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Abstract

Background: Despite the greater sensitivity of the new dengue clinical classification proposed by the World Health
Organization (WHO) in 2009, there is a need for a better definition of warning signs and clinical progression of
dengue cases. Classic statistical methods have been used to evaluate risk criteria in dengue patients, however they
usually cannot access the complexity of dengue clinical profiles. We propose the use of machine learning as an
alternative tool to identify the possible characteristics that could be used to develop a risk criterion for severity in
dengue patients.

Method: In this study, we analyzed the clinical profiles of 523 confirmed dengue cases using self-organizing maps
(SOM) and random forest algorithms to identify clusters of patients with similar patterns.

Results: We identified four natural clusters, two with features of dengue without warning signs or mild disease,
one that comprises the severe dengue cases and high frequency of warning signs, and another with intermediate
characteristics. Age appeared as the key variable for splitting the data into these four clusters although warning
signs such as abdominal pain or tenderness, clinical fluid accumulation, mucosal bleeding, lethargy, restlessness,
liver enlargement and increased hematocrit associated with a decrease in platelet counts should also be considered
to evaluate severity in dengue patients.

Conclusions: These findings suggest that age must be the first characteristic to be considered in places where
dengue is hyperendemic. Our results show that warning signs should be closely monitored, mainly in children.
Further studies exploring these results in a longitudinal approach may help to understand the full spectrum of
dengue clinical manifestations.
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Background
Dengue is an acute and systemic disease caused by the
dengue virus (DENV), with a broad clinical spectrum
ranging from asymptomatic to severe infections. Most
infections by DENV result in a mild disease known as
dengue without warning signs, but a small proportion of
patients develop the severe form [1].
Although the World Health Organization (WHO) is-

sued the revised dengue guideline with a new clinical

classification [2], there is still debate regarding its speci-
ficity [3, 4]. This new classification grouped the patients
according to the presence or absence of warnings signs
and severe dengue. Studies evaluating the new classifica-
tion demonstrated a greater sensitivity when applied in
endemic regions in both prospective and retrospective
data, but the authors highlighted the need for a better
definition of warning signs, mainly in the absence of la-
boratory tests [5, 6].
Classic statistical methods have been used to evaluate

warning signs and determine risk criteria for severity in
dengue patients [7–9], however, the complexity of the
clinical profiles and the many overlapping levels of se-
verity makes the disease prognosis nearly impossible to
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predict. The challenge in modeling this type of clinical
data in a multifactorial disease such as dengue relies on
the choice of an appropriate modeling approach that in-
stead of providing a single predictive attribute, considers
a combination of variables regardless of the data
structure.
The use of unsupervised machine learning techniques

is becoming popular in the medical field to reduce the
dimensionality of the data and to help visualize possible
patterns. The self-organizing map (SOM) is especially
suitable for this task because it projects the high dimen-
sion data into a low dimension without losing the data
structure [10]. Due to the increase in volume and com-
plexity of data over the last decade, especially in the
medical field, several variants of the SOM algorithm
were introduced to generalize the original algorithm to
handle both numerical and categorical attributes. When
data are described by categorical variables or by relations
between objects, a common solution is to use a measure
of resemblance (i.e., a similarity or a dissimilarity meas-
ure). A general extension of this idea is a stochastic ver-
sion of SOM that can be used to analyze dissimilarity
data [11].
Another machine learning technique that has been

successfully used in the medical field is the random for-
est [12]. It provides a proximity scores matrix that as-
sesses the number of samples and the similarity/
dissimilarity matrices between them. Both matrices
(similarity and dissimilarity) can be used to perform a
powerful unsupervised analysis to identify patterns in
the data structure.
In this study we combined random forest followed by

stochastic SOM to visualize possible natural clusters as-
sociated to clinical natural patterns in dengue confirmed
cases. These clusters were then reviewed for possible
characteristics that could be used as risk criteria in den-
gue patients.

