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Abstract

Background: Detecting the onset of influenza epidemic is important for epidemiological surveillance and for investigating
the factors driving spatiotemporal transmission patterns. Most approaches define the epidemic onset based on thresholds,
which use subjective criteria and are specific to individual surveillance systems.

Methods: \We applied the empirical threshold method (ETM), together with two non-thresholding methods, including the
maximum curvature method (MCM) that we proposed and the segmented regression method (SRM), to determine onsets
of influenza epidemics in each prefecture of Japan, using sentinel surveillance data of influenza-like illness (ILI) from 2012/
2013 through 2017/2018. Performance of the MCM and SRM was evaluated, in terms of epidemic onset, end, and duration,
with those derived from the ETM using the nationwide epidemic onset indicator of 1.0 ILI case per sentinel per week.

Results: The MCM and SRM yielded complete estimates for each of Japan’s 47 prefectures. In contrast, ETM estimates for
Kagoshima during 2012/2013 and for Okinawa during all six influenza seasons, except 2013/2014, were invalid. The MCM
showed better agreement in all estimates with the ETM than the SRM (R*=082, p <0001 vs. R?=034, p <0001 for
epidemic onset; R*=0.18, p < 0001 vs. R? =005, p < 0,001 for epidemic end; R* = 0.28, p < 0.001 vs. R* < 0.01, p = 035 for
epidemic duration). Prefecture-specific thresholds for epidemic onset and end were established using the MCM.

Conclusions: The Japanese national epidemic onset threshold is not applicable to all prefectures, particularly Okinawa. The
MCM could be used to establish prefecture-specific epidemic thresholds that faithfully characterize influenza activity, serving
as useful complements to the influenza surveillance system in Japan.

Keywords: Japan, Influenza surveillance, Epidemic threshold, Non-thresholding method, Segmented regression, Maximum

curvature method, MCM

Background

Influenza is a common respiratory infectious disease that
imposes significant morbidity and mortality impact on
public health [1]. Every year, seasonal influenza epidemics
are estimated to cause about 3 to 5 million cases of severe
illness and up to 650,000 deaths globally [2], placing a sub-
stantial burden on health services. To curb these epidemics,
the beginning of major influenza activity in each season
must be declared. A timely alert of the onset of seasonal
influenza epidemic could allow health communities to
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activate appropriate influenza response plans and prepare
for a subsequent dramatic increase in incidence and
utilization of health services [3]. In temperate regions such
as Japan, seasonal influenza epidemics are expected to
occur during winter [4, 5]; however, the exact onset, dur-
ation, and severity of these epidemics are not known be-
cause of annual differences in the circulating virus strains,
population immunity, human mobility, as well as environ-
mental and other factors [6—8]. Therefore, an intuitive and
reliable method for estimating epidemic onset is of great
interest to public health decision makers because it can
help public health agencies to timely respond to the
upcoming epidemic peak.

