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regression

Background: Cases of severe fever with thrombocytopenia syndrome (SFTS) have increasingly been observed in
Miyazaki, southwest Japan. It is critical to identify and elucidate the risk factors of infection at community level. In
the present study, we aimed to identify areas with a high risk of SFTS virus infection using a geospatial dataset of

Methods: Using 10 x 10-km mesh data and a geographically weighted logistic regression (GWLR) model, we
examined the statistical associations between environmental variables and spatial variation in the risk of SFTS. We
collected geospatial and population census data as well as forest and agriculture mesh information. Altitude and
farmland were selected as two specific variables for predicting the presence of SFTS cases in a given mesh area.

Results: Using GWLR, the area under the receiver operating characteristic curve (AUC) was estimated at 73.9%,
outperforming the classical logistic regression model (72.4%). The sensitivity and specificity of the GWLR model
were estimated at 90.9 and 58.7%, respectively. We identified altitude (odds ratio (OR) = 0.996, 95% confidence
interval (Cl): 0.994-0.999 per one-meter elevation) and farmland (OR = 0.999, 95% Cl: 0.998-1.000 per % increase) as

Conclusions: Our study findings revealed that the risk of SFTS is high in geographic areas where farmland area
begins to diminish and at mid-level altitudes. Our findings can help to improve the efficiency of ecological and
animal surveillance in high-risk areas. Using finer geographic resolution, such surveillance can help raise awareness
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Background

Severe fever with thrombocytopenia syndrome (SFTS) is a
fatal tick-borne viral disease that involves thrombocytopenia,
caused by the SFTS virus (SFTSV), a phlebovirus in the
order Bunyavirales [1, 2]. The disease is characterized by
non-specific symptoms, most frequently involving fever,
gastrointestinal symptoms, leukopenia, thrombocytopenia,
and liver dysfunction, and sometimes involving
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hemophagocytic syndrome and hemorrhagic tendencies,
leading to multiple organ failure [1-4]. The disease was first
detected in northeast China in 2007, followed by identifica-
tion of its common clinical symptoms in 2009 and virus iso-
lation in 2010 [1, 2]. The virus lifecycle and natural
mechanisms of sustained transmission (e.g., reservoir animal
species) remain to be fully clarified, but transmission via
ticks is considered the most plausible route [5-12]. SFTSV
has been detected in cats, mice, and wild boars [5, 13-15],
and humans are believed to be an accidental host. Although
SFTS was initially identified in China, the disease has also
been observed in South Korea, Japan, and across all of East
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Asia [4, 16, 17]. However, the magnitude of cases in Japan
has been limited; a total of 391 confirmed cases had been
notified in Japan as of 12 December 2018, whereas SFTS
cases in China had already numbered in the thousands by
the same date.

In recent years, the frequency and geographic areas at
risk of tick-borne infectious diseases are known to have ex-
panded in North America, possibly caused by ecological
changes of tick abundance that are possibly induced by cli-
mate change [18]. Geographic heterogeneity is evident in
East Asia as well; for example, the eastern to central moun-
tainous regions of China and Western Japan are known to
be focal areas with a higher frequency of SFTS notifications
than other regions [4]. Published studies have identified
that at altitudes of 80—400 m [15, 19, 20], a number of cli-
matological variables, including average temperature, hu-
midity, and precipitation [10, 15, 19, 21, 22], as well as the
density of livestock [7, 8, 10, 13, 17], are associated with an
elevated risk of tick-borne infections. Other than published
epidemiological studies, the epidemiological data in Japan
imply that confirmed cases are frequently seen among
farmers who live in rural regions or near forested areas [3,
4, 23]. The case fatality risk (CFR) among confirmed cases
was about 30% in 2013 [4]; however, since then, both the
CER and absolute number of deaths have steadily decreased
in Japan (e.g., of a total 72 cases in 2018, 3 deaths occurred,
with a CFR about 5%) [24].

