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Abstract

Background: It is frequently of epidemiological and/or clinical interest to estimate the date of HIV infection or
time-since-infection of individuals. Yet, for over 15 years, the only widely-referenced infection dating algorithm that
utilises diagnostic testing data to estimate time-since-infection has been the ‘Fiebig staging’ system. This defines a
number of stages of early HIV infection through various standard combinations of contemporaneous discordant
diagnostic results using tests of different sensitivity. To develop a new, more nuanced infection dating algorithm,
we generalised the Fiebig approach to accommodate positive and negative diagnostic results generated on the
same or different dates, and arbitrary current or future tests – as long as the test sensitivity is known. For this
purpose, test sensitivity is the probability of a positive result as a function of time since infection.

Methods: The present work outlines the analytical framework for infection date estimation using subject-level
diagnostic testing histories, and data on test sensitivity. We introduce a publicly-available online HIV infection
dating tool that implements this estimation method, bringing together 1) curatorship of HIV test performance data,
and 2) infection date estimation functionality, to calculate plausible intervals within which infection likely became
detectable for each individual. The midpoints of these intervals are interpreted as infection time ‘point estimates’
and referred to as Estimated Dates of Detectable Infection (EDDIs). The tool is designed for easy bulk processing of
information (as may be appropriate for research studies) but can also be used for individual patients (such as in
clinical practice).

Results: In many settings, including most research studies, detailed diagnostic testing data are routinely recorded,
and can provide reasonably precise estimates of the timing of HIV infection. We present a simple logic to the
interpretation of diagnostic testing histories into infection time estimates, either as a point estimate (EDDI) or an
interval (earliest plausible to latest plausible dates of detectable infection), along with a publicly-accessible online
tool that supports wide application of this logic.
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Conclusions: This tool, available at https://tools.incidence-estimation.org/idt/, is readily updatable as test
technology evolves, given the simple architecture of the system and its nature as an open source project.
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Background
For pathogenesis studies, diagnostic biomarker evalu-
ation, and surveillance purposes, it is frequently of inter-
est to estimate the HIV infection time of study subjects
(i.e., the date of infection or time-since-infection).
Ideally, a biomarker signature would provide reasonable
direct estimates of an individual’s time-since-infection,
but natural inter-subject variability of pathogenesis and
disease progression makes this difficult. This work pre-
sents a general schema for utilising qualitative (i.e. posi-
tive/negative) diagnostic test results to estimate the time
of HIV infection. Such estimates can be further refined
by interpreting quantitative results on diagnostic or sta-
ging assays [1].
Most simply, nuanced infection dating applies to sub-

jects who produce at least one negative test result and at
least one positive test result (usually at a later time), tak-
ing into account that no test can detect infection imme-
diately after infectious exposure. Hence, infection can at
best be estimated to have occurred during an interval in
the past, relative to the dates of the tests.
When a subject obtains discordant results, i.e. a nega-

tive and a positive test result on the same day, this typic-
ally manifests as positive results on ‘more sensitive’ tests
than those on which the negative results were obtained.
For high-performing diagnostic tests, such as are normal
for HIV and other viral infections like hepatitis C, test
sensitivity is best understood as the probability of identi-
fying a positive case as a function of time since infection
(which is conventionally summarised as merely the
probability of correctly identifying a positive case).
For more than 15 years, the only widely-referenced in-

fection dating algorithm using diagnostic test results to
estimate time-since-infection has been the ‘Fiebig sta-
ging’ system [2]. This system defines a number of stages
of early HIV infection through various standard combi-
nations of discordant results using diagnostic tests of dif-
ferent sensitivity, with specimens from the same day. For
example, Fiebig stage 1 is defined as exhibiting reactivity
on a viral load assay, but not (yet) on a p24 antigen
assay, and in the seminal 2003 paper was estimated to
begin approximately 11 days after infection, with a mean
duration of 5.0 days [2]. The particular tests used in
these original calculations are largely no longer in use,
nor commercially available. Others have used newer
diagnostic assays to recalibrate the Fiebig stage mean

