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Abstract

Background: Human pathogens transmitted through environmental pathways are subject to stress and pressures
outside of the host. These pressures may cause pathogen pathovars to diverge in their environmental persistence and
their infectivity on an evolutionary time-scale. On a shorter time-scale, a single-genotype pathogen population may
display wide variation in persistence times and exhibit biphasic decay.
Methods: We use a transmission modeling framework to develop an infectious disease model with biphasic
pathogen decay. We take a differential algebra approach to assessing model identifiability, calculate basic
reproduction numbers by the next generation method, and use simulation to explore model dynamics.
Results: For both long and short time-scales, we demonstrate that epidemic-potential-preserving trade-offs have
implications for epidemic dynamics: less infectious, more persistent pathogens cause epidemics to progress more
slowly than more infectious, less persistent (labile) pathogens, even when the overall risk is the same. Using
identifiability analysis, we show that the usual disease surveillance data does not sufficiently inform these underlying
pathogen population dynamics, even when combined with basic environmental monitoring data. However, risk
could be indirectly ascertained by developing methods to separately monitor labile and persistent subpopulations.
Alternatively, determining the relative infectivity of persistent pathogen subpopulations and the rates of phenotypic
conversion will help ascertain how much disease risk is associated with the long tails of biphasic decay.
Conclusion: A better understanding of persistence–infectivity trade-offs and associated dynamics can improve our
ecological understanding of environmentally transmitted pathogens, as well as our risk assessment and disease
control strategies.
Keywords: Biphasic decay, Microbial dormancy, VBNC, Infectious disease transmission model, Identifiability,
Persistence–infectivity trade-off

Background
Many human pathogens, particularly waterborne enteric
pathogens, require a host to reproduce but are transmit-
ted through the environment where they are subjected to
a variety of stressors. These stressors can result in long-
term selection pressure that causes pathogens to evolve
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over time. The most widely studied evolutionary trade-off
is the transmission–virulence trade-off [1], although oth-
ers, such as the virulence–persistence trade-off [2] or the
invasion–persistence trade-off [3], have also been exam-
ined. Short-term environmental stressors (e.g., related to
temperature, salinity, pH, nutrient load), on the other
hand, can also lead to different dynamics in different
environmental conditions. Changes in kinetics [4], mor-
phology [5], or antimicrobial resistance [6] can occur in
response to environmental changes on this time-scale.
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The trade-offs resulting from these various environmen-
tal pressures add complexity to infectious disease systems
and are difficult to study and predict. Models are use-
ful for elucidating how phenotypic heterogeneity between
and within pathogen populations impacts disease system
dynamics. These dynamical insights can in turn help to
develop effective environmental monitoring plans and to
optimize risk-reduction interventions.
The focus of this analysis is exploring the public health

implications of phenotypic variation between and within
environmentally transmitted pathogen populations and
how different kinds of data—both experimental and
epidemiological—will be needed to inform our models
of the underlying systems. In particular, we are inter-
ested in the implications of variations in and poten-
tial trade-offs between persistence in the environment,
i.e., how long the pathogen remains viable outside the
host, and pathogen infectivity, i.e., the probability of host
infection given exposure to the pathogen. Microbiolog-
ical research in infectious disease systems has largely
emphasized the identification of genes, gene expression,
and metabolic pathways that are associated with viru-
lence, but this work has not translated well into bet-
ter understanding of risk and disease dynamics at the
population level [7]. Although virulence is important to
public health, it is infectivity that primarily drives trans-
mission and is therefore integral to risk assessment and
control.
Variations in persistence times and infectivity can be

seen between closely related pathogen species or patho-
vars, such as is seen for Escherichia and Salmonella gen-
era. E. coli, in particular, is an extraordinarily diverse
group, with only about 6% of gene families represented
in every genome [8]. E. coli includes several pathovars
that can cause enteric disease, and, although E. coli patho-
vars differ in their infectivity and persistence [9], these
differences are not well characterized as a whole. There
are clues, however, as to how trade-offs at the genetic
and metabolic level can propagate to persistence and
infectivity phenotypes at the pathogen population level.
Environmental persistence, for example, may be driven by
genes coding for resistance to specific stressors (e.g., resis-
tance to higher temperatures, differences in pH, or salin-
ity) [10], for pathways to utilize alternate energy sources
[11], or the ability to infect and survive in amoebas or
other protozoa [12, 13]. Infectivity, on the other hand,
may be dependent on whether the infection mechanism
acts locally or systemically in the host [14, 15], as well as
the effectiveness of the infection mechanism. While evo-
lutionary trade-offs between environmental persistence
and infectivity have been demonstrated theoretically [16],
in practice they are likely moderated by trade-offs with
other life-history components [17]. Ultimately, evolution-
ary pressure may direct genetic and metabolic trade-offs

across pathovars, resulting in a spectrum of persistence–
infectivity strategies with implications for human health.
Variation in persistence within a single-genotype pop-