The epidemic onset is technically defined as the time
when the incidence exceeds the epidemic threshold [9].
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Hence, the algorithm behind the calculation of the epi-
demic threshold becomes the key to detecting epidemic
onset. Without a consensus for calculating epidemic
thresholds, a range of approaches with varying complex-
ity have been proposed [6, 8, 10]. The simplest but the
most subjective option is to empirically specify a fixed
threshold for the epidemic by visual inspection of obser-
vations [6, 11-14]. A slightly more quantitative manner
of determining a fixed epidemic threshold is to use
simple statistics, e.g, mean or median [15-19]. One
class of widely used methods for obtaining time-varying
epidemic thresholds stem from the periodic regression
model proposed by Serfling in 1963 [20]. A variety of
Serfling-like regression models have since been devel-
oped to detect the onset [15, 21-23] and peak timing
[24] of influenza epidemics, and to characterize the sea-
sonal patterns of influenza [25-27]. The Serfling regres-
sion model fits the non-epidemic data from previous
years and predicts a baseline curve, above which a
certain increase is considered the epidemic threshold.
However, these Serfling-type approaches have several draw-
backs. Firstly, epidemic and non-epidemic periods are re-
quired to be predefined based on subjective criteria [28],
such as manual removal of epidemic peaks, the proportion
of influenza-like illness (ILI) patients among all outpatients
(ILI proportion), the proportion of laboratory specimens
from ILI patients testing positive for influenza (positive pro-
portion), and so on. The precise determination of epidemic
and non-epidemic periods is actually the onset that we
would like to estimate. Secondly, the baseline curve is esti-
mated relying on long-term (usually the 5 or more previous
years) historical data [13]. Finally, the quantities added to
the baseline are varied and not standardized [15, 22].
Several studies have attempted to define epidemic
thresholds, taking into account properties of the epidemic
curve, e.g., the rate of increase in the number of cases.
Nobre and Stroup [29] detected the epidemic onset using
the exponential smoothing technique and properties of
numerical derivatives of the epidemic curve. This method
does not require long-term historical data and can be
applied to surveillance series of less than a year; however,
prequisites include that the chosen polynomial model
must fit the data well, and exploratory analysis is required
to choose the parameters of the exponential smoothing
model. The World Health Organization (WHO) Regional
Office for Europe and the European Center for Disease
Prevention and Control have implemented the moving
epidemic method (MEM) to determine the baseline influ-
enza activity and epidemic thresholds for influenza sur-
veillance in Europe [8]. The MEM calculates the epidemic
start and end after the optimum epidemic duration is
firstly found with the slope of the maximum accumulated
rates percentage curve less than a predefined criterion §.
Although the MEM can be used for analyzing a single
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influenza season with as few as 33 weeks of observations,
the determination of § is difficult as it is country-specific.
Recently Cheng et al. [30] developed a moving logistic
regression method (MLRM) to determine the thresholds
of seasonal influenza epidemics across 30 provinces in
mainland China. The MLRM approximates the cumula-
tive epidemic curve by a logistic regression model. Follow-
ing the MEM, the MLRM chooses the optimum epidemic
duration with a slight change of R*<0.01. However, the
application of MLRM is limited to symmetric epidemic
waves and is not appropriate to asymmetric or bimodal
epidemic waves.

While the predominant approaches to detecting epidemic
onset are based on thresholds, a few non-thresholding
methods have been proposed for estimating epidemic
onset. To study the spatiotemporal transmission patterns of
influenza, Charu et al. [31] and Geoghegan et al. [7] deter-
mined the onset time of epidemics using the segmented re-
gression model (SRM). They fitted a segmented regression
model to the first half of the epidemic curve (i.e., the weekly
time series of ILI before the peak), where the breakpoint
quantifies an abrupt change in incidence and its timing
corresponds to the epidemic onset. The SRM does not rely
on any threshold and can be applied to a single influenza
season without requirements for historical data because it
defines epidemic onset totally based on the properties of
the epidemic curve.

Charu et al. [31] also demonstrated excellent agreement
between influenza epidemic onset estimates derived by
the SRM and the Serfling regression model in the United
States (US). However, the consistency between epidemic
onsets estimated by the SRM and other threshold-based
methods using other influenza surveillance systems
remains unknown. The lack of reliable information on epi-
demic onset observations limits the execution of such
evaluations. Since 2000, the national epidemic threshold
for sentinel surveillance of ILI in Japan has been empiric-
ally defined as 1.0 ILI case per sentinel per week (C/S/W)
[32, 33]. This epidemic threshold successfully captures a
unique feature of the epidemic curve, which means that
once the threshold is exceeded, the weekly number of ILI
cases increases rapidly and consistently until peaking [34].
Hence, those onsets derived by this empirical threshold
method (ETM) for influenza epidemics in Japan can be
used as a reference standard for assessing other
approaches to estimating epidemic onsets.