duration estimates or define similar stages as an
analogue to the Fiebig method [3, 4], though as tests
evolve and proliferate, it becomes infeasible to calibrate
all permutations of test discordancy.
Building from the Fiebig staging concept, we devel-

oped a new, more nuanced infection dating algorithm to
meet the needs of the Consortium for the Evaluation
and Performance of HIV Incidence Assays (CEPHIA) in
support of the discovery, development and evaluation of
biomarkers for recent infection [5–7]. The primary
CEPHIA activity has been to develop various case defini-
tions for ‘recent HIV infection’, with intended applicabil-
ity mainly to HIV incidence surveillance rather than
individual-level staging, although the latter application
has also been explored [6, 8]. CEPHIA has been able to
identify large numbers of well-characterized specimens
and provide consistent conditions in which to conduct
laboratory evaluations of several candidate incidence as-
says [7, 9]. A key challenge faced by CEPHIA was that
specimens in the repository had been collected from nu-
merous studies, each of which used different diagnostic
algorithms, therefore capturing different information
about the timing of HIV acquisition or seroconversion.
To meet this challenge, we had to link specimens from
thousands of study-patient interactions into a coherent
and consistent infection dating scheme, which enabled
interpretation of arbitrary diagnostic test results (as long
as the performance of the tests in question were known).
This general approach was first described in [5], but sub-
stantially refined in the present work.
In order to align diagnostic testing information across

multiple sources, one needs a common reference event
in a patient history – ideally, the time of an exposure
that leads to infection. When dealing with actual patient
data, however, we are usually constrained to estimate
the time when a particular test (X) would have first de-
tected the infection. We will call this the test(X)-specific
Date of Detectable Infection, or DDIX.
The present work outlines the analytical framework for in-

fection date estimation using ‘diagnostic testing histories’,
and introduces a publicly-available online HIV infection dat-
ing tool that implements this estimation, bringing together
1) curatorship of HIV test performance data, and 2) infec-
tion date estimation functionality. It is readily updatable as
test technology evolves, given the simple general architec-
ture of the system and its nature as an open source project.
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Methods
Generalised Fiebig-like staging
The fundamental feature of the Fiebig staging system [2]
is that it identifies a naturally-occurring sequence of dis-
cordant diagnostic tests, which together indicate early
clinical disease progression. The approximate duration of
infection can be deduced by analysing the combination of
specific assay results and assigning the appropriate “stage”.
As we demonstrate below, it is preferable to interpret

any combination of diagnostic test results into an esti-
mated duration of infection, if these tests have been inde-
pendently benchmarked for diagnostic sensitivity (i.e. a
median or mean duration of time from infection to detect-
ability on that assay has been estimated). Unlike Fiebig
staging, this more nuanced method allows both for in-
corporation of results from any available test, and from re-
sults of tests run on specimens taken on different days.
In contrast to the usual statistical definition of ‘sensi-

tivity’ as the proportion of ‘true positive’ specimens that
produce a positive result, we summarise the population-
level sensitivity of any particular diagnostic test into one
or two ‘diagnostic delay’ parameters (d and σ in Fig. 1).
Interpreted at the population level, a particular test’s
sensitivity curve expresses the probability that a speci-
men obtained at some time t after infection will produce
a positive result. The key features of a test’s sensitivity
curve (represented by the blue curve in Fig. 1) are that:

� there is effectively no chance of detecting an
infection immediately after exposure;

� after some time, the test will almost certainly detect
an infection;

� there is a characteristic time range over which this
function transitions from close to zero to close to one.
This can be summarised as something very much like
a mean or median and a standard deviation.

By far the most important parameter is an estimate of ‘me-
dian diagnostic delay’. In Fig. 1, this is the parameter d. If
there were perfect test result conversion for all subjects (i.e.

