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HIV-1 drug resistance testing is essential for
heavily-treated patients switching from
first- to second-line regimens in resource-
limited settings: evidence from routine
clinical practice in Cameroon
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Abstract

Background: With the phase-out of stavudine (d4T), change to first-line regimens with zidovudine (AZT) or tenofovir
(TDF) in resource-limited settings (RLS) might increase risks of cross-resistance to nucleos(t) ide reverse transcriptase
inhibitors (NRTI). This would restrict the scope of switching to the World Health Organisation (WHO)-recommended
standard second-line combinations (SLC) without HIV drug resistance (HIVDR)-testing in routine clinical practice.

Methods: An observational study was conducted among 101 Cameroonian patients (55.4% male, median [IQR] age 34
[10–41] years) failing first-line antiretroviral therapy (ART) in 2016, and stratified into three groups according to NRTIs
exposure: exposure to both thymidine analogues AZT “and” D4T (group-A, n = 55); exposure to both TDF and AZT “or”
D4T (group-B, n = 22); exposure solely to D4T (group-C, n = 24). Protease-reverse transcriptase HIVDR was interpreted
using the HIVdb penalty scores (≥60: high-resistance; 20–59: intermediate-resistance; < 20: susceptible). The acceptable
threshold for potential-efficacy was set at 80%.
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Results: The median [IQR] CD4, viral RNA, and time on ART, were respectively 129 [29–466] cells/μl, 71,630
[19,041-368,000] copies/ml, and 4 [2–5] years. Overall HIVDR-level was 89.11% (90/101), with 83.2% harbouring
M184 V (high-level 3TC/FTC-resistance) and only 1.98% (2/101) major HIVDR-mutations to ritonavir-boosted protease-
inhibitors (PI/r). Thymidine-analogue mutations (TAMs)-1 [T215FY (46.53%), M41 L (22.77%), L210W (8.91%)], with
cross-resistance to AZT and TDF, were higher compared to TAMs-2 [D67N (21.78%), K70R (19.80%), K219QE (18.81%)].
As expected, K65R was related with TDF-exposure: 0% (0/55) in group-A, 22.72% (5/22) group-B, 4.17% (1/24) group-C
(p = 0.0013). The potential-efficacy of AZT vs. TDF was respectively 43.64% (24/55) vs. 70.91% (39/55) in group-A
(p = 0.0038); 63.64% (14/22) vs. 68.28% (15/22) in group-B (p = 1.0000); and 37.50% (9/24) vs. 83.33% (20/24) in group-C
(p = 0.0032). CRF02_AG was the prevailing subtype (63.40%), followed by CRF11.cpx (8.91%), A1 (7.92%), G (5.94%);
without any significant effect of the subtype-distribution on HIVDR (92.2% in CRF02_AG vs. 83.8% in non-AG; p = 0.204).

Conclusion: First-line ART-failure exhibits high-level NRTI-resistance, with potential lower-efficacy of AZT compared to
TDF. Significantly, using our 80% efficacy-threshold, only patients without NRTI-substitution on first-line could effectively
switch to SLC following the WHO-approach. Patients with multiple NRTI-substitutions (exposed to both thymidine-
analogues and TDF) on first-line ART would require HIVDR-testing to select active NRTIs for SLC.
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Background
By the end of 2017, about 70% of HIV-infected people
knew their status, 77% of these were receiving antiretro-
viral therapy (ART) and 82% of treated patients achieved
viral suppression [1, 2]. This progress led to 54% cover-
age of ART (14 million people) in Africa, with a cover-
age that is expected to double by 2020 as per the 90–90
− 90 targets (90% of all people living with HIV have been
diagnosed; 90% of all people with diagnosed HIV infec-
tion are receiving ART; 90% of all people receiving ART
have suppressed viral load) [2].
A major setback in achieving viral suppression is the