The thresholds for the onset and end of influenza epi-
demic are supposed to vary across Japanese prefectures
[35]. Yet, no appropriate epidemic threshold exists for
each prefecture. We propose a novel statistical method,
the maximum curvature method (MCM), to determine
prefecture-specific onsets of influenza epidemics in
Japan. This method is based on the maximum curvature
of the epidemic curve, which makes the best use of the
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epidemic curve’s unique feature and retains the advantages
of non-thresholding methods for estimating epidemic on-
set. As we focus on the non-thresholding methods, in this
study, epidemic onset estimates derived by both the MCM
and SRM are evaluated in comparison with the reference
epidemic onsets obtained by the ETM with a fixed value of
1.0 C/S/W. Finally, prefecture-specific thresholds for epi-
demic onset and end are established using the MCM.

Methods

Study area and ILI surveillance data

Japan is a bow-shaped strip of islands, stretching from 24°N
to 46°N for approximately 2400 km. At its widest point,
Japan is no more than 230 km across. Japan is divided into
47 prefectures for local administration. Hokkaido is the
northernmost prefecture; Okinawa is the southernmost
prefecture. Most regions of Japan lie in the temperate zone
with humid subtropical climate. However, Japan’s climate
varies from a cool humid continental climate in the north,
such as in northern Hokkaido, to a warm tropical rainforest
climate in the south, such as in Ishigaki, Okinawa.

Influenza (excluding avian influenza and pandemic influ-
enza, eg novel influenza or re-emerging influenza) is
subject to sentinel surveillance under the National Epi-
demiological Surveillance for Infectious Disease in Japan.
The number of patients diagnosed with ILI is reported
from approximately 5000 sentinel medical institutions
(SMIs) (3000 for pediatrics and 2000 for internal medicine)
across Japan on a weekly basis (ISO 8601 week date system
according to the Weeks Ending Log [36]). The criteria for
reporting ILI used by SMIs have been previously described
elsewhere [37]. The data are aggregated at the National
Institute of Infectious Diseases into weekly total number of
cases and weekly average number of cases per sentinel for
both the national and prefectural levels [37]. The surveil-
lance data tables are published on the website of the Infec-
tious Disease Weekly Report (IDWR) [38] every Tuesday.
A detailed description of infectious diseases surveillance
system in Japan has been made available [39].

In our study, an influenza season was defined to range
anywhere from week 35 in September of each year up to
week 34 in August of the following year. We downloaded
IDWR surveillance data tables from week 35 of 2012 to
week 34 of 2018 (from 2012-09-02 to 2018-08-26 in terms
of week ending date). Our study period covered six influ-
enza seasons from 2012/2013 through 2017/2018 (Add-
itional file 1: Fig. S1). Only the weekly number of ILI cases
per sentinel was used in the following estimation of epi-
demic onsets, so as to be compatible with the empirical epi-
demic threshold.

Methods for estimating epidemic onset
We estimated the onset time of influenza epidemics in
each prefecture for each of the six influenza seasons
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from 2012/2013 to 2017/2018 using three methods: the
ETM, SRM, and MCM. The epidemic end is equivalent
to the epidemic onset in reverse chronological order.
The duration of an epidemic is defined as the period
from its onset time to its ending time. Therefore, we
focused on describing the algorithm for estimating
epidemic onset.

The empirical threshold method (ETM)

The ETM defines an epidemic as occurring when the
weekly number of ILI cases per sentinel has been reported
to exceed a prespecified threshold Y, for three consecutive
weeks [40]. The first week of the three consecutive weeks
corresponds to the epidemic onset. We used the criterion
Y, =1.0 C/S/W, which is the threshold for the nationwide
onset of an influenza epidemic in Japan. This threshold was
empirically defined in the year 2000 based on more than
10 years of observations from sentinel surveillance of influ-
enza in Japan [34]. The details of implementing the ETM
are described in the Additional file 1: Text S1 and Fig. S2.