ulation, on the other hand, can be observed as bipha-
sic decay (Fig. 1), i.e., long-tailed deviations from the
expected monophasic exponential pathogen decay [18].
Biphasic decay is well-documented in E. coli, for instance
[19–23]. While the mechanisms of biphasic decay are
not well-understood, hypotheses include genetic het-
erogeneity, hardening-off, and the existence of dormant
states, such as viable-but-not-cultivable (VBNC) [24–26]
or antibiotic-resistant persister [27–29] states. Whether
prolonged persistence of pathogens presents a significant
public health risk remains an open question. Many risk
assessments do not account for this change in persistence.
For example, published risk assessments of Helicobacter
pylori have used an infectivity based on a less-persistent,
culturable state [30], despite the fact that H. pylori trans-
forms to a more-persistent but less-infectious VBNC state
within days of entering water [5, 31]. In general, while it
is likely that the persistent phenotype must sacrifice all or
part of its infectivity (at least until it finds more favorable
conditions), experimental verification is lacking for most
pathogens.
Here we examine the dynamical properties associated

with a trade-off between persistence and infectivity and
the implications for future microbiological work and
improved environmental monitoring strategies. We pre-
viously developed a mechanistic mathematical framework
to describe biphasic decay, both in sampling studies and
in quantitative microbial risk assessments [18]. We now
extend that work by explicitly examining the dynamic
implications at the host population level of a persistence–
infectivity trade-off at the pathogen level. Specifically, we

Fig. 1 Phenotypic heterogeneity in pathogen persistence leads to
biphasic decay. Biphasic decay of E. coli observed in manure-amended
soil by [21] can be explained by a model in which fast-decaying labile
pathogens transition to a slow-decaying persistent phenotype [18]. If
the persistent phenotype represents a dormant state or has
otherwise reduced infectivity, these underlying dynamics have
important implications for host-level disease outcomes
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i) use an existing transmission model to consider the dif-
ferent outbreak dynamics that can be seen for pathogens
across a variety of persistence–infectivity strategies and ii)
present a new model to consider how within-population
phenotypic heterogeneities can further affect outbreak
dynamics.
These questions consider how underlying biological

pathogen mechanisms and phenotypic variations trans-
late into host-level dynamics, i.e., what patterns arise
from the processes. The reverse question is also impor-
tant, i.e., when can we infer the process from the pat-
tern. Here, we want to know the extent to which we can
make inferences about the persistence–infectivity trade-
off from epidemiological time-series data. It is not clear
a priori when longitudinal disease surveillance contains
enough information to untangle more complex under-
lying mechanisms. The field of identifiability has devel-
oped methods to determine which model parameters
can be uniquely estimated from a given kind of data.
This information can then be used to ascertain which
experiments or new data collection will have the most
power for improving inference.We use identifiability anal-
ysis to highlight the ways in which targeted experimen-
tal studies could elucidate underlying mechanisms and
improve our understanding of pathogen ecology and evo-
lution, as well as risk assessment and disease control
practices.

Methods
Models
We use an environmentally mediated infectious disease
transmission model based on a susceptible–infectious–
recovered (SIR) framework where all transmission occurs
via an environmental compartment and there is no
direct person-to-person transmission [32, 33]. This model
incorporates an environmental compartment W that
represents the concentration of pathogens in an envi-
ronmental reservoir. Infectious people shed into this
compartment (at rate α), and individuals contact the envi-
ronment, picking up pathogens (with contact rate κ and
per contact volume ρ). This model and variations of it
have been used to explore the role of the environment
in waterborne, airborne, and fomite-mediated transmis-
sion (e.g., [32–35], and many others [36]). In this first
model, all pathogens in the population have the same
infectivity (per-pathogen infection probability π ). Previ-
ous work has shown that a linear dose–response func-
tion is sufficient to capture epidemic dynamics in most
instances [37]. Moreover, all pathogens decay with the
same monophasic exponential rate (ξ ), leading to the
same average persistence, that is, average number of days
until removal from the system τ = 1/ξ . Model vari-
ables and parameters are given in Table 1, and a schematic
is given in Fig. 2a.

Table 1 Variables and parameters of the environmentally
mediated infectious disease models

Variables

S(t) Number of susceptible people

I(t) Number of infectious people

R(t) Number of recovered people

W(t) Concentration of pathogens in the
environment

W1(t) Concentration of labile pathogens in the
environment

W2(t) Concentration of persistent pathogens
in the environment

Parameters

γ Recovery rate (per day)

α Deposition rate of pathogens per unit
volume of environment (per day)

η Fraction of deposited pathogens that
are labile

δi Rate at which pathogen of phenotype
i convert to the other phenotype (per
day)

πi Per-pathogen probability of infection for
phenotype i

μi Pathogen decay rate for phenotype i
(per day)

κ Rate at which individuals contact the
environment (per day)

N Population size

ρ Volume of environment consumed (per
contact)

V Total volume of the environment

ξi Overall pathogen removal rate for
phenotype i (per day), μi + κρN/V

τi Average persistence of pathogen phe-
notype i (days)

φi Probability that conversion from
phenotype i occurs before decay

Models incorporate monophasic pathogen decay (Eq. (1), Fig. 2a) or biphasic decay
(Eq. (2), Fig. 2b)

Ṡ = −κρπSW ,
İ = κρπSW − γ I,
Ṙ = γ I,
Ẇ = αI − ξW . (1)