emergence of HIV drug resistance (HIVDR), which is
driven by delayed detection of virological failure and ac-
cumulation of drug resistant mutations (DRMs) in
resource-limited settings (RLS). This later increases
cases of new HIV-infections with resistant viruses, as
well as AIDS-associated-morbidity and mortality [2, 3].
While HIVDR is gradually under control in high-income
countries, the resistant patterns are rising in RLS and es-
pecially within sub-Saharan Africa (SSA) [3]. In these
settings, one in every 10 adults starting ART harbour re-
sistant virus; three in every 10 adults restarting first-line
ART (i.e. women exposed to antiretrovirals for the pre-
vention of mother-to-child transmission (PMTCT) or in-
dividuals re-initiating first-line ART after a period
beyond 3months of treatment interruption) harbour re-
sistant virus; and five in every 10 young children diag-
nosed with HIV harbour resistant virus [3]. Regarding
adults living in different SSA regions, resistance rates to
first-generation non-nucleoside reverse-transcriptase in-
hibitors (NNRTIs), i.e. nevirapine and efavirenz, are
already beyond 10% in East and Southern Africa regions
[4], thus requiring treatment initiation with

NNRTI-sparing regimens for optimal ART response in
these settings, compared to West and Central Africa re-
gions where the burden may still be bearable [4, 5].
However, the estimated incremental annual increase of
17% pre-treatment drug resistance (PDR) in West and
Central Africa settings over time (p = 0.0017), the imple-
mentation of the “treat-all” strategy and the continuous
use of NNRTI-based first-line ART [2], virological failure
(VF) and acquired HIVDR to current first-line ART
would be cumulative [5, 6], especially for countries like
Cameroon where the national estimates of NNRTI-PDR
are near the 10% critical threshold: 7.8% by Fokam et al.
in 2017 and 8.3% by WHO in 2017 [7, 8].
With the complete phased-out of stavudine (D4T)

from current first-line ART in RLS, tenofovir
(TDF)-containing regimens are now widely used while
patients with contraindication to TDF are generally be-
ing prescribed zidovudine (AZT)-containing regimens as
an alternative [9, 10].
After VF on a standard first-line ART in RLS, an opti-

mal selection of SLC is challenging due to limited access
to HIVDR testing [2, 5, 6]. In such situations, 3TC could
be recycled as part of the NRTI-backbone in SLC because
it selects for the M184V mutation, which decreases viral
replication and increases susceptibility to AZT and TDF
for potential use in SLC with PI/r [10, 11]. In this frame,
the WHO guidelines also recommend the use of AZT +
3TC as NRTI backbone for SLC for those patients failing
on TDF-containing first-line regimen; likewise, TDF +
3TC is recommended as NRTI backbone in SLC for pa-
tients failing on AZT-containing first-line regimen [9, 11].
Of note, failure on TDF leads to viral hyper-susceptibility
to AZT (due to K65R mutation) while failure on AZT
leads to possible cross-resistance to TDF. Moreover, in
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routine clinical practice, patients may experience several
NRTI substitutions on first-line, which renders difficult
drug recycling for use alongside PI/r in SLC. In an attempt
to predict acquired HIVDR, Rutstein et al. reported a very
poor sensitivity (14.7–28.0%) by using a risk-score ap-
proach [12]. Another report from South-India revealed
that only half of the patients could be eligible for recycling
NRTIs in the SLC [13], which somehow indicate an in-
creasing need of implementing HIVDR testing in routine
clinical practice of RLS [14]. However, Phillips et al. re-
ported that HIVDR testing, as part of the decision to
switch to SLC, was not cost-effective [15], thereby calling
for the need of affordable HIVDR testing assays to the bet-
ter management of ART in RLS [13–15]. A study in 9
countries revealed varying resistance patterns at first-line
failure and consistent dual-class resistance [16], which
raise concerns on using HIVDR testing in deciding to
switch to SLC in RLS in the frame of increasing assess to
reference laboratory platforms [15, 16]. Therefore, for a
switch to SLC, assessing the potential effectiveness of the
current WHO recommendation in real-life would be of
great benefit for ART management in RLS.
Considering the peculiarity of the national ART pro-

gram in Cameroon (scale-up of ART since 2003, general-
ised HIV epidemic, broad viral genetic diversity) [17, 18],
we sought to evaluate the patterns of DRMs according to
treatment history of patients failing first-line ART in rou-
tine clinical practice and the potential susceptibility of
NRTIs for selecting active SLC.

