spread of
resistance at the population level. One difficulty lies in
explaining what maintains coexistence between resistant
and non-resistant strains over long periods of time, when
simple models predict that, depending upon the average
antibiotic consumption rate in a population, either resist-
ant or sensitive strains should competitively exclude the
other [6, 28]. A number of recent studies have proposed
potentially complementary mechanisms — e.g. balancing
selection caused by within-host competition [10, 28], vari-
able selection for resistance over heterogeneous genetic
backgrounds [29, 30], or population heterogeneity in treat-
ment rates [28, 31] — which may each be capable of
explaining this empirically-observed coexistence [13]. The
relative importance of these and other mechanisms will
vary depending upon the pathogen and setting, but re-
mains to be identified for any one case.
A further difficulty in characterizing selection pressures

for resistance is that a substantial proportion of variation
in resistance to specific antibiotics between populations is
not explained by variation in the consumption of those
antibiotics: identifying interactions between co-selection
of resistance determinants [29, 30], bystander selection
[31], and other forces selecting for resistance is crucial for
a complete understanding of resistance evolution. In
principle, model calibration to empirical data could help
to choose between alternative mechanisms. There is no
shortage of hypotheses for what may contribute to the
spread of resistance; what is needed is convincing empir-
ical evidence to identify the most important forces shaping
resistance evolution. Finally, on top of these uncertainties,
mathematical models overlay a suite of additional and
much less understood assumptions — the within-host dy-
namics of the bacteria within the microbiome, the social
mixing patterns of individuals and the existence and
strength of coselection. It is precisely the interplay be-
tween all these factors that drastically changes what the
models actually predict [11, 13].

Setting-specific model calibration and data availability
Recent work has begun to calibrate models to empirical

data on the relationship between antibiotic consumption
and resistance [10, 13], with the aid of databases linking
antibiotic use and resistance at a country or state level,
such as the European Centre for Disease Prevention and
Control’s European Antimicrobial Resistance Surveil-
lance Network (ECDC EARS-Net) [32], the Center for
Disease Dynamics, Economics & Policy ResistanceMap
[33], and the World Health Organization’s Global Anti-
microbial Resistance Surveillance System (GLASS) [34],
as well as a host of national surveillance systems. How-
ever, these data appear insufficient to distinguish the
mechanisms that govern the selection pressure that un-
derpins the dynamics of resistant strains [13]. While, to
date, this calibration has only been attempted in the con-
text of a small subset of bacteria-treatment combinations,
it is likely that these general limitations will extend to the
wider group of pathogens. To distinguish the mechanisms
or set of mechanisms generating the resistance dynamics
we observe will require investigation of within-host strain
diversity, strain epidemiology, and the demography and
geography underlying transmission. It will also require
consideration of data and properties of a more diverse set
of potentially-pathogenic bacteria, as well as commensal
and environmental bacteria, than the commonly used ex-
ample of Streptococcus pneumoniae [10, 13, 28, 29, 35].

Transmission networks and heterogeneity of exposure
to antibiotics Despite the advances in using mathemat-
ical models to disentangle the role of different groups of
hosts in the transmission of resistance, elucidating the
connections between, and the relative importance of, the
heterogeneous environments in which resistance evolves
remains a key problem. Both hotspots of ABR acquisi-
tion (which could be related to geographical areas/types
of food-production systems/healthcare settings) and the
most relevant pathways for exposure are unclear. For
modelling to inform where to direct interventions, it
must span these diverse environments. In doing so, it
has the potential to help resolve some of the most con-
tentious debates in ABR policy, such as the relative im-
portance of agricultural, environmental, community and
health-care reservoirs as sources of resistant infections.