The segmented regression method (SRM)

Different from the above threshold-based method, the
SRM fits piecewise linear models to determine the
breakpoint in the first half of the epidemic curve, which
corresponds to the epidemic onset. In other words, the
breakpoint is the optimal knot location with the max-
imal difference-in-slope between the two fitted straight
lines (Additional file 1: Figure S3). To find the optimal
breakpoint, the log-likelihood function for the break-
point is maximized. Further details of using the SRM to
determine epidemic onset refer to [7, 31]. We imple-
mented the SRM using the R package segmented [41],
and the procedure is summarized in the Additional file
1: Text S2. An illustration of the SRM is shown in Add-
itional file 1: Figure S3.

The maximum curvature method (MCM)

Given the unique feature of the epidemic curve in Japan, it
may be more appropriate to identify the epidemic onset in
terms of curvature. Therefore, we developed the MCM to
detect epidemic onset and end. Inspired by the SRM defin-
ition of epidemic onset as the point of maximum change
in the slope, the MCM defines epidemic onset as the point
of maximum curvature located within the increasing phase
of the epidemic curve. Likewise, epidemic end is defined as
the point of maximum curvature located within the de-
creasing phase of the epidemic curve. To reduce the effect
of small fluctuations in the epidemic curve, instead of
directly calculating the osculating circle at each point on
the curve, the MCM fits a least-squares circle to the »
points around it. # > 3 because three points are required to
determine a circle and # is odd for the sake of symmetry.
The curvature of the fitted circle only measures how fast
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the epidemic curve is changing direction at a given point.
We further used the directional angle of the tangent vector
at the given point to indicate its changing direction. In the
first half of the epidemic curve, the point with maximum
curvature and a directional angle between [0°, 90°] is de-
fined as the epidemic onset; in the second half, the point
with maximum curvature and a directional angle between
[270°, 360°] is determined as the epidemic end. Any possible
points that occur above an upper threshold, # C/S/W, are
eliminated, because they are already in an epidemic state.

Let {y,t=1,2, ...,7} denote the weekly epidemic
curve of an influenza season with T weeks, where y, is
the number of ILI cases per sentinel reported at week ¢,
which is referred to as intensity hereafter, for the sake of
simplicity. The steps for using the MCM to detect epi-
demic onset and end are as follows.

Step 1. At a given point K (t,y,)(¢=1,2, ..., T), a circle
with center O (¢.,y,) and radius r is determined by
least-squares fitting to # points (t—%, Ypnd )y ooy (£ + 251
A +%) surrounding K, using the algorithm proposed by
Pratt [42]. When K is at the edge of the epidemic curve
(t=1,...,  ort =T-"3,..,T), the first (or last) two
points of the epidemic curve are linearly extrapolated to
pad the curve with % extra points. The raw curvature
C, at K is the reciprocal of the radius r.

Step 2. The tangent point P (,%,) closest to K, is de-
termined by intersecting the line OK with the fitted cir-
cle. The directional angle 6, (in degrees) of the tangent

vector P—Q> is then calculated.
Step 3. The raw curvature C; is filtered based on the
directional angle 6, and the upper threshold 4.

o CI(0°<6,<90)1(y,<h),if t<ty,
P | CI(270°<6,<360)1(y,<h), otherwise

where I is an indicator function, ¢, = arg max{y,} is the
peak timing, t=1,..,T
Step 4. Find the points with the maximum filtered

curvature £, = arg max{C,} and t, = arg max{C,} for
=11,

each half of the epidemic curve.

Step 5. The coordinates of the tangent point at (t?j;)
correspond to the epidemic onset and the epidemic onset
intensity. Likewise, the coordinates of the tangent point at
(tAe,)T) correspond to the epidemic end and the epidemic
ending intensity.