Methods
Study design and settings
A cross-sectional and analytical study was conducted in
2016 among 101 HIV-infected patients failing first-line
ART (defined as viral load: ≥ 1000 HIV-1 RNA copies/
ml) and referred for HIVDR testing at the Chantal BIYA
International Reference Centre (CIRCB) for research on
HIV/AIDS prevention and management (CIRCB), lo-
cated in Yaoundé, the capital city of Cameroon.
The CIRCB is a government institution of the Ministry

of Public Health dedicated to HIV research and patient
monitoring in several aspects, among which: (a) HIV early
infant diagnosis in the frame of the national PMTCT pro-
gram; (b) diagnosis of co-infections with HIV; (c) viral load
measurement; (d) CD4 and CD8 T lymphocytes counts;
(e) biochemical and haematological tests for drug safety;
(f) HIV-1 genotypic drug resistance testing at subsidised
costs; with a quality control program conducted in part-
nership with QASI (http://www.circb.cm/btc_circb/web/).

RNA extraction, reverse transcription and polymerase
chain reaction
Viral RNA was extracted from plasma samples using the
QIAmp viral RNA Mini kit (Qiagen Hilden, Germany)

according to the manufacturer’s protocol; extracted viral
RNA was then reverse transcribed, amplified and se-
quenced as previously described [19]. Briefly, RNA was
retro-transcribed and amplified using the kit One-Step
Invitrogen SuperScript for long templates RT-PCR
(Foster City, CA) and 2 sequence-specific primers for
40 cycles; for insufficiently amplified samples after the
first round PCR, a second round PCR (semi-nested
PCR) was performed; direct sequencing reaction was
then carried out using 7 overlapping primers [19]; Capil-
lary electrophoresis was performed using an Applied
Biosystems 3130 XL genetic analyzer (Applied Biosys-
tems, Tokyo, Japan) and sequences were assembled
using SeqScape Version 2.7 to generate contigs [20].
Nucleotide sequences were aligned with subtype/circu-

lating recombinant form (CRF) reference sequences
from the Los Alamos National Laboratory database
using the CLUSTALW integrated into Bioedit.7.2.5 [21,
22]. Following comparison of each sequence with refer-
ence sequences (database accessed on 8/01/2018) [23],
gaps were then removed from the final alignment, and
the phylogenetic tree was constructed by using Splitstree
[24]. Recombination among HIV-1 subtypes were con-
firmed by SCUEAL [25], COMET [26], SimPlot [27],
and Rega subtyping tool v.3 [28].

Interpretation of drug resistance mutations
DRMs of the protease-reverse transcriptase regions
were analyzed using the Stanford HIVDR database al-
gorithm version 8.1 [29]. PI/r, NRTIs and NNRTIs ef-
fectiveness were interpreted using the genotypic
scoring system for drug susceptibility with the following
penalty: ≥60 high-resistance; 20–59: intermediate-re-
sistance; < 20: susceptible. Resistance profile was then
compared according to first-line ART-regimens re-
ceived by each patient, and the potential drug efficacy
was evaluated for SLC.