Methods
Study population and eligibility criteria
In this descriptive cross-sectional study, we analyzed
retrospective data of patients with suspicion of dengue
infection, assisted at the hospital of the Instituto Nacio-
nal de Infectologia Evandro Chagas/FIOCRUZ, Brazil
between January 2007 and December 2013. Following
the age shifting in Brazil in 2007, the Instituto Nacional
de Infectologia Evandro Chagas started a project to
study dengue infection in children in collaboration with
three pediatric hospitals in the city. These hospitals also
serve as primary care and tertiary care for dengue, there-
fore patients with suspicion of dengue infection and ad-
mitted into these pediatric hospitals in Rio de Janeiro RJ
were also included in this analysis.

The inclusion criteria were laboratory-confirmed den-
gue virus (DENV) cases enrolled up to 7 days from the
onset of the symptoms and followed until the outcome
(cure or death), which encompassed the acute and crit-
ical phases of the disease. Patients with comorbidities
and cases with more than 7 days after the onset of the
symptoms at the time of admission were excluded from
this analysis. Only subjects with complete data for all
variables including laboratorial and clinical dengue clas-
sification were included in our analysis. All dengue cases
included in this study were confirmed by at least two of
the following criteria: (i) positive DENV-specific real-
time reverse transcription polymerase chain reaction
(RT-PCR) for any serotype (I-IV) (QIAamp Viral RNA
Mini Kit, Qiagen, Hilden, Germany, following the proto-
col described in Lanciotti et al. [13]), (ii) at least one
positive DENV-specific immunoglobulin M (IgM) anti-
body in the convalescent serum compared to in the
acute-phase serum or positive for qualitative IgM with
dengue clinical profile during epidemic periods. Tests
for detection of anti-dengue IgM were conducted using
an antibody-capture enzyme-linked immunosorbent
assay (PanBio, Brisbane, Australia), and/or (iii) NS1 anti-
gen capture by using the Platelia™ Dengue NS1 Ag-
ELISA Kit (Bio-Rad Laboratories, Marnes-La-Coquette,
France) in the acute-phase serum (up to 3 days after the
onset of fever), (iv) clinical-epidemiological diagnosis
during epidemic periods .

Data preprocessing and clinical classification
Data were obtained from each patient’s medical re-
cords. We created a categorical variable called “age
group” (≤ 18 years old and > 18 years old) to better de-
fine the distribution of the variables among children
and adults in the exploratory analysis. The variables age
and days were normalized to reduce its variability be-
fore using to define the similarity matrix. Variables such
as hematocrit and platelet increase/decrease as well as
imaging data to define cavities fluid accumulation were
based on at least two tests of complete blood count
analyses and X-ray images, respectively. These variables
were used to define some warning signs, but they were
not included in this analysis.
The clinical classification was performed by trained

clinicians based on the WHO guideline. It was then used
to compare to the natural clusters defined by the un-
supervised neural network. The classification divided the
patients into three groups: dengue without warning
signs, dengue with warning signs and severe dengue.
Warning signs included: abdominal pain or tenderness;
persistent vomiting (more than 5 times in 6 h or more
than 3 times in 1 h); clinical fluid accumulation includ-
ing pleural effusion and ascites identified as a reduction
of vesicular murmur or reduction of thoracic-vocal trill;
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abdominal distention or dullness decubitus, confirmed
by abnormal imaging findings; mucosal hemorrhage
(gastrointestinal hemorrhage and/or metrorrhagia);
lethargy (alteration of consciousness and/or Glasgow
score < 15) or irritability; and liver enlargement (> 2 cm
below the costal margin). Laboratory findings were de-
fined as follows: thrombocytopenia (platelet count, 50,
000/mm3) and hematocrit change of 20%, either raised
or decreased by 20% from the baseline value during the
convalescent period. Severe dengue was defined by the
following characteristics: (i) Plasma leakage resulting in
shock or fluid accumulation with respiratory distress.
Shock was defined as the presence of at least 2 of the
clinical signs of hypoperfusion, with or without an asso-
ciated weak pulse pressure (≤20 mmHg) or hypotension
for the specified age (decrease in blood arterial systolic
pressure 5th percentile for age [<PAS5], calculated as
age [years] 2 + 70) [14]; or (ii) severe bleeding, or (iii)
severe organ involvement, e.g., severe hepatitis
(aspartate aminotransferase/alanine aminotransferase
levels > 1000 IU/L); Multiple-organ dysfunction syn-
drome was considered when dysfunction involved 2 or
more organs. Definition and clinical criteria of these signs
and symptoms are better described elsewhere [15, 16].