In our study, n=5 and 4 =5.0 were used for estimat-
ing epidemic onsets, ends, and their intensities. The
MCM is illustrated in Figs. 1 and 2 with an animation
of fitting least-squares circles provided in Additional
file 2: Movie S1.
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Comparison of epidemic characteristic parameters
derived by different methods

For each season, epidemic characteristic parameters in-
cluding epidemic onset, end, duration, and intensities at
epidemic onset and end were estimated using the above
ETM, SRM, and MCM, nationally and for each prefecture.
The threshold for the nationwide onset of an influenza
epidemic in Japan has been empirically defined as 1.0 C/S/
W since 2000 [34]. However, the prefecture-specific
thresholds for epidemic onsets have yet to be determined.
We presumed that the epidemic onset thresholds at pre-
fecture level would be similar to the national threshold
and thus specified Y, to be 1.0 C/S/W when using the
ETM to estimate epidemic characteristic parameters for
each prefecture. Owing to the continued success of the
nationwide epidemic onset indicator in Japan, estimates of
the ETM using this indicator were used as the reference
standard, against which epidemic characteristic parameter
estimates using the other two methods were compared. A
sensitivity analysis varying #n (3, 5, and 7) and /4 (4.0, 6.0,
8.0, and 10.0) was performed to examine the MCM’s
robustness. For each combination of # and /%, epidemic
characteristic parameters estimated by the MCM were
also compared with those from the ETM.

Establishment of prefecture-specific thresholds for
epidemic onset and end
With the epidemic characteristic parameters estimated by
the MCM (n =5, h=5.0) in hand, the prefecture-specific
thresholds for epidemic onset were calculated by aver-
aging the epidemic onset intensities over the six available
seasons, 2012/2013 to 2017/2018. The prefecture-specific
epidemic ending thresholds were also calculated using the
same procedure.

All methods and analyses were implemented in R 3.4.2
[43]. The datasets and codes are available under MIT
license at the GitHub repository [44].

Results

Descriptive statistics of epidemic characteristic parameter
estimates

The epidemic characteristic parameter estimates using the
ETM, SRM, and MCM for each of the 47 prefectures from
2012/2013 to 2017/2018 are summarized in Table 1 and
Additional file 1: Figure S4. Across the six seasons, epi-
demic onsets estimated by the SRM (mean 18.2 weeks)
were much later than those derived from the ETM (mean
15.2 weeks); epidemic ends from the SRM (mean 30.7
weeks) were considerably earlier than those derived from
the ETM (mean 37.1 weeks). The resultant epidemic dura-
tions estimated by the SRM (mean 13.5 weeks) were not-
ably shorter than those estimated by the ETM (mean 22.7
weeks). Furthermore, epidemic onset and ending intensities
estimated by the SRM (mean 5.72 and 6.90, respectively)
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Fig. 1 lllustration of least-squares circle fitting at epidemic onset week for Okinawa during 2012/2013. The five red (both solid and empty) points
are used for fitting a least-squares circle at current week 15 (solid red point). The plus symbols are two padded points at the edge of the
epidemic curve by linearly extrapolating the first (or last) two points. The fitted circle is depicted by the green curve, and its radius r is shown in
the top right annotation. The arrows respectively represent the positive x-axis vector 4 (in black), the tangent vector TO (in blue), and the
normal vector W (in green) at the tangent point P. 6 denotes the directional angle of P—d and its value is also shown in the top
right annotation

were much higher than the empirical threshold of 1.0 C/S/
W. By contrast, epidemic characteristic parameters esti-
mated by the MCM (mean 15.0, 35.5, and 21.5 weeks for
epidemic onset, end, and duration, respectively) were very
close to those derived by the ETM, particularly epidemic
onset and ending intensities (mean 0.78 and 1.40, respect-
ively). It is noted that the interquartile ranges (IQRs) of the
epidemic ending intensities derived by the MCM during
seasons 2012/2013 (mean 1.99, IQR 1.60), 2014/2015 (mean
1.96, IQR 1.52), and 2016/2017 (mean 1.67, IQR 1.74) were
larger than those during the other three seasons (mean 1.07,
IQR 0.57 for 2013/2014; mean 0.66, IQR 049 for 2015/
2016; mean 1.01, IQR 0.43 for 2017/2018) (Additional file 1:
Figure S4). Furthermore, the dominant influenza virus
subtypes in these three seasons were all A(H3) (Table 1).