no assay ‘noise’), and no inter-subject variability, this would
reduce the smoothly varying blue curve to a step function.
Various host and pathogen attributes, such as concurrent

infections, age, pregnancy status, the particular viral geno-
type, post-infection factors, etc., affect the performance of a
test for a particular individual. This determines a subject’s
specific sensitivity curve, such as one of the green curves in
Fig. 1, which capture the probability that specimens from a
particular subject will produce a positive diagnostic result.
Because assay results are themselves not perfectly reprodu-
cible even on the same individual, even these green curves
do not transition step-like from zero to one, but rather have
some more finite window of time over which they transi-
tion from close to zero to close to one.
To estimate individual infection times, then, one needs

to obtain estimates of the median diagnostic delays and
intersubject variability (i.e. the purple curve in Fig. 1) for
all tests occurring in a data set, and then interpret each
individual assay result as excluding segments of time
during which infection was not possible, ultimately
resulting in a final inferred interval of time during which
infection likely occurred.
These calculations require that each individual has at

least one negative test result and at least one positive test
result. In the primitive case where there is precisely one of
each, namely a negative result on a test with an expected
diagnostic delay of d1 at t1 and a positive result on a test
with an expected diagnostic delay of d2 at t2, then the
interval is simply from (t1 − d1) to (t2 − d2). When there

are multiple negative results on tests at tð−Þi each with a

diagnostic delay dð−Þ
i , and/or multiple positive results on

tests at tðþÞ
j each with a diagnostic delay dðþÞ

j , then each

individual negative or positive test result provides a candi-
date earliest plausible and latest plausible date of infection.
The most informative tests are the ones that most narrow
the ‘infection window’ (i.e. result in the latest start and
earliest end of the window). In this case, the point of first
‘detectability’ refers to the time when the probability of in-
fection being detected by an assay first exceeds 0.5.

Fig. 1 Diagnostic test sensitivity as a function of time since infection. The green curves show individual subject-level test sensitivities, and the
blue curve shows the population-level average
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These remaining plausible ‘infection windows’ are usu-
ally summarised as intervals, the midpoint of which is
naturally considered a ‘point estimate’ of the date of in-
fection. Figure 2 illustrates the way this method works,
on a particular (hypothetical) individual. Given two
negative test results on one date and two positive test re-
sults on a later date, a plausible infection window can be
estimated using the diagnostic delays of the assays in
question (d1, d2, d3 and d4 in the figure). Note that it is
the most sensitive negative test and the least sensitive
positive test that proves most informative by excluding
the greatest periods of time during which infection could
not have occurred.
These infection intervals can be understood as plat-

eaus on a very broadly plateaued (rather than ‘peaked’)
likelihood function, as shown in Fig. 3. Given a uniform
prior, this can be interpreted as a Bayesian posterior,
with [a, b] in Fig. 3 showing the 95% credibility interval
(i.e. the interval encompassing 95% of the posterior
probability density). Such a posterior, derived from an
individual’s diagnostic testing history, could also serve as
a prior for further analysis if there is an available quanti-
tative biomarker for which there is a robustly calibrated
maturation/growth curve model. We do not deal with
this in the present work, but it is explored elsewhere [1],
and is an important potential application of this frame-
work and tool.
In Additional file 1: Appendix A we derive a formal

likelihood function – i.e. a formula capturing the prob-
ability of seeing a data element or set (in this case, the
set of negative and positive test results), given hypothet-
ical values of the parameter(s) of interest – here, the
time of infection. This interpretation of individual test
results relies on the assumption that test results are in-
dependent. Of course, the very factors that influence the

individual (green) sensitivity curves in Fig. 1 suggest that
strong correlations between results of different tests on
the same person are likely. Given this, we further dem-
onstrate in Additional file 1: Appendix A when and how
test correlation might influence the analysis. While this
method does not require a pre-set list of infection stages
dependent upon defined assay combinations (as with
Fiebig staging), it does require estimation of the diagnos-
tic delay for each assay, either by sourcing direct esti-
mates of the diagnostic delay, or by sourcing such data
for a biochemically equivalent assay. Our online HIV in-
fection dating tool, described below, is preloaded with
diagnostic delay estimates for over 60 HIV assays, and
users can both add new tests and provide alternative
diagnostic delay estimates for those tests which are
already included.