In Japan, SFTS is designated as a category IV infectious
disease according to the Infectious Diseases Law, mandat-
ing physicians to notify all laboratory-confirmed cases to
the government via the nearest health center [25]. For this
reason, all 47 prefectural institutes of public health in Japan
are equipped with one-step RT-PCR testing kits, for labora-
tory confirmation in every prefecture. The collected notifi-
cation data are sent electronically to the headquarters of
the National Institute of Infectious Diseases, and weekly
notifications by prefecture are publicly reported. The ex-
pected micro-geographic locations of infection are not
publicly reported for all of Japan, but suspected locations
of infection are reported only among prefectures with high
incidence, as described in the Methods below. Moreover,
there have been no published epidemiological studies in
Japan identifying micro-geographic areas at high risk of
SFTSV infection; thus, the underlying mechanisms of in-
fection in geographically high-risk areas have yet to be elu-
cidated. The generally acknowledged method for
preventing SFTS is to avoid tick bites by (i) ensuring that
there is no exposure, such as by avoiding high-risk areas;
(ii) keeping ticks away from exposed skin by wearing long-
sleeved shirts, long pants, and high boots; (iii) using insect
repellent, such as products containing DEET, on the body;
and (iv) checking the entire body for ticks after activities
associated with potential exposure. Despite this knowledge,
many individuals have considerable difficulty in completely
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avoiding tick bites owing to their occupation or living cir-
cumstances [26, 27].

To develop effective future countermeasures, it is crit-
ical to identify and communicate the risk factors of in-
fection, with high geospatial resolution at the
community level. As a first step, in the present study we
aimed to identify areas with a high risk of SFTSV infec-
tion and their characteristics using a geospatial dataset
of SFTS cases in Miyazaki, Japan.

Methods

Collection of epidemiological data

The present study focused on Miyazaki Prefecture, located
on the southeast coast of Kyushu Island, which is in the
westernmost part of Japan. Of a total 392 confirmed cases
of SFTS, 61 were notified in Miyazaki. From 2013 to 2018,
the annual number of confirmed cases in this prefecture
was 7, 11, 9, 9, 13, and 12, respectively. Only Miyazaki Pre-
fecture has publicly reported the geographic coordinates of
suspected locations of infection, i.e., areas with a high likeli-
hood of receiving a tick bite. This information did not in-
volve history taking of travel or exposure behaviors but
instead rested purely on known history of a tick bite. Noti-
fied cases are initially suspected of SFTSV infection if pa-
tients present atypical clinical symptoms and the following
clinical diagnostic conditions: (i) fever greater than 38.0 °C;
(ii) gastrointestinal symptoms; (iii) thrombocytopenia (less
than 100,000/mm?); (iv) leukopenia (less than 4000/mm°);
(v) elevated alanine aminotransferase, alanine transamin-
ase, and lactate dehydrogenase; (vi) absence of identifiable
causes other than tick bites; and (vii) the need for intensive
care or fatal outcome [23]. All patients with suspected
SETS undergo one-step RT-PCR testing for confirmatory
diagnosis, and only confirmed cases are notified to the
government. Essential conditions for notification include
laboratory confirmation; even clinically mild cases that do
not meet the abovementioned conditions must also be
reported [23, 28].

In the present study, we stratified cases according to
the year of notification, allowing us to separate patients
diagnosed in 2017 from those diagnosed in 2016 and
earlier. The earliest year of observation was 2013. Of a
cumulative 61 cases in Miyazaki as of December 2018,
34 exact geographic locations were available at the end
of 2016, and an additional 8 locations were identified in
2017. Of the total 61 cases, the location of receiving a
tick bite remained unknown in 19 cases. Among the 42
cases with a known location where a tick bite occurred,
no cases had identical geographic coordinates. We col-
lected datasets of latitude and longitude of the 42 known
locations from 2013 to 2017. Patients’ times of illness
onset were recorded separately from the location data;
therefore, we were unable to match the geographic loca-
tion of tick bites with the time of illness onset or
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diagnosis. Of the 34 locations that were notified by the
end of 2016, 12 patients were bitten on farms, 6 in the
woods, 5 in nearby gardens, 4 while walking or trekking,
2 while landscape gardening, and 1 patient was bitten
while hunting; the land-use information of the exposure
locations for the remaining 6 patients was not specified.