Difficulty in quantifying fitness costs Open questions
remain regarding how to quantify the fitness costs associ-
ated with resistance. How large are the costs? Do they
manifest as reductions in within-host growth, between-
host transmissibility, infectivity, or all three? Mathematical
modelling can, in principle, be used to estimate the mag-
nitude of fitness costs associated with resistance directly
from epidemiological data [10, 13, 36–39]. However, fit-
ness is a highly location-, time- and strain-specific charac-
teristic [40, 41]; care must be taken not to overgeneralise.
As mathematical modelling predictions depend crucially
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on competitive strain dynamics, which in turn depend on
resistance cost, the unknown effect of a combination of
synergistic or antagonistic interactions [42] make model
predictions highly uncertain. Moreover, although it is im-
plicitly assumed by mathematical models, there is no over-
whelming evidence to suggest that costs to resistance
genes are unavoidable, whether truly cost-free resistance
mutations will eventually arise, or whether back-
mutations towards lesser resistance would spread under a
reduction of antibiotics.

Translating mathematical modelling evidence into policy
Mathematical modelling has the potential to test policy in-
terventions in silico, and hence to help us both understand
the relevant components in complex systems and assess
their relative impact and potential cost-effectiveness both
as standalone policies [43–45] and as elements of combin-
ation (“bundled”) policies [46]. This approach can then be
used to predict the impact of updating the interventions
or extending them long term.

What we know

The usefulness of mathematical models for health
policy decision-making Although a comprehensive
overview of the use of mathematical models in health pol-
icy [47] cannot be given here, it is clear that infectious dis-
ease models currently provide crucial evidence for public
health decision making in many areas. A prime example is
the use of mathematical models to support vaccination
recommendations by National Immunization Technical
Advisory Groups (NITAGs), such as the UK’s Joint Com-
mittee on Vaccination and Immunisation (JCVI) [48]. In
this and other well-established areas of health policy, pre-
dictions from mathematical models are translated into
health economic terms by expressing health burdens in
standardised units, e.g. quality-adjusted life years (QALYs)
or disability-adjusted life years (DALYs). This allows the
efficiency and affordability of alternative interventions to
be assessed and compared in terms of the monetary cost
per QALY gained or DALY averted. Although at present
this economic framework is not widely used for questions
relating to the control of resistant infections, recent esti-
mates of resistance-attributable standardised health bur-
dens [49, 50] are beginning to make this possible [51].

Challenges remaining

Lack of validated models As we have discussed above,
the widespread use of dynamic modelling is lacking for
many current ABR control policies due to the challenges
we face in understanding and quantifying ABR transmis-
sion [52]. This can mean that we lack a framework for
assessing interventions that are rolled out. For example,

in the UK, the impact of a recent policy change from
broad to narrow spectrum antibiotic usage, with a par-
ticular focus on reducing the rate of C. difficile infection
[53], was not supported with predictive modelling, po-
tentially hampering our ability to optimally assess this
intervention in a timely manner. In general, a key func-
tion of dynamic models is to predict the time scale on
which changes are expected to occur following interven-
tions, and in general this has not been done systematically
despite some efforts [13, 54, 55]. As a result, ABR model-
ling is underdeveloped relative to other areas of infectious
disease modelling that support decision-making, such as
vaccine policy where model calibration is a key require-
ment for a model to be fit for purpose [56, 57].

Questions of outcomes In managing the challenge of
antibiotic resistance, our goal is not to reduce resistance
per se, but to mitigate the health burdens that are
caused by resistance. In other words, resistance is only a
problem insofar as it leads to worse health outcomes.
But how to calculate the attributable health burdens of
resistance is an active area of research, and accordingly
this remains a barrier to developing informed policy. Ra-
ther like climate change, policies must be enacted now
to have an impact in the long term [58], but the poten-
tial long-term benefits of avoiding resistance must be
balanced against the low cost, convenience, and lifesav-
ing potential of antibiotics. Hence, a key area for model-
ling is the burden of current and future ABR, in terms
of morbidity, mortality and economic impact: widely-
cited cited projections use have been produced for
worldwide ABR burden by 2050 [59], while current and
future burden has been estimated in more rigorous
frameworks for European countries [50, 60], but better
data and methods of attribution are needed to inform
parameters such as attributable mortality [49, 61]. More-
over, predictions of future burdens should be tied where
possible to a mechanistic understanding of how resistant
infection incidence is likely to evolve over time, as de-
scribed in the prior section.
A complication of quantifying the attributable burden

of resistance lies in identifying the counterfactual to a
resistant infection: that is, whether calculating the health
burden of resistance requires comparing a resistant in-
fection to a susceptible infection, or to no infection at
all. This counterfactual would not be the same for all
pathogens and settings [62]. The incidence of the syn-
drome will also vary: for total burden it is the combin-
ation of prevalence of resistance with incidence of
syndrome that matters, and these in turn may be af-
fected by rates of antibiotic use and/or prevalence of re-
sistance [63]. Reducing this complexity down to an
index that can be easily communicated can give insight
into how resistance levels are changing in time and
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space [64]. These estimates are important not only for
policy makers, but also for properly incentivizing the de-
velopment of new antibiotics.