Statistical analysis
Levels of DRMs, defined as any mutation with a geno-
typic penalty score of either a high or intermediate
threshold, were used to classify patients failing ART with
HIVDR. Per group (A, B and C), adequacy for using
AZT versus TDF in SLC was defined as ≥80% of patients
reporting drug efficacy based on a genotypic susceptibil-
ity profile within each group. Comparison of DRMs was
performed by group (A, B and C) and following the local
HIV-1 molecular epidemiology (CRF02_AG versus
non-CRF02_AG). Chi-squared or Fisher’s exact test,
where appropriate, was used for statistical analysis of
categorical variables to determine the statistical signifi-
cance of bivariate analysis, with p < 0.05 considered sta-
tistically significant.
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Ethical considerations
Ethical clearance was obtained from the Ethics Review
and Consultancy Committee of the Cameroon Bioethics
Initiative (Reference number: CBI/2013/0139/ERCC/
CAMBIN), and written informed consent was provided.
For those participants under 16 years of age, a written
proxy-informed consent was provided to the study coor-
dinators by the respective parent(s) or legal guardian(s),
followed by an assent provided by the corresponding
participant. Data were de-identified for purpose of confi-
dentiality and privacy in data management.

Results
Characteristics of the study population
All study participants were failing treatment on a
first-line ART available in the national guidelines, after a
median time-on-ART of [IQR] 4 [2–5] years.
All the participants were patients exposed to lamivu-

dine plus efavirenz or nevirapine, plus at least one other
NRTIs used in the first-line ART of Cameroon. Accord-
ing to NRTI-exposure on first-line ART, patients were
then classified into three groups (group-A: patients with
prior but not concomitant exposure to both thymidine
analogues AZT “and” D4T; group-B: exposed to TDF + a
thymidine analogue D4T “or” AZT, and group-C: ex-
posed solely to D4T), as shown in Table 1.

HIV drug resistance according to first line ART exposure
Globally, the rate of HIVDR among these patients failing
first-line ART was 89.1% (90/101). Interestingly, up to
83.2% of patients harboured the M184 V mutation, asso-
ciated with high-level resistance to 3TC and FTC and
serving as adherence marker.
In all the three groups of ART-exposure, the overall

prevalence of DRMs (both high and intermediate levels
combined) to AZT was higher compared to TDF, with
respectively: 56.4% (31/55) vs. 29.1% (16/55) in group A,
p = 0.0038; 36.4% (8/22) vs. 31.8% (7/22) in group B,

p = 1.000; and 62.5% (15/24) vs. 16.7% (4/24) in group
C, p = 0.0032. This represents proportion of patients
that have compromised AZT and/or TDF prior to
switching to SLC, according to their ART history and
without access to HIVDR testing.
Following class specific mutations, the prevalence of

thymidine analogue mutations (TAMs) was higher in
group-A and group-C combined (62.0% [49/79]) com-
pared to group-B (40.9% [9/22]), p = 0.0765, leading to
higher rates of HIVDR to AZT compared to TDF
(Table 2 Group A, B and C). TDF-mutation K65R was
significantly associated with TDF-exposure: 0% in
group-A, 22.7% (5/22) in group-B, 4.2% (1/24) in
group-C (p = 0.0013). Only 1.98% (2/101) of patients
harboured PI/r major DRMs, in accordance with the his-
tory of non-exposure to PI/r.

Table 1 Demographic and clinical data of patients

Total number of patients 101

Sex distribution 55.4% (56/101) male

Median age [IQR] 34 [10–41] years

Median CD4 [IQR] 129 [29–466] cells/μl

Median viral load [IQR] 71,630 [19,041-368,000] copies/ml

ART regimens received by each group of patients, in addition to 3TC
plus EFV or NVP

Group-A (n = 55) both AZT and D4T

Group-B (n = 22) TDF + “D4T or AZT”

Group-C (n = 24) D4T (i.e. Triomune)

Legend. 3TC Lamivudine, EFV Efavirenz, NVP Nevrapine, ART antiretroviral
therapy, AZT Zidovudine, D4T Stavudine, TDF Tenofovir, Triomune D4T + 3TC +
NVP. All patients had received 3TC plus EFV or NVP. Footnote: Prior exposure
to D4T and AZT was not concomitant