Unsupervised machine learning techniques
Random forest
Random forest is an algorithm based on constructing a
binary tree using recursive partitioning. Each binary split
recursively divides the parent branch into homogeneous
or near homogeneous daughter nodes (the ends of the
tree). The trees are built using a two-stage randomization
procedure. The first stage introduces the randomization
using a bootstrap sample of the original data, and in the
second, the randomization is introduced at the node level,
by selecting a random subset of variables, and only those
variables that keep the purity (homogeneity) of the node
are kept during the split. This homogeneity is calculated
by the Gini Impurity Index (Eq. 1) and it determines the
purity of each node based on the relative frequency of the
class in the node being evaluated.

G Sð Þ ¼ 1−Σπ2
i ð1Þ

where S is the node being evaluated and πi is the fre-
quency of the class k in the node S.
The advantage of this two-step randomization relies

on the generation of decorrelate trees besides the guar-
antee that even those weak features are considered in
the analysis [12]. An “out-of-bag” (OOB) error rate for
each observation is calculated using the samples not in-
cluded in the bootstrap and it is determined by majority
vote across trees. Each tree is unpruned to obtain low-
bias trees while bagging and random variable selection

results in low correlation of the individual trees. Thus,
the algorithm yields an ensemble that can achieve low
bias and low variance [12].
Random forests can be used as an unsupervised tech-

nique. This approach involves the generation of a synthetic
dataset to represent data without dependence. The synthetic
dataset is appended to the original one, and a two-level clas-
sification variable (“original” and “synthetic”) is created.
Then a supervised random forest predictor is constructed to
classify original from synthetic data [17]. One important
output information provided by random forest predictor is a
measure of the internal structure of the data (the proximity
between data points). This proximity can be determined by
examining the node membership of the data. Once this
process is done for all trees, the proximities are normalized
by dividing them by the total number of t-trees. These
scores are then stored in a proximity matrix. This matrix
can be used to calculate a dissimilarity matrix by subtracting
one from each of the elements, allowing a direct comparison
for clustering and visualization approaches to detect data
structures in high-dimensional space [17].
The Random forest algorithm was applied in an un-

supervised setting to calculate the dissimilarity matrix
(SOM input). All analyses were performed by using ran-
domForest package in R [18].

Stochastic self-organizing maps (SOM)
SOM is a neural network that uses unsupervised
competitive learning to map nonlinear statistical rela-
tionships between high-dimensional data into low di-
mensional grids while maintaining its original
topology. Its architecture usually consists of a two-di-
mensional grid (input and output) with each cell in
the array having a processing unit called “neuron”.
The neurons are connected to adjacent ones by a
neighborhood function and the data points closest to
each other in the input space are mapped into nearby
neurons on the grid [19].
The SOM training is iterative, and it uses competitive

learning where the neurons of the output layer compete
to be updated. First, there is a competitive learning
phase where a sample xi is randomly chosen from the in-
put data and the distance (Euclidean Distance) between
the sample and all prototypes p are computed [19].
The closest neuron to the input is declared the winning

neuron or Best Matching Unit (BMU) pu, u ϵ {1, ...,U}, and it
can be calculated by Eq. 2.

f xið Þ ¼ arg minu¼1;…;U‖xi−pu‖ ð2Þ

where ||.|| is the Euclidean distance in ℜd.
The next step consists of a cooperative phase identify-

ing BMU’s neighboring neurons using a neighborhood
Gaussian function. Finally, all the prototype vectors are
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updated. It can be performed either by updating all pro-
totypes via a weighted average (batch SOM) or in a sto-
chastic version where the prototypes are updated
mimicking a stochastic gradient descent scheme as de-
scribed by the Eq. 3. The resulting grid shows the rela-
tionship between the neurons displaying the distances
between input data [19].