We extend the above model to account for bipha-
sic decay [18] and allow for heterogeneities in popula-
tion persistence and infectivity. In particular, we assume
that the population consists of two phenotypes, one that
is more infectious but less persistent (labile pathogens
W1) and one that is less infectious but more persistent
and may represent a dormant state (persistent pathogens
W2). These subpopulations differ in phenotype (gene
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Fig. 2 Environmentally mediated infectious disease transmission models. Schematics for models with a) monophasic pathogen decay and b)
biphasic pathogen decay, where the pathogen population is comprised of a more infectious, less persistent labile fraction and a less infectious,
more persistent fraction

expression or metabolism) rather than genotype (DNA
sequence). Model variables and parameters are given in
Table 1, and a schematic is given in Fig. 2b. This model
allows us to consider the state in which pathogens are
shed into the environment (either W1 or W2, determined
by η) and the possibility of phenotype conversion from
labile to persistent and from persistent to labile (δ1 and
δ2, respectively). One or more of these parameters might
be negligibly small in practice (e.g., all pathogens are
shed as the first phenotype (1 − η = 0), or persistent
pathogens never regain their infectivity (δ2 = 0)), which
would appreciably simplify the model and its identifiable
parameter combinations.

Ṡ = −κρS(π1W1 + π2W2),
İ = κρS(π1W1 + π2W2) − γ I,
Ṙ = γ I,

Ẇ1 = αηI + δ2W2 − (ξ1 + δ1)W1,
Ẇ2 = α(1 − η)I + δ1W1 − (ξ2 + δ2)W2. (2)

The two subpopulations can have different infectivities
(π1 and π2). The average persistence τi for each pathogen
type is the average amount of time a pathogen stays in a
compartment and now includes both removal by decay or
pick-up (ξ ) and phenotypic conversion (δ): τi = 1/(ξi+δi).
When the subpopulations have the same infectivity and
removal rates (π1 = π2, ξ1 = ξ2), the model simplifies to
the monophasic decay model above (Eq. (1)).

Parameter identifiability: estimation and dynamic
invariants
Direct measurement of the rates of biological processes or
other mechanistic parameters through experimental stud-
ies is one way to learn about the underlying biological sys-
tems. However, sometimes experiments are inconvenient,

expensive, or (especially in the case of pathogen challenge
studies to determine infectivity) ethically fraught. Indirect
methods—using the observation of the system dynamics
to determine what the biological parameters must have
been—have played an important part in infectious disease
epidemiology in particular. However, we may be limited in
what we can infer from time-series data, particularly when
the underlying processes are complex.
Identifiability is the study of what model parametric

information is available in data. A model parameter is
identifiable if its valuemay be uniquely recovered from the
observed data and not identifiable if multiple values could
all lead to the same data. For example, one could never
separately and uniquely estimate m1 and m2 in the linear
model y = (m1 + m2)x + b, no matter how many (x, y)-
pair data points were measured. Unlike in this example,
determination of these sorts of structural limitations is
non-trivial for models of even modest complexity. For
more formal definitions and discussions of identifiability,
we refer the reader to the foundational work of [38, 39]
and as well as several reviews [40, 41].
Identifiability analysis is a necessary precursor to

parameter estimation because we cannot estimate the
value of a parameter if multiple values all give the same
output. If not all model parameters can be identified from
data, one can find algebraic combinations of the parame-
ters that are identifiable from the data [40]. In this exam-
ple,m = m1+m2 can be uniquely estimated from the data.
These identifiable parameter combinations are central to
identifiability analysis and the model dynamics: any set of
individual parameter values with the same value of their
algebraic combination will produce the same dynamics.
This means that the identifiable parameter combinations
are invariants for the system dynamics.
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Parameters that are indistinguishable when measuring
one kind of data, however, might be separable for a differ-
ent kind. Thus, identifiability analysis can also tell us how
useful new experimental or observational studies would
be to our inference by determining which model parame-
ters or variables change the identifiability of our quantities
of interest. In this example, having independent experi-
mental determination of the value ofm1 (allowing us to fix
its value in the model) would renderm2 identifiable.
To compute the identifiable parameter combinations,

we use a differential algebra approach to identifiability,
which is detailed elsewhere [42–44]. In brief, this method
converts the system of equations into an input–output
equation, which is a monic, polynomial equation that can
be written in terms of only the observed state variable (i.e.,
the data variable), its derivatives, and the model parame-
ters. The input–output equation has equivalent observed
dynamics to that of the original ODE system, and the coef-
ficients of the input–output equation are the identifiable
parameter combinations. Mathematical details and proofs
are left to the supplementary material.
Even if there is no theoretical structural barrier to esti-

mating a parameter from data, there may be practical
barriers present in real-world data sets, such as insuf-
ficient temporal resolution or the lack of time points
around crucial features of the dynamic trajectory. Some-
times models are robust, producing almost indistinguish-
able behavior as a parameter changes several orders of
magnitude. These real-world uncertainties are assessed
by practical identifiability, which contrasts with the struc-
tural identifiability discussed above. In this analysis, we
will primarily discuss structural identifiability, though we
will touch on issues of practical identifiability in the simu-
lation example.

Basic reproduction number
The basic reproduction numberR0, defined as the average
number of secondary cases arising from a typical primary
case in an entirely susceptible population, is often used
for its epidemic threshold properties, i.e., for initial con-
ditions near the disease-free equilibrium, there will be
an epidemic if R0 > 1, and the disease will die out if
R0 < 1. The basic reproduction number is also used
to determine needed intervention coverage to eliminate
transmission and to estimate the final size of an epidemic.
Here, we will use R0 as a proxy for pathogen fitness,
investigating different persistence and infectivity combi-
nations that have the same R0. We calculate R0 for our
ODE models using the Next Generation Method [45, 46].
For the models presented here, the basic reproduction
number determines the epidemic attack ratio, i.e., the
proportion of the at-risk population that develops the dis-
ease during the outbreak, also known as the cumulative
incidence [33].