Table 2 Resistance to each NRTI among patients failing first-line
antiretroviral therapy

Group-A: AZT and D4T n = 55

HIVDR High (%) Intermediate (%) Susceptible (%)

3TC 45 (81.8%) 0 (0.0%) 10 (18.2%)

ABC 11 (20.0%) 19 (34.5%) 25 (45.5%)

AZT 23 (41.8%) 8 (14.6%) 24 (43.6%)

D4T 23 (41.8%) 7 (12.7%) 25 (45.5%)

DDI 14 (25.4%) 11 (20.0%) 30 (54.6%)

FTC 45 (81.8%) 0 (0.0%) 10 (18.2%)

TDF 3 (5.5%) 13 (23.6%) 39 (70.9%)

Group-B: TDF + D4T or AZT n = 22

HIVDR High (%) Intermediate (%) Susceptible (%)

3TC 19 (86.4%) 0 (0.0%) 3 (13.6%)

ABC 10 (45.5%) 6 (27.3%) 6 (27.3%)

AZT 3 (13.6%) 5 (22.7%) 14 (63.6%)

D4T 4 (18.2%) 9 (40.9%) 9 (40.9%)

DDI 10 (45.5%) 2 (9.1%) 5 (45.5%)

FTC 19 (86.4%) 0 (0.0%) 3 (13.6%)

TDF 6 (27.3%) 1 (4.5%) 15 (68.2%)

Group-C: D4T (i.e. Triomune) n = 24

HIVDR High (%) Intermediate (%) Susceptible (%)

3TC 20 (83.3%) 0 (0.0%) 4 (16.7%)

ABC 7 (29.2%) 8 (33.3%) 9 (37.5%)

AZT 10 (41.7%) 5 (20.8%) 9 (37.5%)

D4T 10 (41.6%) 5 (20.8%) 9 (37.5%)

DDI 8 (33.3%) 4 (16.7%) 12 (50.0%)

FTC 20 (83.3%) 0 (0.0%) 4 (16.7%)

TDF 2 (8.3%) 2 (8.3%) 20 (83.3%)

Legend. HIVDR HIV drug resistance, 3TC Lamivudine, ABC Abacavir,
AZT Zidovudine, D4T Stavudine, DDI Didanosine, FTC Emtricitabine,
TDF Tenofovir, Triomune D4T + 3TC + Nevirapine. Footnote: Prior exposure to
D4T and AZT was not concomitant
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AZT and TDF potential efficacy according to treatment
history after failing first-line ART
In group-A (i.e. exposed prior and not concomitantly to
regimens containing both thymidine analogues AZT
“and” D4T), the potential efficacy of AZT was signifi-
cantly lower (43.64%) compared to that of TDF
(70.91%); p = 0.0038.
In group-B (i.e. exposed prior and not concomitantly

to TDF and a thymidine analogue AZT “or” D4T), the
potential efficacy of AZT (63.64%) was similar to that of
TDF (68.28%); p = 1.0000.
In group-C (i.e. exposure to D4T-containing regimen

only), the potential efficacy of AZT was significantly lower
(37.50%) compared to that of TDF (83.33%); p = 0.0032.
As shown in Table 2 Group A, B and C, the very high

prevalence of resistance to 3TC and FTC were due to
the high rate of M184 V mutation. Though not exposed
to TDF, Groups A + C reported low prevalence of
TDF-resistance, due to cross-resistance induced by the
accumulation of other NRTI-mutations, especially

TAMs. Of note, TAMs-1 were predominant (T215F/Y:
46.5%; M41 L: 22.8%; L210W: 8.9%) and associated with
higher levels of resistance to both AZT and TDF; as
compared to TAMs-2 that had relatively lower preva-
lence (D67N: 21.8%; K70R: 19.8%; K219Q/E: 18.8%) and
were associated preferentially with AZT/D4T-resistance.