It is noteworthy that valid epidemic characteristic
parameters were obtained when applying the SRM or
MCM to all 47 prefectures during all six seasons, but
the ETM failed to produce results in a few prefectures
located in the southern part of Japan for several seasons
(Table 2). In Okinawa, 2013/2014 was the only season in
which the ETM produced valid estimates among all five
epidemic parameters. The ETM also returned an invalid
epidemic onset for Kagoshima during 2012/2013.

Agreement between the SRM, MCM and ETM on epidemic
onset, end, and duration estimates

Epidemic onset, end, and duration estimates derived
from the SRM and MCM were respectively compared
with those estimated by the ETM using linear regres-
sion. The results indicate that regardless of the
epidemic characteristic parameters, the agreement be-
tween the MCM and ETM was much better than that
between the SRM and ETM (Fig. 3). Compared with
the ETM, the SRM generally overestimated epidemic
onset, with moderate agreement (slope = 0.81, R? = 0.34,
p<0.001), whereas it underestimated epidemic end,
with poor agreement (slope = 0.15, R* = 0.05, p < 0.001).
These results led to insignificant agreement between
epidemic durations derived by the SRM and ETM
(slope = - 0.05, R*<0.01, p=0.35). In contrast, epi-
demic onset estimates derived by the MCM showed
good consistency with those from the ETM (slope =
0.91, R*=0.82, p < 0.001). Like the SRM, the MCM also
tended to underestimate epidemic end, but with better
agreement (slope = 0.33, R*=0.18, p<0.001). Moder-
ately significant agreement (slope = 0.50, R* = 0.28, p <
0.001) was observed between epidemic duration esti-
mates derived by the MCM and ETM.
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Fig. 2 lllustration of the maximum curvature method (MCM). Panel a demonstrates the epidemic curve of weekly number of ILI cases per
sentinel for Okinawa during 2012/2013. The red dashed horizontal line indicates the upper threshold of h=5.0 ILI cases per sentinel per week.

Panel b shows the raw curvature of the fitted least-squares circle in each week. Panel ¢ shows the directional angle 8 of the tangent vector PG
in each week. The red dashed horizontal lines indicate 90°, 180°, and 270°. The gray shaded areas respectively represent [0°, 90°] during the first
half of the epidemic curve, and [270° 360°] during the second half, within which 6 would be expected to lie. Panel d shows the curvature filtered
by h and 6 in each week. The blue solid points represent the maximum filtered curvatures in the first and second halves of the epidemic curve.
The corresponding blue dashed vertical lines across the panels indicate the epidemic onset and ending weeks

To explore the robustness of MCM, the agreement of
epidemic characteristic parameters determined by the
ETM and MCM using different n and & were further
assessed (Additional file 1: Figures. S6-S8). The sensitivity
analysis results were summarized in Table 3. For all com-
binations of # and /4, the agreement of epidemic onset was
the best among the three epidemic characteristic parame-
ters. With a fixed 4, » = 5 and 7 had about the same
agreement of epidemic onset and duration, which were
much better than n = 3. By contrast, the agreement of epi-
demic end was relatively robust to n. With a fixed n, the
agreement of epidemic onset was robust to & = 4.0, 6.0,
and 8.0, but decreased when / = 10.0. The agreement of
epidemic end decreased slightly when % < 8.0, but was ro-
bust to 4 > 8.0. The agreement of epidemic duration de-
creased with the increase of 4. In short, the epidemic
characteristic parameters, particularly the epidemic onset,

determined by the MCM were relatively robust when n =
5or7and h = 4.0, 6.0, or 8.0.