Collection of geographic data

We used a 10 x 10-km mesh to divide the land area of
Miyazaki into 97 square area units of 100 km?* each; this
is also referred to as second-order mesh statistics.
According to mesh areas, we first collected forest and
agriculture mesh data from the National Land and Infor-
mation Division of Japan [29], to identify whether a par-
ticular geographic location in Miyazaki is predominantly
used for forest or agricultural purposes. The dataset
rests on a survey, referred to as the Fundamental Land
Classification Survey, which classifies the national land
use using standard scientific criteria. The survey data in-
cluded up to the end of 2015, and the mesh proportion
of land use for agriculture and forest only varied within
5% of the value from 2010 to 2015. Second, the altitude
of each mesh area was manually obtained from a map of
the Geospatial Information Authority of Japan in 2018
[30]. Using altitude data for each center of a 1 x 1-km
mesh, we collected 100 datasets of altitude for each
10 x 10-km mesh, and we took the median value as the
altitude representing the 10 x 10-km mesh. Third,
additional census data of cultivated land in 2015 were
collected from the Ministry of Agriculture, Forestry and
Fisheries [31]. Using the dataset of cultivated land, we
calculated the proportion of farmland in the total mesh
area (hereafter referred to as “farmland”). Fourth,
regional mesh statistics of population census, including
the age distribution, were collected from the census data
of Miyazaki Prefecture. Fifth, climatological variables
including regional mesh statistics of annual average
temperature and average precipitation in 2014 were
collected from the Japan Meteorological Agency.

Statistical analysis

We first plotted the suspected geographic locations of
SFTSV infections on a map of Miyazaki, determining
the regional mesh to which each case belonged. The ori-
ginal precision of suspected location of tick bite expos-
ure was given using a circle with a diameter of 3 km,
with the center of the circle indicating the exact sus-
pected location based on interviews regarding the tick
bite history. The diameter of 3 km was due to scaling of
the original map, and thus, we used only the geographic
information of the center of the circle in the following
analyses. Then, mesh areas were classified according to
two binary categories, i.e., mesh units with and without
one or more cases, which we aimed to predict using
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environmental and geospatial explanatory variables. Sec-
ond, we examined univariate associations of the pres-
ence of an SFTS case with the following variables: (i) the
proportion of elderly residents (aged 65 years or older),
(ii) percentage of farmland area, (iii) proportion of aban-
doned farmland (in which the land was notified as aban-
doned by farmers to the Ministry of Agriculture,
Forestry and Fisheries), (iv) the proportion of forest, and
(v) altitude (measured at the center of each mesh area).
In addition, to avoid statistical interactions between two
or more explanatory variables, we examined the linear
correlation between each pair of explanatory variables.
Third, a multivariate model was used to address con-
founding variables with a logistic regression (LR) model.
Moreover, to account for the geographically dependent
structure, geographically weighted logistic regression
(GWLR) was used. GWLR is known to be an effective tool
for analyzing geospatially dependent data (or spatial auto-
correlation). Neglecting spatial dependence can frequently
underestimate the p-value of the regression coefficient,
resulting in erroneous conclusions about the significance
of results [32—39]. Further, GWLR allows for variation of
the regression coefficient by mesh area. We let y; be the
linear predictor of mesh i, which is modeled as