∀u ¼ 1;…;U→pu t þ 1ð Þ
¼ pu tð Þ þ α:h d f xið Þuð Þð Þ x−pu tð Þð Þ ð3Þ

where t means time, α(t) learning rate and h is a
neighborhood kernel function centered on the winner
unit.
The best grid is usually chosen by checking two error

measures: (1) quantization error and (2) topographic
error. The topographic error or Te (Eq. 4) quantifies the
continuity of the map with respect to the input space
metric by counting the number of times the second-best
matching (BMU2) unit of a given observation belongs to
the direct neighborhood of the BMU for this observa-
tion, whereas the quantization error or Qe (Eq. 5) pro-
vides the mean distance between each vector and the
cluster prototypes for k clusters [10].

Te ¼ 1
n

Xn

k¼1

u xkð Þ ð4Þ

where u(xk) is 1 if the winning neuron (BMU1) and
the second neuron (BMU2) are neighbors and 0 if they
are not neighbors.

Qe ¼
Pn

k¼1‖xk−ωBMU‖

n
ð5Þ

where the mean error corresponding to the difference
between the input vector (xk) and vector weight
(ωBMU).
Several variants of the SOM algorithm have been in-

troduced to overcome its limitations such as the inability
of distinct types of variables and/or structure [11, 20, 21].
One of the extensions relies on the computation of a
measure of similarity or dissimilarity as input data where a
natural Euclidean structure is not necessarily existent, in-
stead, the dissimilarity between the observations can be
described by a dissimilarity measure Δ, where Δ = (δij)i,j =
1,...,n, such that Δ is non negative (δij ≥ 0), symmetric,
(δij = δji) and null on the diagonal (δii = 0).. In this case, the
Eq. 2 cannot be carried out straightforwardly since the
distances between the input data and the prototypes
are not be directly computable. The solution is based
on the pseudo-Euclidean framework which considers
the prototypes as symbolic convex combinations of
the original data [11]. In the stochastic version, it is

calculated as described in the Eqs. 6 and 7 which are
modification of the Eqs. 2 and 3.

f xið Þ ¼ arg minu¼1;…;UD γu
� �

i−
1
2
γTu Dγu ð6Þ

γ t þ 1ð Þ←γu tð Þ þ α:H d f xið Þ; uð Þð Þ 1i−γu tð Þ� � ð7Þ
where γu, given u = 1, …, U are the convex combina-

tions of the input data and 1i is a vector with a single
non-null coefficient at the i-th position, equal to one.
Here we apply this technique to reduce the high-dimen-
sionality and find natural patterns in the data by using
the package SOMbrero in R [22]. This package provides
the use of dissimilarity measures as input data and an
ascending hierarchical clustering algorithm on the pro-
totypes of the trained grid (superClass) for visualization
of the natural clusters. The workflow of the methodolo-
gies applied is summarized in the Fig. 1.

Statistical analysis
For descriptive analyses, frequency and percentages were
used for categorical variables. For continuous variables,
median, range and IQR were used. Categorical variables
were compared by using Chi-square test, whereas Fisher’s
exact test was performed when the expected table values
were smaller than 5. The difference by age and days after
the onset of the symptoms among the natural clusters
were compared by a one-way ANOVA analysis. Significant
differences considered p-value < 0.05. Statistical analyses
were performed using the R statistical software R 3.5.1 [23].

Fig. 1 Workflow
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Results
From 710 cases reported as dengue during the studied
period, 93 were excluded due the lack of laboratorial
data and/or missing information and/or had comorbid-
ity, 48 had more than 7 days after the onset of the symp-
toms, 46 were not able to be classified due to missing
information for one or more clinical variables. It resulted
in 523 confirmed dengue cases that were used to identify
natural patterns in the clinical profiles of patients up to
7 days of disease based on the presence of 30 different
variables used for dengue clinical classification. Overall,
the average age was 31 years and 49.1% were female.
One hundred sixty-two (31%) were children (≤ 18 years
old) and 361 (69%) were adults (> 18 years old). Dengue
serotypes were identified in 183 (35%) of the patients.
The profile of the 523 patients included in this study
and serotypes identified are shown in Table 1.
The more frequent clinical signs/symptoms in the chil-