Implementation
The public online Infection Dating Tool is available at
https://tools.incidence-estimation.org/idt/. The source code
for the tool is available publicly under the GNU General
Public License Version 3 open source licence at https://doi.
org/10.5281/zenodo.1488117. The user-facing web interface
is described in Additional file 2: Appendix B.
In practice, the timing of infectious exposure is seldom

known, even in intensive studies, and studies of diagnostic
test performance therefore provide relative times of test
conversion [10–12]. Diagnostic delay estimates are there-
fore anchored to a standard reference event – the first time
that a highly-sensitive viral load assay with a detection
threshold of 1 RNA copy/mL of plasma would detect an in-
fection. We call this the Date of Detectable Infection (DDI).
The tool produces a point estimate of this date for each
study subject, called the Estimated Date of Detectable Infec-
tion (EDDI). Details and evaluation of the performance of

Fig. 2 Example of infection time point estimate and interval obtained for a hypothetical subject who tested negative on the Aptima qualitative
NAT assay and Determine rapid test at t1, and positive on the Geenius supplemental assay and Determine rapid test at t2
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the diagnostic delay estimates underlying this tool com-
pared with other methods for estimation of infection dates
are available elsewhere [1].
The key features of our online tool for HIV infection

date estimation are that:

1. Users access the tool through a free website where
they can register and maintain a profile which saves
their work, making future calculations more efficient.

2. Individual test dates and positive/negative results,
i.e. individual-level ‘testing histories’, can be
uploaded in a single comma-delimited text file for a
group of study subjects.

3. Estimates of the relative ‘diagnostic delay’ between
the assays used and the reference viral load assay
must be provided, with the option of using a
curated database of test properties which provides
cited estimates for over 60 HIV assays.
a. If a viral load assay’s detection threshold is

known, this can be converted into a diagnostic
delay estimate via the exponential growth curve
model [1, 2]. We assume that after the viral load
reaches 1 RNA copy/mL, viral load increases
exponentially during the initial ramp-up phase.
The growth rate has been estimated at 0.35
log10 RNA copies/mL per day (i.e., a doubling
time of slightly less than one day) [2]. The
growth rate parameter defaults to this value, but
users can supply an alternative estimate.

4. Using the date arithmetic described above, when
there is at least one negative test result and at least
one positive test result for a subject, the uploaded
diagnostic history results in:
a. a point estimate for the date of first detectability

of infection (the EDDI);

b. an earliest plausible and latest plausible date of
detectable infection (EP-DDI and LP-DDI); and

c. the number of days between the EP-DDI and
LP-DDI (i.e., the size of the ‘DDI interval’),
which gives the user a sense of the precision of
the estimate.

Access / user profiles
Anyone can register as a user of the tool. The tool saves
users’ data files as well as their choices about which
diagnostic delay estimates to use for each assay, both of
which are only accessible to the user who uploaded
them. No personally-identifying information is used or
stored within the tool; hence, unless the subject identi-
fiers being used to link diagnostic results can themselves
be linked to people (which should be ruled out by pre-
processing before upload) there is no sensitive informa-
tion being stored on the system.

Uploading diagnostic testing histories
A single data file would be expected to contain a ‘batch’
of multiple subjects’ diagnostic testing histories. Concep-
tually, this is a table like the fictitious example in Table 1,
which records that:

� one subject (Subject A) was seen on 10 January
2017, at which point he had a detectable vial load on
an unspecified qualitative viral load assay, but a
negative Bio-Rad Geenius™ HIV-1/2 Supplemental
Assay (Geenius) result

� another subject (Subject B) was screened negative
using a point-of-care (PoC) rapid test (RT) on 13
September 2016, and then, on 4 February 2017, was
confirmed positive by Geenius, having also tested
positive that day on the PoC RT

Fig. 3 The joint likelihood of obtaining a negative test result at t1 and a positive test at t2, given a hypothetical time of infection. With a uniform
prior on time of infection, this can be interpreted as a Bayesian posterior, with the interval [a,b] representing the 95% credibility interval
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In order to facilitate automated processing, the tool
demands a list of column names as the first row in any
input file. While extraneous columns are allowed with-
out producing an error, there must be columns named
Subject, Date, Test and Result (not case sensitive). Data
in the subject column is expected to be an arbitrary
string that uniquely identifies each subject. Dates must
be in the standard ISO format (YYYY-MM-DD).
It is fundamental to the simplicity of the algorithm