¥i =By +Zﬁ1xi,iv (1)
j

in the LR model, where f is the intercept and f; is the
coefficient of input x; ; of the j-th explanatory variable.
The logistic function uses p; = 1/(1 + exp(-y;) as the
probability of observing the case in mesh i. The GWLR
model treats the coefficient 5 as the local (varying) func-
tion by location, i.e.,

i = Bo(ui,vi) + Zﬁj(”i’ Vi)Xji; (2)
j

where u; and v; represent the geographic coordinates
of mesh i. The function S (u;,;) allows us to account for
dependence of the parameters in nearby geographic
areas; in addition, non-uniformity of parameters across
space is permitted. We calculated the Euclidean dis-
tance, d,p,, between all pairs of geographic mesh points,
a and b, and modeled the dependence function using
the adaptive bi-square model,

dub2 ’
W(dab) = 1_6 (k)2 ) (3)

where 6 is the bandwidth of geographic dependence.
The adaptive bi-square method was used, because the bi-
square model has been described as the standard method
for exploration; in addition, the alternative method, i.e.,
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adaptive Gaussian method, exhibited smaller predictive
performance during our preparatory calculations.

We optimized both the multivariate LR and GWLR
models using JMP version 14 (SAS Institute Inc., Cary,
NC, USA) and GWR4 (GWR4 Development Team,
Kyoto, Japan), respectively, using selected variables that
appeared to consistently describe the observation process
of SFTS cases in mesh areas. We performed two different
predictions using the LR and GWLR models, to assess
their predictive performance. In one procedure, we aimed
to predict all observed datasets, using all previously ob-
served datasets from 2013 to 2017 as the learning data.
However, it is known that the predictive performance
using all observed datasets can sometimes be overly opti-
mistic because that process is not strictly a prediction of
the future [40, 41]. To avoid any confusion regarding this
matter, we also predicted the incidence in 2017 using data
from 2013 to 2016 [41]. In this instance, the future data
(2017) were predicted using the past data (2013-2016). As
part of sensitivity analyses, we also examined ecological
associations not only using 10 x 10-km mesh data but also
1 x 1-km mesh data with an LR model.

For model comparisons, we used the likelihood ratio
test. To assess the predictive performance, we computed
the exact 95% confidence interval (CI) of sensitivity and
specificity, using the quantile function of the binomial dis-
tribution. We also examined the area under the receiver
operating characteristic (ROC) curve (AUC), along with
the positive predictive value (PPV) and negative predictive
value (NPV). We used the Youden index (i.e., sensitivity +
specificity — 1) to identify the sensitivity and specificity of
LR at an optimal threshold. Calculations of 95% Cls of the
PPV and NPV were based on the Wald method, with the
PPV and NPV variances determined using the delta
method [42]. For calculation of the 95% CI of the AUC,
we used the Wald method with logit transformation of the
AUC [43, 44]. The R statistical software (R Development
Core Team) was used for these analyses.

Ethical considerations

In the present study, we analyzed data that are publicly
available. As such, the datasets used in this study were
de-identified and fully anonymized in advance. The ana-
lysis of publicly available data with no identifiable infor-
mation does not require ethical approval.

Data sources
The occurrence of SFTS cases, altitude, and the propor-
tion of farmland are available as Additional file 1.

Results

Figure 1a shows a map of all suspected geographic loca-
tions of SFTSV infection (n = 42, including 8 locations
in 2017). Miyazaki Prefecture faces the Pacific Ocean on
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its eastern margin, and it borders Oita and Kagoshima
prefectures on its northern and southern margins, re-
spectively. The western margin of Miyazaki is a moun-
tainous area bordering Kumamoto Prefecture. The
eastern area aligned with the coast is referred to as Mi-
yazaki Plain, where the population density tends to be
higher than other areas. Although arbitrary, Fig. 1a indi-
cates that cases of SFTS occurred near rivers, in transi-
tional zones between farms and forest, and at altitudes
that were not very elevated but also not close to sea
level. Figure 1b shows a comparison of 34 locations at
the end of 2016 and an additional 8 locations in 2017.
An SFTS case was observed for the first time in 2017
only in mesh units overlapping with Takaharu town,
which had no previously reported cases; otherwise, all
mesh areas had at least one reported case prior to 2017.