Prefecture-specific epidemic onset and ending thresholds
The epidemic onset and ending thresholds established
using the MCM with # = 5 and & = 5.0 showed variability
across prefectures (Fig. 4). The epidemic onset thresholds
ranged from 0.4 C/S/W for Ishikawa to 1.9 C/S/W for
Okinawa, whereas the epidemic ending thresholds ranged
from 0.5 C/S/W for Tochigi to 2.6 C/S/W for Okinawa.
What stands out is that Okinawa, the southernmost pre-
fecture located in the subtropics, had the largest epidemic
onset and ending thresholds, while its mean epidemic on-
set was the earliest (12.2 weeks) and its mean epidemic
end was the latest (42.7 weeks). Most prefectures (39/47)
had an epidemic onset threshold below the current
nationwide epidemic onset indicator of 1.0 C/S/W. In
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Table 1 Summary statistics of epidemic characteristic parameters estimated by the ETM, SRM, and MCM from 2012/2013 to 2017/

2018
Parameters Methods 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 Mean
Onset® (weeks) ETM 164 17.0 139 193 12.2 126 15.2
SRM 189 19.2 15.8 20.6 179 17.1 182
MCM 16.0 17.0 132 185 127 124 15.0
End (weeks) ETM 38.7 377 36.5 376 37.7 343 37.1
SRM 294 346 26.5 344 30.1 294 30.7
MCM 343 375 324 381 36.3 34.1 355
Duration (weeks) ETM 230 218 235 19.1 263 226 227
SRM 11.5 163 1.7 14.8 133 133 135
MCM 19.3 216 20.2 20.6 24.6 22.7 215
Onset intensity® ETM 1 1 1 1 1 1 1
SRM 4.25 390 5.08 3.30 7.95 9.87 572
MCM 0.70 0.87 0.50 061 113 0.84 0.78
Ending intensity ETM 1 1 1 1 1 1 1
SRM 7.39 4.04 8.74 5.13 8.05 8.06 6.90
MCM 1.99 1.07 1.96 0.66 1.67 1.01 140
Dominant subtype® A(H3) AHINT)pdm09 A(H3) AHINT)pdm09 A(H3) B/Yamagata -

“Epidemic onset and end are weeks since week 34 of each year

PEpidemic onset and ending intensities represent the weekly number of ILI cases per sentinel at epidemic onset and end, respectively

“Information on dominant subtype for each influenza season are from [45-50]

contrast, most prefectures (37/47) had an epidemic ending
threshold above the indicator (Fig. 4). In addition, the epi-
demic onset and ending thresholds showed a statistically
significant correlation (r = 0.34, p = 0.02).

Discussion

In this study, three methods including the ETM, SRM,
and MCM, were used to estimate epidemic characteristic
parameters for each of the 47 prefectures in Japan dur-
ing each of the six influenza seasons from 2012/2013 to
2017/2018. Among them, the ETM is a thresholding
method to detect epidemic onset based on the nation-
wide epidemic onset threshold of 1.0 C/S/W. The SRM
is an existing non-thresholding method for capturing the
breakpoint of the epidemic curve as the epidemic onset.
The MCM is also a non-thresholding method that we
proposed to detect epidemic onset based on the max-
imum curvature of the epidemic curve. Proper evalua-
tions of methods for detecting epidemic onset are often

impaired because of a lack of suitable datasets with reli-
able information on the occurrence of epidemics [29].
To address this issue, in the present study, estimates
from the ETM were used as reference standards to
evaluate the performance of the other two methods.

The incompleteness of ETM estimates suggests that
the empirical epidemic threshold is not appropriate for
the levels of influenza activity observed in prefectures lo-
cated at or near the southernmost part of Japan, such as
Okinawa and Kagoshima (Table 2). The severe lack of
valid ETM estimates in Okinawa resulted from a level of
background influenza activity that was higher than the
empirical epidemic threshold of 1.0 C/S/W. It has been
recognized that background influenza activity is high
throughout the year in tropical regions [51]. Hence, the
influenza seasonality is less defined in Okinawa, where
the lowest influenza activity usually occurs later than in
other, more northern prefectures (Additional file 1:
Figure S5). By contrast, the epidemic onset and ending

Table 2 Prefectures with invalid epidemic characteristic parameters estimated by the ETM

Season Onset End Duration Onset intensity Ending intensity
2012/2013 Kagoshima Okinawa Kagoshima Okinawa Kagoshima Okinawa

2013/2014

2014/2015 Okinawa Okinawa Okinawa
2015/2016 Okinawa Okinawa Okinawa

2016/2017 Okinawa Okinawa Okinawa
2017/2018 Okinawa Okinawa Okinawa Okinawa Okinawa
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thresholds (1.9 and 2.6 C/S/W) for Okinawa established
using the proposed MCM were the largest, and much
higher than those of other prefectures and the empirical
epidemic threshold of 1.0 C/S/W (Fig. 4), faithfully
reflecting the characteristics of influenza epidemics in
Okinawa.