The case of antibiotic stewardship A key intervention
is antibiotic stewardship: preserving the efficacy of anti-
biotics by limiting their unnecessary use, optimising dos-
ages and durations of treatment, and using drugs or
combinations of drugs that limit selection for resistance.
A major impediment to effective stewardship is that we
do not know exactly what features of antibiotic use —
drug, dosage, length versus frequency of treatment epi-
sodes — are most important for promoting resistance,
and yet these factors may have a significant impact upon
resistance evolution (e.g. [35, 65]) and could help to ex-
plain the variation in resistance between settings that is
not explained by the volume of antibiotic consumption
alone. This may be due to the complexity of determining
how to measure resistance and antibiotic consumption,
how to weigh up the importance of antibiotic use across
different populations (e.g. humans versus livestock), and
what constitutes “appropriate” treatment [66].
In some settings, policies reducing antibiotic use—ei-

ther overall or within specifically targeted classes— have
been associated with reductions in resistance [67–71];
however, these conclusions have not been universal (e.g.
[72, 73]). Results vary due to key unknowns: notably,
whether reduced antibiotic use will always reduce resist-
ance, at what rate increased use will increase resistance,
whether a given population is at equilibrium resistance
prevalence and how fast these equilibria are reached.
With this level of uncertainty, mechanistic models are
often unable to robustly capture the dynamics and in-
stead statistical trend prediction or machine learning has
been employed. For example, in analysing trends for 72
pathogen-antibiotic combinations across the United
States, statistical modelling has recently suggested that
broadly-distributed, low-intensity use was more strongly
associated with resistance levels than repeated use of an-
tibiotics [74]. Since repeated use might represent the
‘low-hanging fruit’ of antibiotic stewardship efforts, this
finding highlights a potential policy challenge.
One area where discussion of ABR policy has been

most led by mathematical models is the long-standing
debate over whether rotating antibiotics (that is cycling
the use of a single antibiotic class within a single popula-
tion) or using different combinations (mixing antibiotic
classes within one population or combining antibiotics
classes within individual patients) better prevents resist-
ance acquisition (see [6] for a wider discussion). Diverse
predictions provide insight into underlying process, but
prevent universal conclusions from being drawn and
modelling may be best viewed as complementary to clin-
ical trials [75]. This highlights how far we have to go to

understand the selection and transmission of resistance
under antibiotic treatment.

The case of vaccination Vaccination has been proposed
as a means of mitigating the burden of resistant infections
[59]. Bacterial vaccines can be used to prevent infections
that may otherwise require treatment with antibiotics,
while viral vaccines can prevent diseases such as influenza
which are often treated inappropriately with antibiotics.
Mathematical frameworks have been developed for mod-
elling the broader reduction in prevalence of infection due
to vaccines [59, 76], as well as for estimating the impact of
viral vaccines on antibiotic use and resistance [51]. How-
ever, the long-term impact of bacterial vaccination on the
evolution of antibiotic resistance is complex (reviewed in
[45]), and uncertainties over what drives resistance evolu-
tion lead to varying predictions concerning whether vac-
cination inhibits or promotes the long-term evolution of
antibiotic resistance, where the nature of competition be-
tween resistant and sensitive strains has been identified as
crucial for determining the impact of bacterial vaccination
on resistance [13, 77].