Figure 1c and d shows the altitude and proportion of
farmland at the second-order mesh level. Using univari-
ate LR analysis, altitude (p < 0.01) was identified as a sig-
nificant negative predictor of SFTS cases whereas
farmland alone (p = 0.70), the proportion of elderly resi-
dents (p = 0.81), proportion of abandoned farmland (p =
0.46), and forest ratio (p = 0.38) did not have any signifi-
cant associations with the presence of SFTS. Annual
average precipitation (p = 0.94) was not significantly
associated with the presence of SFTS whereas annual
average temperature showed a positive association with
SFTS (p = 0.05). Nevertheless, the significant association
between SFTS and average temperature disappeared
when altitude was modeled together with the average
temperature and an interaction term of these variables
was taken into account (p = 0.21 for temperature and p
= 0.03 for altitude). Among non-significant variables,
farmland showed significant correlations with the pro-
portion of abandoned farmland (correlation coefficient, r
= 0.75), forest ratio (r = 0.82), and proportion of elderly
residents (r = 0.38). Of these, farmland was the variable
that excellently reflects the changing land use from
farmland to forest, and moreover, the observations
depicted in Fig. la indicate frequent infections at mid-
level altitudes and also in areas between farms and
mountains; therefore, owing to the univariate results as
well as the correlations among explanatory variables, we
used only altitude and farmland as explanatory variables
in the subsequent multivariate analyses.

Using altitude and farmland as input, we optimized
the multivariate GWLR model. Table 1 shows the global
terms of GWLR, revealing that altitude was a significant
negative factor of infection. When the data at the end of
2016 were used to predict 2017, both altitude and farm-
land appeared to act as significant negative predictors.
When all existing cases were predicted, GWLR outper-
formed the LR by means of the likelihood ratio test (p =
0.04). Similarly, when 2017 was predicted, the GWLR
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Fig. 1 Geographic distribution of severe fever with thrombocytopenia syndrome cases and environmental variables. a Geographic areas classified
as forest (green) and agricultural land (light brown) overlaid with 42 confirmed cases. b Map of Miyazaki Prefecture divided into a total of 97
mesh units consisting of 10 X 10-km (second-order mesh) squares. Purple-colored mesh areas represent geographic units with recent cases in
2017. The remaining points represent cases observed during 2013-2016. ¢ Altitude and d the proportion of farmland in Miyazaki. Altitude was
measured at the center of each mesh area. Note that the unit of panel D is percentage times 100. In panels (a, ¢, and d), cases in 2017 are shown
as empty circles; the remaining orange circles represent cases diagnosed during 2013-2016

J
Table 1 Estimated odds ratios for cases of severe fever with thrombocytopenia syndrome using geographically-weighted logistic
regression
Subject Variable Odds ratio (95% Confidence interval) p-value
All cases Intercept NA 0.57
Altitude (m) 0.996 (0.994, 0.999) *0.004
Farmland (%) 0.999 (0.998, 1.000) 0.10
Cases by 2016 Intercept NA 040
Altitude (m) 0.996 (0.993, 0.999) *0.002
Farmland (%) 0.999 (0.998, 1.000) *0.049

All cases represent prediction using all available datasets by the end of 2017. To avoid overly optimistic results, we also predicted 2017 cases using data to the
end of 2016 (Cases by 2016). The coefficient of determination, R? using all cases was 0.12. Similarly, the R? with cases at the end of 2016 was 0.14.
Asterisks * before p-value indicate significant results
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model significantly reduced deviations from the LR with
a p-value < 0.001 (likelihood ratio test).