that assay results be either ‘positive’ or ‘negative’. There
are a small number of tests, notably Western blot and
the Geenius, which sometimes produce ‘indeterminate’
results (partially, but not fully, developed band pattern).
Note that there is some lack of standardisation on inter-
pretation of the Western blot, with practice differing in
the United States and Europe, for example. While we
provide default values for common Western blot assays,
users may enter appropriate estimates for the specific
products and interpretations in use in their specific
context.
We now briefly reconsider Table 1 by adding the

minor twist that the Geenius on Subject B is reported as
indeterminate. In this case, the data must be recorded as
results on either one or both of two separate tests:

1. a ‘Test-Indeterminate’ version of the test – which
notes whether a subject will be classified either as
negative, or ‘at least’ as indeterminate; and

2. a ‘Test-Full’ version of the test, which determines
whether a subject is fully positive or not.

There is then no longer any use for an un-suffixed ver-
sion of the original test. The data from Table 1 is re-
peated in Table 2 with differences highlighted. The only
changes are the use of the Test-Indeterminate version
for Subject A’s negative Geenius result and an indeter-
minate Geenius result for Subject B. Note that even
while Subject A’s test results have not changed, their
testing history now looks different, as completely nega-
tive results are reported as being negative even for the
condition of being indeterminate. Subject B’s indeter-
minate result on 4 February requires two rows to record,
one to report that the test result is not fully negative

(positive on ‘Geenius Indeterminate’), and one to report
that the result is not fully positive (negative on ‘Geenius
Full’). Once diagnostic delays are provided for these two
sub-tests, the calculation of infection dates can proceed
without any further data manipulation on the part of the
user.
Sample data file for uploading diagnostic testing his-

tories into the tool, with indeterminate results. Abbrevia-
tions: VL = viral load assay, Geenius = Bio-Rad Geenius™
HIV-1/2 Supplemental Assay, Full = fully reactive,
POC = point of care, RT = rapid test.

Provision of test diagnostic delay estimates
As described above, tests are summarised by their diag-
nostic delays. The database supports multiple diagnostic
delay estimates for any test, acknowledging that these esti-
mates may be provisional and/or disputed. The basic de-
tails identifying a test (i.e. name, test type) are recorded in
a ‘tests’ table, and the diagnostic delay estimates are en-
tered as records in a ‘test-properties’ table, which then
naturally allows multiple estimates by allowing multiple
rows which ‘link’ to a single entry in the tests Table. A test
property entry captures the critical parameter of the ‘aver-
age’ (usually median) diagnostic delay obtained from ex-
perimental data and, when available, a measure of the
variability of the diagnostic delay (denoted σ).
The system’s user interface always ensures that for

each user profile, there is exactly one test property esti-
mate, chosen by the user, for infection dating calcula-
tions at any point in time. Users need to ‘map’ the codes
occurring in their data files (i.e. the strings in the ‘Test’
column of uploaded data files) to the tests and diagnos-
tic delay estimates in the database, with the option of
adding entirely new tests to the database, which will only
be visible to the user who uploaded them. The tool de-
velopers welcome additional test estimates submitted for
inclusion in the system-default tests/estimates.

Execution of infection date estimation
The command button ‘process’ becomes available when an
uploaded testing history has no unmapped test codes.
Pressing the button leads to values, per subject, for EP-DDI,
LP-DDI, EDDI, and DDI interval, which can be previewed
on-screen and downloaded as a comma-delimited file.

Table 1

Subject Date Test Result

Subject A 2017-01-10 Qualitative VL Positive

Subject A 2017-01-10 Geenius Negative

Subject B 2016-09-13 POC RT Negative

Subject B 2017-02-04 POC RT Positive

Subject B 2017-02-04 Geenius Positive

Sample data file for uploading diagnostic testing histories into the tool
Abbreviations: VL viral load assay, Geenius Bio-Rad Geenius™ HIV-1/2
Supplemental Assay, POC point of care, RT rapid test