Genetic diversity of HIV-1 protease-reverse transcriptase
The genetic analysis revealed ten subtypes: 63.4%
CRF02_AG (64/101), 8.9% CRF11.cpx (9/101), 7.9% A1

(8/101), 5.9% G (6/101), with only one case of subtype C
known as an uncommon strain in west-central Africa
(Fig. 1).
According to the local HIV-1 molecular epidemiology,

rate of DRMs was slightly higher in CRF02-AG (92.2%)
compared to non-02_AG clades (83.8%), without any sta-
tistically significant difference (p = 0.204). Of note, L74I
(following exposure to TDF-containing regimens) and
L210W (following exposure to regimens containing a thy-
midine analogue) mutations were found only in the group

Fig. 1 HIV-1 genetic diversity among patients failing first-line antiretroviral therapy in Cameroon. Legend. The reference sequences were from the
Los Alamos Database (https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html); Some references have been omitted to enable
better visualization. The scale bar represents 1% genetic distance. CRF: circulating recombinant form
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of patients infected with CRF02_AG viruses (Fig. 2).
HIVDR by drug-class also revealed similar rates between
CRF02_AG and non-CRF02_AG infected populations
(Tables 3 and 4).

Discussion
With the limited access to HIVDR testing in RLS, suc-
cessful switch to SLC remains a major clinical challenge,
especially for patients heavily treated on first-line ART
(i.e. substitution of several NRTIs) [2, 5, 6]. Thus, imple-
menting local strategies to ensure a successful switch to
SLC is warranted [10].
With a median duration of 4 years on ART, the severe

immunodeficiency (CD4 < 200 cells/mm3) and the high
viral load (HIV-RNA > 10.000 copies/ml), there is a late
detection of treatment failure and a substantial accumu-
lation of DRMs in about nine out of ten patients in rou-
tine care [12–14, 17]. This observation therefore urges
the need for early viral load monitoring for timely detec-
tion of ART failure and adequate switch to SLC with
limited risk of HIVDR emergence [30–32]. Our findings
are similar to several reports in Cameroon [31, 32], but
with higher HIVDR prevalence compared to a study
conducted at 36-months ART [33]. This is due to differ-
ences in study design (virologically suppressed and un-
suppressed patients) and durations [33].
Most importantly, with only ~ 2% PI/r resistance, the

use of PI/r as back bone for SLC remains standard for
patients failing first-line regimens in settings with similar
ART programs [2, 4, 9, 11], pending the selection of po-
tentially active NRTIs [10–14, 16].

In group-A (both AZT +D4T-exposure), level of HIVDR
to AZT was almost two times higher as compared to TDF.
This could be explained by the fact that these patients
were previously exposed to D4T-containing regimens (i.e.
Triomune) and were subsequently moved to AZT, most
likely due to D4T-adverse events or the phased-out of
D4T [34]. In the frame of treatment failure, the accumula-
tion of TAMs would further jeopardise the efficacy of TDF
due to cross-resistance mainly driven by TAMs-1 [34, 35].
Therefore, among patients exposed to both thymidine ana-
logues, TDF still stands as the preferable option despite
risks of TAMs-induced cross-resistance (~ 30%). Thus, in
routine clinical practice, patients failing ART with such
treatment history should either: (a) be referred for HIVDR
testing or (b) be switched blindly to SLC with TDF under
close viral load monitoring to detect those at risk of failure
due to TDF cross-resistance [30, 34].
In group-B (exposure to TDF + a thymidine analogue

D4T “or” AZT), about one-third of patients harboured
HIVDR to AZT, also similar for TDF (p = 1.0000). This
is due to the selection of DRMs (TAMs and/or K65R)
following previous ART with a thymidine analogue- and

Fig. 2 HIV-1 drug resistance mutations according to major subtypes distribution. Legend. CRF02_AG: circulating recombinant form; non-
CRF02_AG: other subtypes other than CRF02_AG