Figure 2a and c shows the predicted risk maps along
with the evaluation of predictive performance using the
ROC curve. The AUC of GWLR (73.9%) was greater
than that of LR (72.4%) (Table 2). Figure 2b and d shows
the predicted risk maps with the ROC curve of predic-
tion in 2017. Again, the AUC of GWLR (76.6%) outper-
formed that of LR (75.6%). Except for the one case in
2017 in Takaharu town, the remaining cases (5 of 6
meshes containing a total of 7 cases) occurred in mesh
areas where the risk of SFTS cases was above the me-
dian, and the concordance of the estimates with the ac-
tual observed locations (empty points) was verified.

Using the Youden index, the sensitivity and specificity of
LR were estimated at 86.4 and 61.3%, and those of GWLR
were 90.9 and 58.7%, respectively (Table 2). The PPV and
NPV of LR were 39.6 and 93.9%, and comparable with
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those of GWLR, estimated at 39.2 and 95.7%, respectively.
The actual observed mesh areas in Miyazaki, Nobeoka,
and Nichinan cities were in line with high-risk areas, as in-
dicated by the risk maps. In the prediction using only the
2017 data, the sensitivity and specificity of LR were esti-
mated at 83.3 and 75.8%, and those of GWLR were 83.3
and 73.6%, respectively (Table 2). The PPV and NPV of
LR were 18.5 and 98.6%, and those of GWLR were com-
parable, estimated at 17.2 and 98.5%, respectively. Preci-
sion and Fl-score, given as the harmonic average of
precision and sensitivity (=recall), were also comparable
between the LR and GWLR models (Table 2).

Table 3 shows the summary statistics of local coeffi-
cients for altitude and farmland using the GWLR model.
Both altitude and farmland yielded negative coefficient
values, indicating that the local coefficients of these two
variables always highlighted them as significant negative
predictors of SFTS cases. Whereas the coefficients of
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Fig. 2 Predicted risk map of severe fever with thrombocytopenia syndrome cases using geographically weighted logistic regression. a
Geographically weighted logistic regression (GWLR) model to predict all cases and (b) cases in 2017. All cases during 2013-2017 were used as the
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Table 2 Estimated predictive performance of logistic regression models in severe fever with thrombocytopenia syndrome, Miyazaki

Prefecture

All subjects (n = 97 mesh) LR (all cases)

GWLR (all cases)

LR (cases by 2016) GWLR (cases by 2016)

Proportion (%) 227 (143,31.0) 22.7 (143,310 6.2 (14,11.0) 6.2 (14,11.0)
Sensitivity (%) 86.4 (72.0, 100) 90.9 (78.9100) 83.3 (53.5100) 83.3 (53.5, 100)
Specificity (%) 61.3 (503, 72.4) 58.7 (47.569.8) 75.8 (67.0,84.6) 73.6 (64.6,82.7)
PPV (%) 396 (31.7,47.5) 39.2 (32.1,464) 185 (10.8,26.3) 172 (10.2, 24.3)
NPV (%) 93.9 (87.7, 100) 95.7 (90.1100) 98.6 (96.0,100) 98.5 (95.9100)
Precision (%) 396 (25.7,534) 37.7 (247, 50.8) 19.2 (4.1, 344) 19.2 (4.1, 344)
F1-score 0.54 0.53 0.31 0.31

AUC (%) 724 (62.7,80.3)

739 (635, 80.9)

756 (66.2, 83.1) 76.6 (67.2,83.9)

Abbreviations: LR Logistic regression, GWLR Geographically weighted logistic regression, PPV Positive predictive value, NPV Negative predictive value, F1-score
Harmonic average of the precision and recall, AUC Area under the receiver operating characteristic curve

Values in parentheses are 95% confidence intervals

All cases represent prediction using all available datasets at the end of 2017. To avoid overly optimistic results, we also predicted 2017 cases using data at the

end of 2016 (Cases by 2016)

altitude varied widely, those of farmland only varied
slightly among the included mesh areas in Miyazaki.
Similar patterns were seen when predicting 2017 data only,
but variations in the estimated coefficients for farmland
were greater than those predicted for the entire dataset.