Table 2

Subject Date Test Result

Subject A 2017-01-10 Qualitative VL Positive

Subject A 2017-01-10 Geenius Indeterminate Negative

Subject B 2016-09-13 POC RT Negative

Subject B 2017-02-04 POC RT Positive

Subject B 2017-02-04 Geenius Indeterminate Positive

Subject B 2017-02-04 Geenius Full Negative
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By default, the system employs simply the ‘average’
diagnostic delay parameter, in effect placing the EP-DDI
and LP-DDI bounds on the DDI interval where the
underlying sensitivity curve evaluates to a probability of
detection of 0.5. When the size of the inter-test interval
(δ) is greater than about 20 times the diagnostic delay
standard deviation (σ), this encompasses more than 95%
of the posterior probability.
As an additional option, when values for both d and σ

are available, and a user-specified significance level (α),
the system will calculate the bounds of a corresponding
credibility interval. The bounds of the central 95% (in
the case of α = 0.05) of the posterior are labelled the EP-
DDI and LP-DDI.

Database Schema
This tool makes use of a relational database, which re-
cords information in a set of linked tables, including:

� subjects: This table captures each unique study
subject, and after infection date estimation has been
performed, the subject’s EDDI, EP-DDI, LP-DDI and
DDI interval size.

� diagnostic_test_history: This table records each test
performed, by linking to the subjects table and
recording a date, a ‘test code’, and a result. During the
estimation procedure, a field containing an ‘adjusted
date’ is populated, which records the candidate EP-
DDI (in the case of a negative result) or LP-DDI (in
the case of a positive result) after the relevant diagnos-
tic delay has been applied to the actual test date.

� diagnostic_tests: This is a lookup table listing all
known tests applicable to the current purposes (both
system-provided and user-provided).

� test_property_estimates: This table records
diagnostic delay estimates (system and user-
provided). It allows multiple estimates per test, with
system default estimates flagged.

� test_property_mapping: This table records user-
specific mapping of test codes by linking each test code
in the diagnostic_test_history table to a test in the diag-
nostic_tests table, as well as the specific test property
estimate ‘in use’ by that user for the test in question.

A number of subsidiary tables also exist to manage users
of the system and allow linking of personal data files,
maps, tests, and test property estimates to specific users.

Results
Example of infection date estimates from testing history
data
A hypothetical example showing source data and the
resulting infection date estimates is provided below. The
example data are available with the source code and as

Additional file 3 to this article. Table 3 shows the testing
history data file, which lists all diagnostic test results ob-
tained for three subjects, which represent typical cases:
Subject A had discordant test results on a single date,
with the more sensitive test producing a positive result
and the less sensitive test a negative result. Subject B
seroconverted between two dates separated by some
months. Subject C had a large number of tests, and first
produced negative results, then discordant results (posi-
tive only on a NAT assay), then an immature antibody
response, and finally exhibited a fully reactive Western
blot. A time series of this kind provides a detailed view
of early disease stage progression and yields very precise
infection time estimates.
Table 4 shows the mapping of test codes to tests in the

tool’s database, together with median diagnostic delay esti-
mates provided as default estimates in the database.
Table 5 shows the results of the estimation procedure,

together with a column indicating which test results were
most informative for deriving the EP-DDIs and LP-DDIs.
Note that the most informative tests are those that ex-

clude the greatest periods of time preceding (in the case of a
negative result) and the period following (in the case of a
positive result) the earliest dates of plausible detectability,
calculated from the test’s diagnostic delay. These are not ne-
cessarily the tests performed on the last date on which a
negative, or the first date on which a positive result was
obtained.
Further note that when the testing interval is small,

the 95% credibility interval tends to be wider than the
naïve median-based DDI interval (Subjects A and C in