dren vs. adults were nausea/ vomiting (59.2%), persistent
vomiting (56.2%), history of abdominal pain (49.4%), ab-
dominal pain or tenderness (48.8%), petechiae (38.3%),
clinical fluid accumulation (pleural effusion/ascites)
(31%) and liver enlargement > 2 cm (21.6%). Adults pre-
sented more myalgia (79%), retro-orbital eye pain
(55.1%), arthralgia (53.4%) than children. The frequency
of these signs and symptoms by age group are described
in the Table 2.
The resulting dissimilarity matrix generated by un-

supervised random forest was then used as input to
perform the stochastic SOM algorithm. One resulting
grid was selected after several trainings based on the
final energy and the topographic and quantization
errors. The grid with the lowest topographic error
(0.05) and quantization error (0.43) was chosen
(Table 3). The lowest topographic error provides the
best representation of the data structure on the grid;
therefore, it was prioritized.

A hierarchical clustering was then applied on the
SOM prototypes to better understand and visualize the
structure in the grid resulting in a dendrogram (Fig. 2),
from which 4 clusters were considered as the best div-
ision. The best division was selected based on a non-
parametric MANOVA described by Anderson [24]. This
test is a multivariate analogue to Fisher’s F-ratio and is
calculated directly from any symmetric distance or dis-
similarity matrix. The P-values are then obtained using
permutations of the observations to obtain a probability
associated with the null hypothesis of no differences
among clusters. For 4 clusters, the results were F: 6·57
and p-value < 0·001.
The numbers in each node in Fig. 2 correspond to one

neuron of the SOM grid and they were grouped accord-
ing to the clusters defined by the MANOVA analysis
(rectangles). These clusters were then all labeled with
the patient’s number to obtain the classification and clin-
ical profile from the original data (Table 4).
From 523 patients analyzed, 61 were grouped in clus-

ter 1, 124 in cluster 2, 129 in cluster 3 and 209 in cluster
4. According to the specialist’s classification (Table 4),
78·7% and 75·2% of the patients in clusters 1 and 3
were classified as Dengue without Warning Signs only
(p-value: 5·11e-14). Clusters 2 and 4 had 30·7% and
39·2% of the patients classified as Dengue with warn-
ing signs (p-value: 0·001) respectively, however, clus-
ter 4 had the highest percentage of patients classified
as severe dengue, which characterize this group as
more severe than the others (p-value:5·55e-09). The
distribution of the WHO classification by clusters is
shown in the Fig. 3.
The distribution of days after the onset of symptoms

between clusters was also analyzed (Fig. 4). The patients
in cluster 1 were between the 1st and 3rd day of disease.
Cluster 3 showed higher frequency of patients between
the 2nd and 4th days. Clusters 2 and 4 showed both a

Table 1 Demographic characteristics and serotypes of the studied population according to the clinical classification

Dengue without warning sing (n = 293) Dengue with warning signs (n = 160) Severe dengue (n = 70)

Sex (n, female/male) (140/153) (72/88) (45/25)

Age (years) Min. 0 Min. 0 Min. 0

Mean 31 Mean 31 Mean 30

Max. 79 Max. 82 Max. 67

Age group (n, ≤ 18 years old/> 18 years old) (72/221) (61/99) (29/41)

Dengue serotype

DENV-1 (%) 20 (6.8) 10 (6.2) 3 (4.3)

DENV-2 (%) 21 (7.2) 7 (4.3) 2 (2.9)

DENV-3 (%) 4 (1.36) 4 (2.5) 1 (1.42)

DENV-4 (%) 79 (27) 23 (14.4) 9 (12.8)

N Number of patients
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higher frequency of patients between 4th - 6th and 5th–
7th days of disease respectively (p-value < 0.05).
The age distribution between the clusters showed

that clusters 1 and 2 concentrate the older patients
(age range between 40 and 80 years old), cluster 3
had a higher frequency of young adults (20–40 years
old) and cluster 4 consisted mainly of children (5–15
years old) (Fig. 5).