As a sensitivity analysis, we examined possible explana-
tory factors, using 1 x 1-km mesh data and a multivariable
LR model. Altitude (p < 0.001) and farmland (p < 0.02)
consistently appeared to be significant explanatory vari-
ables, explaining the observed pattern well (AUC = 72.4%).

Discussion

In the present study, we analyzed the spatial epidemio-
logical risk of SFTS in Miyazaki, Japan, using 10 x 10-km
mesh data and LR and GWLR models. By exploiting the
spatial variation in the risk of SFTS, we attempted to iden-
tify environmental risk factors, exploring a number of var-
iables including the proportion of abandoned farmland
and the forest ratio, which are possibly associated with the
vector ecology and risk of tick bites. From the results
depicted in Fig. 1b, we hypothesized that most cases of
SFTS in Miyazaki, Nobeoka, and Nichinan cities occur

along the lower reaches of rivers at mid-level altitudes in
locations between farmland and forest. Accordingly, we
restricted the explanatory variables to altitude and farm-
land and identified these two variables as useful negative
predictors of SFTS cases in Miyazaki.

Altitude has been identified as an important predictor
of SFTS in China [15, 19, 20], indicating that the disease
is unlikely to occur at very elevated locations. Published
studies [3-5, 11, 23] have also suggested that rural areas
are likely to have higher levels SFTSV infection risk. The
present study findings, showing a greater tendency of
infections in rural areas, were well captured using farm-
land as an input variable. In Miyazaki, cases of SFTS in
rural regions occurred in relatively lowland areas near
rivers, which was well captured by jointly using altitude
and farmland in the prediction model. Our modeling
study findings lead us to conclude that the risk of SFTS
is higher in geographic areas with a lower number of
farms and at lower altitudes. The number of farms
decrease as altitude increases, while altitude decreases as
the location comes close to the ocean with greater num-
ber of farms than other locations, implying that areas

Table 3 Summary statistics of varying (local) coefficients in geographically weighted logistic regression for SFTS cases, Miyazaki

Parameter Minimum 25 percentile Median 75 percentile Maximum
All cases

Intercept 0.0839 0.4698 0.6430 0.8163 1.3150
Altitude (m) -0.0054 —-0.0046 —-0.0041 —-0.0035 - 0.0024
Farmland (%) - 0.0013 - 00010 - 00010 — 0.0009 —0.0007
Cases by 2016

Intercept 0.2790 0.5964 0.7880 1.0626 1.7268
Altitude (m) —-0.0063 —0.0051 —-0.0044 — 0.0040 —0.0030
Farmland (%) —-0.0018 —-0.0014 - 00012 —-0.0011 — 0.0009

Abbreviations: LR Logistic regression, GWLR Geographically weighted logistic regression, SFTS Severe fever with thrombocytopenia syndrome

All cases represent prediction using all available datasets at the end of 2017

To avoid overly optimistic results, we also predicted 2017 cases using the data at the end of 2016 (Cases by 2016)
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with small number of farms and at mid-level altitudes
may be at high risk of infection.

Considering geographic locations with a low density of
farms, flatlands near hilly or mountainous locations
along rivers were found to be hot spots of SETSV infec-
tion. The implications of the present study results will
greatly assist in future surveillance of both animals and
vectors. For instance, local public health organizations
regularly conduct surveillance of the tick distribution,
and conduct sample collection and laboratory testing of
Ixodes species to identify SFTSV infections [30]. The
present study findings emphasize the need to selectively
conduct frequent intensive ecological surveys in high-
risk areas to identify the virus. Moreover, it is important
to implement animal surveillance near high-risk areas,
and to include surveys of wildlife species. The range of
animal host species, including those acting as the inter-
face between wildlife species and humans, could be bet-
ter identified by conducting intensive surveys of animals
in regions with high risk of SETSV infections.