Table 3 Example Dataset

Subject Date Test Result

Subject A 2017-01-10 AptimaQualNAT Positive

Subject A 2017-01-10 GeeniusIndeterminate Negative

Subject B 2016-09-13 UnigoldRT Negative

Subject B 2017-02-04 UnigoldRT Positive

Subject B 2017-02-04 GeeniusFull Positive

Subject C 2004-10-04 OraQuickRT Negative

Subject C 2005-11-05 CoulterP24 Negative

Subject C 2010-05-30 GenscreenV2 Negative

Subject C 2014-09-12 AmplicorPooledx10 Positive

Subject C 2014-09-12 BioRadWesternBlotIndeterminate Negative

Subject C 2014-09-18 ARCHITECT Positive

Subject C 2014-09-18 BioRadWesternBlotIndeterminate Positive

Subject C 2014-09-18 BioRadWesternBlotFull Negative

Subject C 2014-10-04 BioRadWesternBlotFull Positive

Example dataset for the tool. Abbreviations used in the “Test” column are
examples of the type of arbitrary abbreviations a data manager may use to
label different diagnostic assays; these abbreviations are defined in the
mapping stage, as demonstrated in this case in Table 4.
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the example), but when the testing interval is large, the
credibility interval tends to be narrower than the naïve
DDI interval (Subject B in the example).

Use of the tool in real-world research studies
The infection dating tool described in this work has
been utilized to estimate infection dates for all subjects
who contributed specimens to the CEPHIA repository,
where diagnostic testing histories could be obtained. A
key aspect of that consortium’s work has been to charac-
terise tests for recent HIV infection (HIV ‘incidence as-
says’) – in particular by estimating the two critical
performance characteristics, the mean duration of recent
infection (MDRI) and false-recent rate (FRR), which
would not have been possible without individual-level
infection time estimates (see, for example, [8]).

Discussion
The whole code base for the tool is available in a public
source code repository [17], and so anyone can deploy
their own copy of the tool, or ‘fork’ the repository (i.e.
make their own copy of the code repository) and make
any modifications they wish. The only condition is that
the origin of the code is acknowledged, and that dis-
semination of the modified code is also in open source

form under the same licensing. The developers of the
tool welcome contributions to the code, which can be
proposed through ‘pull requests’ issued on the source
code hosting platform. Test characteristics for more
than 60 common HIV diagnostic tests are included in
the code base and are easy to update as new data be-
come available.
Consistent infection dating could be of interest in the

study of other infections. Only minor modifications and
a database of tests and test property estimates would be
required to deploy a separate version of the system to
handle other infections. This would be especially useful
in contexts where multiple diagnostic platforms or algo-
rithms have been used within a single dataset intended
for a unified analysis.
Even in intensive studies from which ‘diagnostic delay’

estimates are drawn, it is rarely possible to determine
the actual date of infectious exposure. We have adopted
a nomenclature based on the earliest date on which an
infection would have had 50% probability of being de-
tected, using a viral load assay with a detection threshold
of 1 copy per ml, and we refer to this as the Date of De-
tectable Infection (DDI).
Consistent dating of infection events across subjects

has obvious utility when analysing multi-site datasets

Table 4 Example Mapping

Test code Database test name Median diagnostic delay Ref.

AptimaQualNAT Aptima HIV-1 RNA Qualitative Assay 4.2 [13]

GeeniusIndeterminate BioRad Geenius Indeterminate 24.8 [14]

GeeniusFull BioRad Geenius Fully Reactive 28.8 [14]

UnigoldRT Trinity Biotech Unigold Rapid HIV Test 25.1 [12]

OraQuickRT-Blood OraSure OraQuick ADVANCE whole blood 27.7 [12]

CoulterP24 Coulter p24 HIV-1 Antigen Assay 11.5 [2]

GenscreenV2 BioRad Genscreen HIV-1/2 Version 2 Assay 19.1 [15]

AmplicorPooledx10 Pooled Roche Amplicor Monitor v1.5 (ultrasensitive) (Pool of 10) 7.7 [16]

ARCHITECT Abbott ARCHITECT HIV Ag/Ab Combo 10.8 [12]

BioRadWesternBlotIndeterminate BioRad GS HIV-1 Western blot Indeterminate 14.8 [10]

BioRadWesternBlotFull BioRad GS HIV-1 Western blot Fully Reactive 29.6 [12]

Table 5 Example Results

Subject EP-DDI
(naïve)

LP-DDI
(naïve)

Interval size
(naïve)

EP-DDI
(95% CI)

LP-DDI
(95% CI)

EDDI (95% CI
midpoint)

Interval size
(95% CI)