A pairwise analysis was then applied to compare the
proportions of each variable between the clusters. The
adjusted p-values are shown in the Table 5.
The variables rash, tourniquet positive test, narrow pulse

pressure, cold skin, impaired consciousness and AST or
ALT> = 1000 did not have any influence on the cluster’s
division (p-values > 0·05). Alternatively, the variables nau-
sea/vomit and persistent vomiting differentiated all clusters
(p-values < 0·001). These variables were also more frequent
in children ≤18 years old than in adults (Table 2).
The patient’s status (outpatient/inpatient) had also

showed to be significant in the cluster’s division except
for clusters 1 and 3 that disclosed no difference in the
distribution of this variable (p-value: 0·6296).
The variables history of abdominal pain, leukopenia,

and warning signs such as abdominal pain or tenderness,

Table 2 Distribution of clinical variables by age group

Variables Abbreviations ≤18 years old
n = 162 (%)

> 18 years old
n = 361 (%)

Nausea/ vomiting nau/vom 96 (59.2) 142 (39.3)

Rash rash 69 (42.6) 177 (49)

History of abdominal pain abpainhist 80 (49.4) 118 (32.7)

Myalgia myal 101 (62.3) 285 (79)

Arthralgia athral 47 (29) 193 (53.4)

Pain behind the eyes (retro-orbital eye pain) retpain 58 (32.1) 199 (55.1)

+ tourniquet test tourniq+ 5 (3.1) 6 (1.6)

Petechiae pet 62 (38.3) 96 (26.6)

Leukopenia leukop 82 (50.6) 175 (48.5)

Abdominal pain or tenderness abpain.ws+ 79 (48.8) 113 (31.3)

Persistent vomiting pvom.ws 91 (56.2) 124 (34.3)

Clinical fluid accumulation (pleural effusion/ascites) cfa.ws 50 (31) 32 (8.8)

Mucosal bleed bleed.ws 53 (32.7) 79 (21.8)

Lethargy, restlessness letha/rest.ws 16 (9.9) 19 (5.2)

Liver enlargement > 2 cm liveren.ws 35 (21.6) 31 (8.6)

Increase hematocrit + decrease of platelet count hto/plt.ws 40 (24.7) 41 (11.3)

Dehydration dehyd.spla 37 (22.8) 84 (23.2)

Edema edema.spl 16 (9.9) 23 (6.4)

Hypotension hypo.spl 15 (9.2) 17 (4.7)

Narrow pulse pressure < 20 mmHg, pp < 20 mmHg.spl 5 (3) 6 (1.6)

Cold clammy skin/cyanosis coldskin.spl 8 (5) 9 (2.5)

Rapid and weak pulse rwp.spl 10 (6.1) 11 (3)

Slow capillary filling scf.spl 16 (9.9) 15 (4.1)

Respiratory distress respdist.spl 15 (9.2) 19 (5.2)

Severe bleeding severeb 28 (17.3) 37 (10.2)

Impaired consciousness neuro.soib 4 (2.4) 18 (5)

Aspartate transaminase/alanine transaminase > = 1000 alt/ast > 1000.soi 3 (1.8) 4 (1.1)

+ Warning Sign, aSevere Plasma Leakage, bSevere Organ Involvement

Table 3 SOM training features

Metric Mean of 10 grids Chosen grid

Topographic Error 0.1220 0.0554

Quantization Error 0.4241 0.4388

Final Energy 0.0120 0.0175
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clinical fluid accumulation, mucosal bleeding, lethargy,
restlessness, liver enlargement and increase hematocrit
associated with a decrease in platelets count were re-
sponsible for the cluster 4 definition. The variables that
define shock (respiratory distress, rapid and weak pulse
and slow capillary filling) were also more significant in
distinguishing cluster 4 from the others. The only excep-
tion was the variable cold clammy skin/cyanosis that did
not show any difference between the clusters. Other var-
iables such as edema and hypotension were responsible
only for distinguishing clusters 1 and 3 from cluster 4 but
did not show any difference between clusters 1, 2 and 3.
Whereas mucosal bleeding distinguished clusters 1

and 3 from 2 and 4, it also differentiated clusters 2 and 4.
Cluster 2 shared characteristics with cluster 4 (petechiae)
and clusters 1 and 3 (myalgia, arthralgia and pain behind
the eyes) which define this cluster as an intermediary pro-
file. Dehydration was the only variable that differentiated
cluster 1 from the others including cluster 3 which shares
similar characteristics with cluster 1.