The prediction results of LR and GWLR were mostly
comparable. This is owing to the shortage of mesh areas
and also the small number of mesh areas with SFTS
cases. Moreover, the size of Miyazaki Prefecture is small;
in conducting 10 x 10-km mesh analysis with a substan-
tial number of marginal areas, its small size made it dif-
ficult to demonstrate the better performance of GWLR
compared with LR. However, GWLR outperformed LR
in the sense of likelihood and also in the predictive per-
formance evaluation, i.e., AUC. GWLR can be useful for
reflecting local incidence data and identifying high-risk
areas in a more meticulous manner.

The present study includes several limitations. First, the
total number of mesh areas with SFTS was limited to 22 of
97 mesh units; thus, the resolution of prediction was lim-
ited (e.g., with a greater number of cases, one might even
consider using a 1 x 1-km mesh unit). This may be
regarded as imbalanced data, which is a threat to stable pre-
diction in logistic regression, and the performance of model
prediction is known to be significantly hindered by class
imbalances. Although the observed imbalance ratio
remained smaller than 4:1, the recognized problem would
not be eased unless more data become available and the
imbalances are resolved [45]. What must be remembered
in this regard is that the observed patterns may not have
adequately reflected the distribution of explanatory vari-
ables. Owing to a related reason (i.e., limited precision of
mesh data), we were unable to incorporate an original
(more concrete) variable, i.e., location close to rivers and in
transitional zones between farms, into our prediction using
a 10 x 10-km mesh unit. Second, the suspected locations of
infection rested on interviews; considering the map scale of
the original data, there could be measurement error with
respect to the precision of the suggested geographic points
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at finer spatial resolutions. Third, whereas we focused on a
binary outcome (i.e, presence or absence of SFTS cases),
some mesh areas had already experienced multiple cases of
SETS. Owing to a small total number of cases, prediction
of the number of cases is a future task to be performed.
Fourth, we ignored climatological variables including
temperature, humidity, and precipitation owing to the ab-
sence of dynamic (time-dependent) case data over geo-
graphic space [46]. Fifth, infection risk depends on both (i)
human behaviors that lead to tick bites and (ii) the risk of
infection among ticks (and animals) [47—-49]. In the present
study, we could not distinguish (i) and (ii) nor elucidate the
detailed ecological mechanisms behind the observations
[50]; this would require cross-disciplinary collaboration
among epidemiologists and statisticians as well as entomol-
ogists, ecologists, veterinarians, and virologists.

Despite the number of important tasks that remain to be
completed in future, in the present study, we successfully
identified altitude and farmland as negative predictors of
SFTS cases in Miyazaki, concluding that the risk of SFTS is
high in geographic areas with decreased farmland and at
middle altitudes. Our study findings not only indicate high-
risk areas that are suitable for conducting ecological and
animal surveys in the future, we also believe that it is
critical to raise awareness among local residents in such
areas about the existing risk of SFTS and to emphasize the
importance of preventing tick bites at the local level.

Conclusions

In the present study, we analyzed the spatial epidemio-
logical risk of SFTS in Miyazaki, Japan, using 10 x 10-
km mesh data and a GWLR model. By identifying alti-
tude and farmland as negative predictors of SFTS cases
in Miyazaki, we can conclude that the risk of SFTS is
high in geographic areas where farmland begins to di-
minish and at locations where the altitude is not very
high. Our findings suggest high-risk areas where future
ecological and animal surveys are appropriate. We rec-
ommend raising awareness among local residents in
high-risk areas about the risk of SFTS and emphasizing
the importance of preventing tick bites.

Additional file

Additional file 1: Datasets of mesh areas with observed cases of severe
fever with thrombocytopenia syndrome (SFTS), with altitude and
farmland, in Miyazaki, Japan (XLSX 13 kb)
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