Computation
Integration of ODE models was done in R (v3.4.1) with
the deSolve package [47], and parameter estimation
was done using a David–Fletcher–Powell algorithm in the
Bhat package [48]. The differential algebra computation
for the identifiability analysis was done in Mathematica
(v11.1).

Results
This first section presents the basic reproduction num-
ber and the identifiable parameter combinations for both
the monophasic and biphasic pathogen decay models.
We next elucidate what data are need to fully iden-
tify these environmentally mediated transmission models,
and finally we examine the how persistence–infectivity
trade-offs affect the transmission dynamics.

The basic reproduction number and identifiability
Monophasic decay diseasemodel
The basic reproduction number for the model with
monophasic decay is given by [32, 33]

R0 = απκρτN
γ

. (3)

The identifiable combinations of this model have been
published elsewhere [49]. In brief, if case data (corre-
sponding to state I) are observed, then the observed
dynamics are determined by the recovery rate γ , the aver-
age pathogen persistence τ , and the product απκρ. The
basic reproduction number R0, therefore, is structurally
identifiable if the population size N is known.
The parameter combination απκρ can be understood

in the following way. The product κρ is the volume of the
environment ingested per day, and π is the per pathogen
probability of infection. Then, πκρ is the rate of infection-
transmitting contact with the environment. The shedding
rate (α) and infectious contact rate (πκρ) are in an iden-
tifiable parameter combination when we only observe
infections in the population (I). In this case, we do not
measure the concentration of pathogens in the environ-
ment (W ), and we do not know whether the force of
infection (πκρW ) is a result of fewer pathogens that have
a higher rate of infection (low shedding α, high rate of
infectious contact πκρ) or more pathogens with a lower
rate of infection (high shedding α, low rate of infectious
contact πκρ). If the concentration of pathogens in the
environment is observed, however, the relative sizes of the
shedding rate (α) and infectious contact rate (πκρ) are
distinguishable. That is, if environmental monitoring data
(W ) is also available in addition to case data (I), then α and
πκρ, not just their product, are separately identifiable.
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Biphasic decay diseasemodel
In the biphasic pathogen decay model (Eq. (2)), pathogens
leave their environmental compartment either by decay
(ξi) or by phenotype conversion (δi), and we denote the
probability that conversion occurs before decay by φi :=
δi/(ξi + δi). It is easier to interpret the basic reproduction
number R0 and certain identifiable parameter combina-
tions of this model in terms of φ and τ rather than ξ and
δ. The basic reproduction number is

R0 = ακρN
γ

(
π1τ1

(
η + (1 − η)φ2

1 − φ1φ2

)

+π2τ2

(
(1 − η) + ηφ1

1 − φ1φ2

))
.

(4)

The calculations are left to the Additional file 1. This
system R0 can be seen as the sum of two submodel
basic reproduction numbers that give the contributions of
the labile (R0,1) and persistent (R0,2) phenotypes to the
overall basic reproduction number.

R0 =
(

απ1κρτ1N
γ

) (
η + (1 − η)φ2

1 − φ1φ2

)

+
(

απ2κρτ2N
γ

) (
(1 − η) + ηφ1

1 − φ1φ2

)
,

(5)

=: R0,1 + R0,2. (6)
These two submodels are each similar in form to the

monophasic basic reproduction number (Eq. (3)), with
a coefficient that accounts for the interconnectedness of
the two compartments. Of the α pathogens shed between
the two compartments, αη go directly to the labile com-
partment, but α(1 − η)φ2 will also come to the labile
compartment via the persistent compartment. These two
pathogen sources explain the numerator of the intercon-
nectedness coefficient, i.e., η + (1 − η)φ2. Next, because
pathogens can move back and forth between compart-
ments, we need to know the expected number of visits
a pathogen makes to the labile compartment [46]. After
the initial visit, each return visit happens with probabil-
ity φ1φ2. Thus, the expected amount of time spent in the
labile compartment is

τ1(1+φ1φ2+(φ1φ2)
2+· · ·+(φ1φ2)

n+· · · ) = τ1
1 − φ1φ2

.

(7)

This term explains the denominator of the interconnect-
edness coefficient.
Because these submodel reproduction numbers allow us

to understand the relative contribution of each pathogen
phenotype to the overall epidemic potential of the system,
we would like to be able to determine their values from
time-series data. In particular, we want to understand the
risk potential in the less infectious, persistent fraction of
pathogens. However, it is not clear a priori whether we

can determine these risk potentials from time-series data
alone, and so we need identifiability analysis to determine
the identifiable parameter combinations for the bipha-
sic decay model and to inform what data are required to
provide useful information from the model. Mathemat-
ical computation and details are left to the Additional
files 1, 2, 3, 4 and 5.
If we only have human disease surveillance time-