Discussion
Combined unsupervised machine learning methodolo-
gies were useful to identify natural patterns in clinical
dengue data, leading to the identification of four well de-
fined clusters profiles. Two clusters (1 and 3) had more

than 70% of the patients classified as Dengue without
Warning Signs only (p-value: 5·11e-14), which could be
denominated as low-risk patients. Cluster 4 had the
highest percentage of patients classified as severe dengue
(p-value:5·55e-09) which could be labeled as high-risk
group (Table 4). By using similar methodology, Faisal et
al. [10] found five natural clusters that could also be
clustered in two major clusters as lower risk and higher
risk. However, these authors considered only laboratory
data (numerical data) of patients in critical phase
whereas here we included continuous and categorical
variables characterized by the WHO guideline [2] to
classify dengue patients in all phases (acute, critical and
recovery).
The analysis of all phases of the disease suggests that,

besides the rapid evolution of dengue, the transition
from dengue without warning signs to dengue with
warning and severe dengue happens gradually and it
may be linked to the age of the patients. Patients classi-
fied as dengue without warning signs (Cluster 1) showed
a higher percentage of patients in the acute phase (up to
3 days after the onset of symptoms) whereas cluster 4,
with the highest percentage of severity, had a higher per-
centage of patients between the critical and recovery
phases (5–7 days). The same was not observed for clus-
ters 2 and 3. These clusters grouped the patients in the

Fig. 2 Hierarchical cluster analysis applied on SOM prototypes. SC Super Cluster

Table 4 Clusters according to the WHO (2009) classification

Classification Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%) aX-squared P-value

Dengue without WS 48 (78·7) 72 (58) 97 (75·2) 76 (36·3) 64·95 5·11e-14

Dengue with WS 11 (18) 38 (30·7) 29 (22·5) 82 (39·2) 15·88 0·001

Severe Dengue 2 (3·3) 14 (11·3) 3 (2·3) 51 (24·5) 41·33 5·55e-09

Total 61 (100) 124 (100) 129 (100) 209 (100) – –

WS Warning signs, aChi-Square test: H0 = all the proportions are equal; H1 = At least one proportion is different
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end of the acute phase (Cluster 3) and in the beginning
of the critical phase (Cluster 2) (Fig. 4). Nevertheless,
these results should be further explored in future studies
including age-dependence of infection and clinical pres-
entation in a longitudinal approach.
Age appeared as the most remarkable variable in the

cluster’s division showing statistical significance between
clusters (Fig. 5). While the low-risk cluster 1 showed a
higher concentration of older patients (40–80 years old),
the high-risk cluster 4 was characterized mostly by chil-
dren (5–15 years old). This can be explained by dengue’s
age shifting in 2007 in Brazil, when there was an in-
crease of 53% of severe cases occurring in children
under 15 years old, and the association of occurrence of
severe dengue and hospitalization in younger patients

[26]. By simulating the force of infection of dengue
based on an age stratified seroprevalence dataset, Rodri-
guez-Barraquer et al. [27] proposed that the conditions
for the age shifting in Brazil were being set gradually
and that they represent the transition from re-emer-
gence to hyperendemicity. Our study suggests a similar
association because more than 60% of patients in the
high-risk cluster were younger than 10 years old (Fig.
5), so that age must be the first characteristic to be
considered in dengue hyperendemic areas such as
Brazil. The high-risk cluster was mainly characterized
by young inpatients showing signs or symptoms of shock
(Table 5), justifying the high rate of hospitalization in this
cluster. Warning signs such as clinical fluid accumulation,
abdominal pain, leukopenia, mucosal bleeding, lethargy,
restlessness, liver enlargement and increase hematocrit
(hemoconcentration) associated with the decrease of plate-
lets (thrombocytopenia) were also crucial to discriminate
this cluster from the others (Table 5). In our exploratory
analysis we also found some of these symptoms more fre-
quent in children ≤18 years old than in adults (Table 2).
Wakimoto et al. [28] confirmed that abdominal pain, bleed-
ing, lethargy, liver enlargement, hemoconcentration with
thrombocytopenia were independently associated with se-
vere dengue in children. Our results confirm these findings
and the need for monitoring these parameters in children
with dengue.
There was divergent clinical presentation among the

low-risk clusters. Besides these clusters sharing a higher
frequency of Dengue without warning signs symptoms
such as arthralgia, myalgia, and retroorbital pain, the
variable dehydration was the only variable discriminating