The case of diagnostic tests The promise of rapid diag-
nostic tests — or substitutes such as machine-learning-
guided clinical histories [78] – is the potential to alleviate
some of the uncertainties surrounding which antibiotics
should be prescribed for a suspected bacterial infection.
Nonetheless, the evidence of clinical impact on antibiotic
use is sparse [78–80] and few studies have investigated the
impact on antibiotic use or resistance [52]. In this situation,
modellers must work closely with microbiologists and clini-
cians to develop tools that correctly capture what is being
empirically measured as well as guiding surveillance system
design; only then can models precisely determine the rela-
tive impact of interventions. It will be important to distin-
guish the short-term benefits of optimizing treatment [78]
from the longer-term effects of more appropriate treatment
on the evolution of resistance [81].

The case of clinical trials A significant barrier to deter-
mine competing risks of policy interventions is the lack
of standardisation of resistance outcomes in current
clinical trials. There is a limited number of strategic tri-
als comparing alternative antibiotic regimens, but the
majority either do not measure ABR outcomes at all, or
compare different types of clinical samples, taken at dif-
ferent times, with widely varying phenotypic and geno-
typic methods. This makes comparison between studies
very difficult and prevents the assessment of optimal
outcomes from an “ABR perspective”. There is an urgent
need to provide some harmonisation and guidance on
assessment of resistance outcomes - including some
early form of standardisation of units of resistance at an
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individual and population level [64]. Major policy inter-
ventions under consideration, for example, mass drug
treatment with azithromycin [82], will include formal
drug toxicity and clinical cost benefit assessments, but
cannot currently include any formal assessment of ad-
verse effects on drug resistance in the population as
there is no standard methodology to use. This has the
effect of downgrading potential ABR adverse outcomes,
with policy decisions driven by cost/toxicity factors that
can be formally measured. This inevitably limits the
modelling support that can be done to aid intervention
design for ABR control.

Prioritizing resources Determining where to target pol-
icies — for example, towards the agricultural community
or at interventions such as improved sanitation — is ham-
pered by a lack of quantification of the source and drivers
of ABR [83]. Building modelling into established protocols
for decision making, such as is done for vaccines in the
UK [48] and formally assessing interventions as they are
rolled out would improve decision making. In particular,
models that determine the differential impact of interven-
tions by geographical setting could be used to inform the
development of national action plans [84].

Surveillance of trends Fundamentally, modelling for
policy requires some assessment of trend: to improve
modelling requires better granular surveillance data on
trends in ABR in different environments (e.g. [85]) as well
as a better understanding of the relationships driving these
trends. Reduction in ABR must also be consistent with
policy aims—such as reducing overall infection prevalence
or mortality—which may require increasing the use of an-
tibiotics. Modellers must be sensitive not only to ABR dy-
namics, but the context within which a given policy sits.

Conclusions
Mathematical models are needed to make good deci-
sions about how to manage ABR, because they make un-
derstanding the complexities of resistance evolution
more manageable. Therefore, the mechanistic framework
of mathematical models provides a valuable opportunity
to both quantify ABR transmission and understand how
to optimise usage of antibiotics and other interventions.
Mechanistic models implicitly capture aspects of anti-
biotic resistance that we find more intuitive, such as the
selection of antibiotic resistance in the presence of anti-
biotics and the existence of fitness costs of resistance.
Accordingly, mathematical models can also help us to
formulate novel ways of managing resistance.
However, the current state of mathematical modelling

of ABR has both conceptual and empirical gaps, which
urgently need to be filled given the importance of having
good models. Model results tell us that details matter:

the strength of selection, the type and strength of fitness
costs and the extent of competition between resistant
and sensitive strains all change the dynamics of resist-
ance evolution. However, without being able to routinely
inform and calibrate these models with comprehensive
epidemiologic data, we currently lack confidence in
model predictions, most notably at the larger regional
and national scale. The potential drivers of resistance
evolution that have been supported by or identified
using mathematical models are numerous. Empirically
testing these hypotheses would allow us to identify the
mechanisms that really matter for informing policy.
Hence, whilst modelling has already been useful for

developing policy in other areas of infectious disease
control and, as such, there exist frameworks for integrat-
ing model predictions into an economic evaluation,
there is much more to be done before mathematical
modelling can robustly underpin ABR control policy.
With this in mind, we propose three key goals (Table 1)
that, if achieved, will help inform research across the
ABR control strategy portfolio.
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