series (case data, I), then the observed dynamics are
determined by

γ ,

α(ηπ1 + (1 − η)π2)κρ,

ξ1 + δ1 + ξ2 + δ2 = τ1 + τ2
τ1τ2

,

(ξ1 + δ1)(ξ2 + δ2) − δ1δ2 = 1 − φ1φ2
τ1τ2

,

R0/N .
In this case, the disease recovery rate γ is identifiable

as it was in the monophasic decay model. The combina-
tion α(ηπ1 + (1 − η)π2)κρ in the biphasic model has an
analogous interpretation to that of the combination απκρ

in the monophasic model. The two identifiable parameter
combinations ξ1 + δ1 + ξ2 + δ2 and (ξ1 + δ1)(ξ2 + δ2) −
δ1δ2 come directly from the underlying biphasic pathogen
decaymodel previously described in [18]; they are the sum
and product of the apparent labile and persistent decay
rates. These values characterize the observed pathogen
decay, but they cannot attribute the values to the under-
lying processes, i.e., the same observed patterns could be
generated by different values of the decay and phenotypic
conversion parameters. Finally, because R0/N is identifi-
able from case data, the basic reproduction number can
be estimated if the population size is known.
Human disease surveillance provides us with informa-

tion about five quantities, but, since there are eleven
parameters, we can see that additional data will be needed
to make inference about specific biological parameters,
the persistence–infectivity trade-off, and the phenotype-
specific risk. Quantitative microbial risk assessors often
collect environmental samples to inform exposure esti-
mates; such data could also be used to inform trans-
mission models. Many quantification methods are either
culture-based (which may not capture a dormant persis-
tent phenotype) or PCR-based (which will not distinguish
between phenotypes). If we combine case data with high-
quality time-series environmental surveillance of the total
pathogen population (W = W1 + W2), such as might
be collected to inform quantitative microbial risk assess-
ment, we can additionally estimate

α,
τ1(η + (1 − η)φ2) + τ2((1 − η) + ηφ1)

τ1τ2
.
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By observing both case and environmental data, we can
estimate the average shedding rate per volume α. This sec-
ond parameter combination is less directly interpretable
but could prove useful in estimating some biological
parameters if others are known experimentally.
The underlying system dynamics are sufficiently com-

plicated so that patterns of time-series case data and
environmental surveillance, even though useful for
characterizing the overall risk, do not fully reveal the
biological processes or implications of the persistence–
infectivity trade-off. However, if we have a way to estimate
the relative abundance of the labile (W1) and persistent
(W2) pathogen phenotypes in our environmental sam-
ples, we gain a great deal of parametric information.
We can separately estimate γ ,α, η, δ1, δ2, ξ1, ξ2, κρπ1, and
κρπ2 (proof in supplementary material), at least in the-
ory (there may be practical barriers for real-world data).
With this information, we can infer the risk potentials of
the labile and persistent phenotypes (R0,1 andR0,2).
These results suggest that there are two scientific

strategies for understanding the underlying biological
mechanisms and the persistence–infectivity trade-
offs in this system. First, with high-quality case and
environmental data that can distinguish between
pathogen phenotypes, we can indirectly infer many of
the biological parameter values. Second, if we cannot
distinguish between pathogen phenotypes, usual disease
environmental surveillance can be combined with tar-
geted experimental studies designed to independently
determine certain model parameters. Here, the important
parameters to identify are the infectivity of pathogens
in the persistent state (π2), the rates of entering dor-
mancy (δ1) and of resuscitation (δ2), and the fraction of
pathogens already dormant when initially shed into the
environment (1 − η)); identifying these parameters is
essential to understanding the relative risks associated
with the labile and persistent pathogen phenotypes. In
particular, determining that one or more of these param-
eters is negligibly small provides a means to simplify the
modeling framework. For example, if we can determine
that resuscitation does not occur in the environment to
an appreciable extent (δ2 ≈ 0), then the identifiable quan-
tities from case data simplify to γ , α(ηπ1 + (1 − η)π2)κρ,
ξ1 + δ1, ξ2, and R0/N . The addition of environmental
surveillance data helps to identify α and (after a little bit
of algebra) ηξ1 + (1 − η)ξ2. Although determining that
this one parameter δ2 is negligible would not fully resolve
the persistence–infectivity question, it would simplify
the remaining quantities and, consequently, future anal-
ysis. The specific experiments needed to estimate these
parameters will likely vary by pathogen. Broadly speak-
ing, however, animal challenge studies could be used to
estimate π1 and π2, analysis of stool samples could be
used to estimate η, and techniques designed to measure

microbial dormancy could be harnessed to begin to better
understand δ1 and δ2.
These scientific strategies are not mutually exclusive,

and pursuing both population quantification and parame-
ter determination strategies simultaneously will allow for
corroboration and maximize our confidence in the con-
clusions of individual experimental studies because the-
oretical identifiability does not guarantee that real-world
data will contain sufficient information to distinguish the
mechanistic parameters in practice.