Table 3 Prevalence of HIV-1 drug resistance among CRF02_AG

Resistance
Category

No.
sequences

Percentage
with DRM

1 DRM 2 DRMs 3 DRMs ≥4 DRMs

PI/r 64 1.6% 1 0 0 0

NRTI 64 87.5% 10 12 12 22

NNRTI 64 92.2% 33 20 6 0

Legend. PI/r ritonavir boosted protease inhibitor, NRTI nucleos(t) ide
reverse transcriptase inhibitor; NNRTI non-nucleoside reverse
transcriptase inhibitor, DRM drug resistance mutations
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subsequently with TDF-containing regimens [35]. Thus,
because one-third of patients managed on first-line with
such NRTIs substitution has lost both TDF- and
AZT-efficacy [30–34], HIVDR testing would be of great
clinical relevance for selecting SLC NRTIs [14, 36].
In group-C (exposed only to a single regimen

D4T-3TC-NVP), level of HIVDR was significantly higher
to AZT as compared to TDF (about 4-folds), with min-
imal effects of TAMs inducing cross-resistance to TDF
[20]. Thus, in case of exposure to a single first-line regi-
men, the use of TDF in SLC would have a high predict-
ive efficacy in the majority of patients (≥80%). Thus, for
such patients living in RLS, using TDF in SLC without
referring to HIVDR testing might be acceptable in clin-
ical practice [15].
As expected, K65R was only found from the group of

TDF-exposed patients (group-B). Of note, K65R is a mu-
tation known to reverse the excision phenotype of AZT
resistance mutations, to increase viral susceptibility to
AZT, which in turns improves the clinical efficacy of
AZT [10, 37]. Thus, a wider use of TDF in current
first-line regimen might improve the efficacy of AZT for
subsequent use in SLC. However, the poor rate of
AZT-efficacy in this group is attributed to TAMs derived
from previous exposure to thymidine analogues (AZT or
D4T). This implies that without HIVDR testing, AZT
could be used in SLC solely for those failing on
TDF-containing regimens without any previous substitu-
tion of NRTIs [8–11].
The very high frequency of M184 V (> 80%) under-

scores the utility of this mutation as an indicator of
therapeutic compliance in clinical practice for patients
receiving any regimen containing 3TC or FTC [9].
Though FTC has an enhanced incorporation efficiency
(~ 10-fold) compared to 3TC during HIV-1 RT-catalyzed
RNA-dependent DNA synthesis [38], these two cytidine
analogues appear as suitable alternatives without the
need for programme-wide substitution of FTC for 3TC
in current clinical practice [39, 40].
Phylogeny confirms CRF02_AG as the major circulat-

ing clade [41–45]. The single case of subtype C (uncom-
mon in Cameroon) may be due to phylodynamics from
Southern/Eastern Africa [46, 47]. Even though the ana-
lysis of CRF02_AG versus non-AG showed no major ef-
fect of the local subtype distribution on emerging
DRMs, molecular epidemiology surveillance merits

further investigations, which include the preferential pat-
tern of L74I as a potential signature in CRF02_AG-in-
fected patients [48, 49]. Findings with clinical responses
after switch to SLC would provide greater insights for
translational application [50].

Conclusion
In a nutshell, first-line ART-failure exhibits variable
levels of NRTI-resistance (from 17 to 62.5%) in a routine
clinical setting of Cameroon, with a remarkable higher
level of AZT-resistance as compared to TDF-resistance
(recently introduced drug). Thus, regarding efficacy,
first-line ART-failure without NRTI-substitution (i.e. ex-
posed to only AZT or TDF) on first-line could switch to
SLC following the WHO-approach. However, failure
after substitution only between thymidine analogues
may receive TDF as part of SLC pending a close viral
load or HIVDR-testing whenever possible. Most import-
antly, failure after multiple NRTI-substitutions on
first-line (exposed to both “thymidine-analogue and
TDF”) should be referred for HIVDR-testing for select-
ing active NRTIs for an optimal SLC in clinical practice.
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