Fig. 3 Distribution of the WHO classification by cluster. SD Severe
Dengue, DWS Dengue with Warning Signs, DnoWS Dengue without
Warning Signs

Fig. 4 Days after the onset of the symptoms according to the clusters defined by SOM±. ± There was a statistical difference between four
clusters: ANOVA F = 14.43, p-value = 4.85e-09
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cluster 1 from the others (Table 5). In a prospective ob-
servational study in adults with median 35 years old,
Thomas et al. [29] observed that dehydration and elec-
trolyte loss was associated with severe patients with
symptoms of presyncope, intense weakness, prolonged
gastrointestinal symptoms, hypotension and no evidence
of plasma leakage. Indeed, cluster 1 presented the lowest
percentage of patients with dehydration and highest per-
centage of patients classified as Dengue without warning
signs, indicating a good prognosis.
Cluster 2 showed intermediary characteristics, holding

the second highest percentage of patients with warning
signs and severe dengue but also sharing characteristics
with the low-risk clusters (myalgia, arthralgia and pain
behind the eyes) (Table 5). Kuo et al. [30] showed that
elderly patients with dengue had significantly higher fre-
quencies of vomiting, mucosal bleeding; higher WBC
count, AST and ALT levels, and lower platelet count;
when compared with their younger counterparts in crit-
ical phase. As cluster 2 was characterized by patients
varying in age including children and the elderly, this
cluster characteristics could represent the extreme age
group of patients presenting warning signs. However,
the higher percentage of children with warning signs
and the lower number of elderlies included in this study
makes this assumption not conclusive. Further studies
are needed to characterize differences between the clin-
ical profile in these ages.
The major limitation of this study was its cross-sec-

tional design with retrospective data collection. Al-
though patients were prospectively followed, clinical

manifestations could have been incompletely recorded,
especially among less severe cases. Therefore, the vari-
ables tourniquet positive test, narrow pulse pressure, im-
paired consciousness and AST/ALT levels that showed
to not have any influence on the division of the clusters,
need to be evaluated in more detail since the frequency
of these variables were lower when compared with the
others. Alternatively, the diversity of clinical profiles in-
cluded in this study (ambulatory/hospitalized patients,
adults/children) was an advantage, as it allowed
visualization of the categorization of the full spectrum of
dengue clinical manifestations. The co-circulation of
several arboviruses in an endemic area such as Rio de
Janeiro is a drawback that should also be considered.
This study had the advantage of being conducted before
the emergence of Zika and Chikungunya in the country,
as they can present similar clinical manifestations.
Lastly, besides the descriptive design, this study was

able to identify natural patterns in dengue clinical pro-
file, giving insights of which clinical factors should be
carefully considered in a hyperendemic area.

Conclusions
Dengue has a wide profile of clinical manifestations and
the complexity of the cases with many overlapping levels
of its severity has created many difficulties for the phys-
ician to predict the disease progression. Our study
showed that computational techniques can be useful to
identify patterns in the clinical profile of patients with
dengue. Our findings suggest that age must be the first
characteristic to be considered. Warning signs such as

Fig. 5 Age distribution according to the clusters defined by SOM±. ± There was a statistical difference between four clusters: ANOVA
F = 338.2, p-value = <2e-16
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abdominal pain or tenderness, clinical fluid accumula-
tion, mucosal bleeding, lethargy, restlessness, liver en-
largement and increase hematocrit should be closely
monitored, mainly in children. Further studies exploring
these results in a longitudinal approach could be useful
to create models to help clinicians and pediatricians to
predict severity in dengue infection, mainly in areas
where others arbovirus also circulates.
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