The need for both disease surveillance and parameter data
to elucidate mechanism: Simulation-based Shigella
outbreak case study
In this section, we illustrate several of the theoretical
results and demonstrate that disease incidence data can be
used in conjunction with experimental studies to improve
inference of model parameter values, e.g., by narrowing
confidence intervals for estimates. Although the identifi-
able parameter combinations listed in the previous section
represent the theoretical maximum amount of informa-
tion that can be gleaned from observing certain system
dynamics, in the real world with measurement error, the
practical amount of information may be less. This point
underscores the need for multiple approaches to corrobo-
rate estimates.
In this example, we simulate an outbreak of Shigella

using the full biphasic decay disease model (Eq. (2)) for
a small village with little-to-no drinking water treatment
or sanitation infrastructure. In this scenario, villagers have
unimproved sanitation or practice open defecation, allow-
ing fecal matter and pathogens to enter the drinking water
supply, which is a well-mixed lake adjacent to the village.
Villagers do not treat their drinking water.
We consider the perspective of a researcher trying to use

disease surveillance to elucidate the underlying dynam-
ics of the outbreak. We fit the monophasic decay disease
model (Eq. (1)) to the biweekly surveillance data (Fig. 3a).
The monophasic environmentally mediated infectious
disease transmission model captures the dynamics of the
biphasic data well; i.e. we cannot detect the model mis-
specification from the fit alone. Indeed, fitting the bipha-
sic decay model to this data negligibly improves the fit
and predicts dynamics that are virtually indistinguishable
from the monophasic model (not pictured). Even though
we capture the dynamics with the monophasic model,
our parameter estimates are highly uncertain. Asymptotic
confidence intervals for the estimates of both ακρπ and
τ span two orders of magnitude (Fig. 3 legend). In partic-
ular, the persistence τ can be arbitrarily small and still fit
the data well.
One reasonable approach to improving our parameter

inference here would be experimentally determining the
environmental persistence of the pathogen. We conduct
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a b c

Fig. 3 Pathogen decay dynamics cannot be inferred from case data alone. a An outbreak of Shigella simulated with the biphasic decay disease
model with parameters N = 1000, γ = 1/6, κ = 8, ρ = 0.15, V = 4E8, η = 1-(1E-5), π1 = 1.1E-2, π2 = 1.1E-4, ξ1 = 5, ξ2 = 0.2, δ1 = 0.05, δ2 = 0.002,
andR0 = 1.3. Biweekly case data were simulated from a binomial distribution. The monophasic decay disease model was fit to this simulated data
using a binomial likelihood: parameter estimates are ακρπ = 3.4E-3 (95% CI: 2.8E-4, 4.1E-2), γ = 1.6E-1 (95% CI: 1.5E-1, 1.8E-1), τ = 6.3E-2 (95% CI:
5.2E-3, 7.6E-1), I(0) =1.0 (95% CI: 0.6,1.8). The asymptotic confidence intervals for ακρπ and τ are very wide. b Simulated pathogen decay data
reveals a biphasic decay pattern and allows the estimation of the apparent fast and slow decay rates. The sum and product of these rates are
represented by ξ1 + δ1 + ξ2 + δ2 = 5.24 and (ξ1 + δ1)(ξ2 + δ2) − δ1δ2 =1.01. Using these estimates in fitting the biphasic decay disease model to
the data allows us to make more accurate and precise inferences of certain parameter combinations: ακρ(ηπ1 + (1−η)π2) (true: 1.09E-3, estimated:
1.18E-3 (95% CI: 1.02E-3, 1.36E-3)) andR0/N (true: 1.30E-3, estimated: 1.40E-3 (95% CI: 1.27E-3, 1.53E-1)). c If we can separately quantify the labile
and pathogen phenotypes in the pathogen decay experiment, we can estimate ξ1 =4.96, ξ2 =0.23, δ1 =0.06, δ2 =0.0018, all close to the true
values. Using the biphasic decay disease model together with these estimates, we can estimate most of the remaining model parameters: γ=0.18,
κρα =0.10, η =0.72, π1=1.11E-2, π2=6.66E-4. Only η is substantially different from it’s true value. With further shedding studies, we can estimate η

and then characterize the labile disease risk (R0,1 estimated: 1.24, true: 1.30) and persistent disease risk (R0,1 estimated: 1.5E-2, true: 3.2E-3)

an experimental pathogen decay study, taking a sample of
recently shed pathogen and observing its decay in a con-
trolled environment (simulated in Fig. 3b). The pathogen
decay study indicates that the pathogen decay is actually
biphasic, which we did not detect from disease surveil-
lance data alone. Fitting a biexponential model to this data
allows us to estimate the sum and product of the appar-
ent fast and slow decay rates (ξ1 + δ1 + ξ2 + δ2) and
(ξ1 + δ1)(ξ2 + δ2) − δ1δ2, respectively [18].
We can use this experimentally derived data in the

parameter estimation for the biphasic decay diseasemodel
to circumvent the inference problems and estimate γ ,
α(ηπ1 + (1 − η)π2)κρ, and R0/N with more accuracy
and precision. The number of parameters (eleven), how-
ever, is greater than the number of degrees of freedom in
the information (five), meaning that we can say very little
about the values of the individual parameters, other than
putting some general bounds on τ1, τ2, and ακρ.
Separate quantification of the labile and persistent phe-

notypes in the pathogen decay study (simulated in Fig. 3c),
improves our understanding of the underlying dynam-
ics substantially: we can estimate ακρ, ξ1, ξ2, δ1, δ2
with reasonable accuracy. However, this single pathogen
decay study does not provide enough information to
accurately estimate the fraction of pathogens shed into

each phenotype η. By taking multiple measurements in a
shedding study, we could estimate η, which would allow
us to estimate (correctly) that the persistent phenotype
accounts for less than 2% of the overall disease risk in this
outbreak.