Most informative tests

Subject A 2016-12-16 2017-01-06 21 2016-12-11 2017-01-05 2016-12-23 25 GeeniusIndeterminate_Neg
2017-01-10
AptimaQualNAT_Pos
2017-01-10

Subject B 2016-08-19 2017-01-06 140 2016-08-21 2017-01-03 2016-10-27 135 UnigoldRT_Neg 2016-09-13
GeeniusFull_Pos 2017-02-04

Subject C 2014-08-28 2014-09-04 7 2014-08-24 2014-09-05 2014-08-30 12 BioRadWesternBlot-Indeterminate
_Neg 2014-09-12
BioRadWesternBlotFull_Pos
2014-10-04
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that contain different underlying screening algorithms.
Consistent use of ‘diagnostic history’ information is also
valuable for individual-level interpretation of infection
staging at diagnosis. However, a limitation of this ap-
proach is that it relies on details of diagnostic testing
histories that are often not recorded or clearly reported.
For example, it may be noted that a subject produced a
negative Western blot result on a particular date, but
without recording of the specific product and the inter-
pretive criteria employed. This challenge is further com-
pounded by country-specific variations in assay names
and interpretive criteria for the same assays.
There are two cases in which this method cannot be

employed. First, if the first HIV test an individual ever
has is a fully reactive test (i.e. no negative test result is
ever reported for that individual, on any assay), there is
no way to create an infection time interval. Luckily,
given WHO 90–90-90 targets and PEPFAR testing
programs throughout the world, it has become
increasingly common for individuals to test for HIV
regularly. Second, self-reported testing histories may lack
precise information on the dates of tests and the specific
assays used, in which case this tool cannot be used to
estimate infection time. If a “likely” assay can be
determined (e.g. by substituting with a typical country
testing algorithm) this can serve as a proxy, with some
unknown level of bias introduced into the estimate.
Lastly, when a last negative result and a first positive
result are separated by a long period of time, very
uninformative infection time estimates are produced by
this method. In these cases, the interpretation of add-
itional quantitative markers – utilising the infection time
intervals estimated by this tool as ‘priors’ – can yield in-
formative estimates [1].
A simple method for interpreting additional quantita-

tive markers (such as a signal-to-cut-off ratio from the
ARCHITECT diagnostic assay or a normalised optical
density from the Limiting Antigen Avidity recency assay)
is to report the Mean Duration of Recent Infection
associated with an equivalent recency discrimination
threshold as a ‘time scale’: on average, a subject
producing y quantitative result has been infected for less
than x days – see for example [8].

Conclusions
In many settings, including most research studies, de-
tailed diagnostic testing data are routinely recorded, and
especially when regular testing occurred, can provide
reasonably precise estimates of the timing of HIV infec-
tion from purely qualitative results.
We have presented a simple logic for the interpret-

ation of ‘diagnostic testing histories’ into ‘infection time
estimates’ as a point estimate (EDDI) and an interval

(EP-DDI – LP-DDI), implemented in a publicly-accessible
online tool that supports wide application of this logic.

Availability and requirements
Project name: Infection Dating Tool
Project home page: https://tools.incidence-estimation.

org/idt/
Source code: https://github.com/SACEMA/infection-

dating-tool/
Latest release: https://doi.org/10.5281/zenodo.1488117
Operating systems: Platform independent
Programming language: Python
Other requirements: Python 2.7.x, Django 1.9.6
License: GNU GPL-3

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12879-019-4543-9.

Additional file 1: Appendix A. Formal likelihood function and impact
of test correlation. (PDF 949 kb)

Additional file 2: Appendix B. Infection Dating Tool Web Interface.
(PDF 963 kb)

Additional file 3: Example Testing History Dataset. A dataset of the
form that can be processed by the Infection Dating Tool, for three
subjects. The data in this file are demonstrative and do not come from
real subjects. Subject A had discordant test results on a single date, with
the more sensitive test producing a positive result and the less sensitive
test a negative result. Subject B seroconverted between two dates
separated by some months. Subject C had a large number of tests, and
first produced negative results, then discordant results (positive only on a
NAT assay), then an immature antibody response, and finally exhibited a
fully reactive Western blot. (CSV 704 bytes)
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