Persistence–infectivity trade-offs affect outbreak dynamics
The pathogen infectivity π and the pathogen persistence
τ are not part of the same identifiable parameter com-
binations in the monophasic decay model. This means
that differences in the outbreak dynamics can be observed
when we compare a highly infectious pathogen with low
persistence to a less infectious pathogen with high per-
sistence. At the same time, infectivity π and persistence
τ appear in a product in the analytic equation for R0
(Eq. (3)). As long as the product of π and τ is con-
stant, the basic reproduction number, and, therefore, the
attack ratio, will be the same. Altogether, the persistence–
infectivity trade-off can produce a variety of dynamics all
associated with the sameR0, and we find that slower out-
breaks with smaller peak sizes are associated with less
infectious, more persistent pathogens (Fig. 4).
In the biphasic decay disease model, we observe the

same phenomena. Heuristically, the trade-offs are more
easily observed if we express the degree of deviation



Brouwer et al. BMC Infectious Diseases          (2019) 19:449 Page 9 of 13

a b c

Fig. 4 Infectivity–persistence trade-offs in a monophasic pathogen decay model. a. Heatmap of the basic reproduction numberR0 of the
monophasic decay disease model (Eq. (1)) as a function of persistence (τ ) and infectivity (π ). The line is the contour along whichR0 = 2. Here, N =
1000, γ = 0.1, κ = 8, ρ = 0.15, α = 0.001. The colored dots correspond to the colored lines in (b) and (c). b Fraction of the population infected for
the values of pathogen persistence (τ ) and infectivity (π) given by the dots in (a). Although all points haveR0 = 2, the epidemic dynamics vary
significantly over the individual parameter values. c Pathogen decay curves in the absence of a system input illustrate the variation in the
corresponding persistences (τ )

from monophasic behavior using the ratios of infectivities
π2/π1 and persistence times τ1/τ2, where more devia-
tion from 1 indicates a greater deviation frommonophasic
behavior. Because we consider only the case where the
persistent subpopulation is no less persistent and no more
infectious than the labile subpopulation, we only consider
0 < π2/π1 < 1 and 0 < τ1/τ2 < 1. Rewriting the basic
reproduction number in terms of these ratios,

R0 = ακρπ1τ1N
γ

((
η + (1 − η)φ2

1 − φ1φ2

)

+π2/π1
τ1/τ2

(
(1 − η) + ηφ1

1 − φ1φ2

))
,

(8)

we see that when we fix the persistence and infectivity of
the labile subpopulation (τ1 and π1), the two ratios π2/π1
and τ1/τ2 must be proportional to maintain R0 (Fig. 5a).
As with the monophasic model, the outbreak peaks later
and smaller as the persistent pathogens become relatively
more persistent but less infectious, (Fig. 5b). At the same
time, the biphasic deviation become more pronounced
(Fig. 5c).
Pathogens can fall in different places along the

persistence–infectivity spectrum while still maintaining
the same basic reproduction number, a proxy for pathogen
fitness and measure of the attack ratio. Moreover, two
phenotypes within a single populationmight likewise have
different persistence–infectivity strategies, and thereby

exhibit biphasic decay. In both themonophasic and bipha-
sic decay disease models, these persistence–infectivity
trade-offs have implications for the timing and peak size of
the associated epidemics, whichmay in turn direct control
strategies.

Discussion
Microbial pathogens evolve or alter their metabolisms to
maximize survival in response to stress. For pathogens
that require a human host to reproduce, the resulting
trade-offs will likely maximize transmission potential.
These trade-offs can unfold over a long (evolutionary)
time-scale causing differences to arise between popula-
tions or shorter (metabolic, gene expression, horizontal
gene transfer [50], etc.) time-scales, allowing phenotypic
variation to arise within a single population. We find
that an epidemic-potential-preserving trade-off between
persistence and infectivity affects the speed of epidemic
dynamics. Highly infectious pathogens with low persis-
tence have faster epidemic dynamics than persistent but
less-infectious pathogens, even when the total risk is the
same. Understanding the dynamics underlying a multi-
phenotype pathogen population is not possible with dis-
ease surveillance alone. Environmental surveillance of the
total number of pathogens, with no distinction between
subpopulations with different persistence phenotypes, is
also not sufficient to uniquely estimate the underlying
biological parameters. Selected experimental studies to
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a cb

Fig. 5 Infectivity–persistence trade-offs in a biphasic pathogen decay model. a Heatmap of the basic reproduction numberR0 of the biphasic
decay disease model (Eq. (2)) as a function of the ratio of the persistences (τ1/τ2) and infectivities (π2/π1). The line is the contour along which
R0 = 2. The colored dots correspond to the colored lines in (b) and (c). b Fraction of the population infected over time for the values of pathogen
persistence and infectivity ratios given by the dots in (a). Although all points haveR0 = 2, the epidemic dynamics vary significantly over the
parameter ratios. Here, N = 1000, γ = 0.1, κ = 8, ρ = 0.15, α = 0.001, η = 0.99, φ1 = 0.1, φ2 = 0.01, π1 = 0.0195, τ1 = 2. c Pathogen decay curves
in the absence of a pathogen input illustrate the degree of biphasic behavrior corresponding to the persistence ratios (τ1/τ2)

ascertain key parameter values, on the other hand, can
maximize the information available in disease and envi-
ronmental surveillance and lead to fully specified risk
models.
Understanding the data needs for a fully specifiedmodel

will help inform risk assessments, which often do not
consider heterogeneity of pathogen populations because
of methodological and data limitations. Our analysis
here demonstrates that characterizing the persistence–
infectivity trade-off within pathogen populations in the
environment can have important implications for risk
assessment, particularly when biphasic decay is possi-
ble. Biphasic decay indicates the presence of labile and
persistent phenotypes, each with a different associated
disease potential (characterized by R0,1 and R0,2, respec-
tively). Understanding how much the more persistent
subpopulation contributes to the overall epidemic poten-
tial would improve the accuracy of risk assessments. Most
risk assessments assume that pathogens decay exponen-
tially (i.e., monophasically), discounting the possibility of
a persistent subpopulation. Even when there is experi-
mental evidence to characterize the persistences of the
subpopulations, there has so far been little indication of
whether to treat the persistent population as compara-
bly infectious, not infectious, or somewhere in between.
Experimental studies that provide information on the rel-
ative infectivity of the persistent subpopulation, as well as

other biological parameters, will be useful for assessing
the role of persistent subpopulations in public health risk
assessment.
Questions of trade-offs between environmental per-

sistence and infectivity are particularly relevant to the
study of dormant microbial states—such as VBNC or
antibiotic-resistant persister states—that result from envi-
ronmental stresses. The VBNC state has been observed in
many bacterial species and is characterized by a lack of
culturability with classical techniques. Over fifty human
pathogens have been reported to exhibit a VBNC state,
including E. coli, Salmonella, and Vibrio cholerae [24, 26].
It is thought that the VBNC state is an adaptive strat-
egy for survival in unfavorable environments, is induced
by environmental stresses including disinfection, and can
be reversed through resuscitation [24–26]. However, the
exact role and mechanisms of the VBNC state appear to
vary between species, so the VBNC state may be bet-
ter considered a collection of related but species-specific
states that are all characterized by a loss of culturability.
Moreover, an emerging hypothesis, called the “dormancy
continuum,” has suggested that the VBNC state and per-
sister state are closely related phenomena [51, 52]. For
most species, the pathogens in a dormant state have
a slower die-off rate, and there is evidence of reduced
infectivity in some species (e.g. H. pylori [31]). Addition-
ally, there is evidence that cells can regain full virulence
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upon resuscitation [24–26], though in vivo resuscitation
of ingested VBNC pathogens may be comparatively
rare [53].
Fully describing the persistence–infectivity trade-offs

and the underlying environmentally mediated pathogen
dynamics require public health activities to go beyond
collecting disease surveillance data and consider environ-
mental processes. And, although the role of environmen-
tal surveillance will be central, experimentalists have the
opportunity to expand not only our knowledge of the biol-
ogy of human pathogens in the environment but also the
implications for population-level disease by collaborat-
ing with mathematical disease modelers. Experimentalists
can directly ascertain values of biological parameters,
including the relative infectivity of persistent pathogens
and the rates of phenotypic changes; calls for assessing
rates of entering dormancy and resuscitation have already
been made by mathematical modelers assessing persis-
ter cells [22]. Alternatively, by developing methods that
separately quantify the dynamics of labile and persistent
pathogens, experimentalists can help provide the time-
series data modelers need to indirectly infer the biological
parameters and rates. These direct and indirect pathways
are complementary, and both should be pursued.
More generally, microbiologists could contribute to

public health by focusing on the downstream implications
of gene expression and metabolic processes. For example,
how does the presence of a certain gene in a pathogen
population translate into its ability to infect those exposed
to it? Or, under which real-world environmental con-
ditions should we expect extended persistence of still-
infectious pathogens? Shifting the experimental mindset
to answering such questions will significantly benefit risk
assessment and public health researchers.
The combination of human and environmental surveil-

lance data, experimental data, and mechanistic models
through a dialectic process promises to move theory and
application towards more informed public health deci-
sion making. At the same time we always need to be
aware of the assumptions behind a specific mechanistic
model structure. For example, we used the basic repro-
duction number R0 as a proxy for pathogen fitness.
Although R0 is likely an acceptable first approximation
for pathogen fitness, real-world trade-offs may not pre-
cisely maintain the basic reproduction number because
of the complex nature of genetic or metabolic trade-offs
and because bacteria are not inherently optimizing the
abstract concept of human disease transmission (there
may be local, contextual effects or the influence of other
hosts). Also, by using a compartmental model, we make
implicit assumptions about deterministic and well-mixed
dynamics. True dynamics are likely to be spatial (per-
haps related to biofilm formation) and likely stochastic;
indeed, persister cells, for example, are thought to arise

from stochastic fluctuations in gene expression and to
comprise only a small fraction of the population, on the
order of 10-4 to 10-6. Nevertheless, our work provides
a first mathematical modeling framework for consider-
ing possible population-level public health implications of
microbial dormancy.

Conclusion
To improvemicrobial risk assessments of environmentally
mediated pathogens and to provide a more precise means
of developing environmentally-based control strategies,
we will require a better understanding of the dynamic
mechanisms that drive the variation in pathogen per-
sistence times, as well as the associated trade-offs with
infectivity. The development and analysis of the dynamic
models presented here create a framework to translate
data obtained from microbial ecological and experimen-
tal research into predictions of population-level public
health outcomes. In particular, targeted studies designed
to elucidate the dynamics of persistent pathogen subpop-
ulations are needed.
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