The epidemic curves in all prefectures were asymmet-
rical because when approaching the epidemic end, the
second half of the epidemic curve was relatively gentle
compared with the first half, as demonstrated in the
2014/2015 season (Additional file 1: Figure S5). This
asymmetry of the epidemic curve not only explains why

Table 3 Agreement of epidemic characteristic parameters
determined by the ETM and MCM using different n and h

Parameters Onset End Duration

n=3 n=5 n=7 n=3 n=5 n=7 n=3 n=5 n=7
h=40 043* 081 082 020 019 014 017 029 027
h=6.0 041 081 080 013 016 013 010 024 024
h=80 041 081 080 011 010 008 009 018 0.18
h=100 035 071 068 010 011 008 007 014 015

2The coefficient of determination (R?) of linear regression model used for
comparison is reported

better agreement with the ETM was achieved for
epidemic onset than for epidemic end, regardless of the
method used, but also suggests that thresholds for
epidemic onset and end are likely to be different and
should be established individually. The high consistency
between the MCM and ETM guarantees the continuity
of using epidemic thresholds derived by the MCM in the
Japanese sentinel surveillance system for influenza. Al-
though the prefecture-specific thresholds for epidemic
onset and end were established using the only six avail-
able influenza seasons, these thresholds can be further
refined as more data become available in the future. In
addition to the mean statistic used in the present study,
other procedures for calculating the thresholds [8] are
worth exploring.

The IQRs of the epidemic ending intensities derived
by the MCM during 2012/2013, 2014/2015, and 2016/
2017 were wider than those during the other three
seasons (Additional file 1: Figure S4). This may be ex-
plained by the severity of epidemics. In Japan, the 2012/
2013, 2014/2015, and 2016/2017 influenza seasons were
characterized by the predominance of the A(H3) subtype
whereas the dominant virus subtypes in the other three
seasons were A(HIN1)pdmO09 and B/Yamagata. Seasonal
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influenza epidemics dominated by A(H3N2) subtype are
generally more severe than those dominated by
A(HINI) and B [52], which may affect the shape of the
epidemic curve. Therefore, establishment of epidemic
thresholds, particularly the epidemic ending thresholds,
could incorporate information on the dominant influ-
enza virus subtype.

The proposed MCM has several properties that make it
broadly applicable for estimating epidemic onset in public
health surveillance. First, the MCM is intuitive as it defines
epidemic onset by capturing the local point with maximum
curvature. The MCM is a non-thresholding approach to
determining epidemic onset that is based entirely on the
shape of the epidemic curve. During implementation of
the MCM, an upper threshold 7 is prespecified to limit the
search scope for points. However, the sensitivity analysis
suggests that the MCM is robust to / for a wide range
(Table 3). Therefore, this threshold is not required to be as
precise as Y, in the ETM, and is easy to be set. Moreover,
it also provides the flexibility to adjust the search scope for

points according to the background levels of influenza ac-
tivity. These properties together with the success of Oki-
nawa give the MCM the potential to estimate epidemic
characteristic parameters in the subtropics and tropics
where various respiratory pathogens that can cause acute
respiratory illness, such as respiratory syncytial virus, para-
influenza virus etc, circulate year round [18]. Conse-
quently, the patterns of influenza in subtropical and
tropical regions are complex with year-round high back-
ground rate of acute respiratory illness [51] and lack of ap-
parent ILI seasonality [18]. The recent experience of
establishing influenza epidemic thresholds in Cambodia
using the WHO method [19] suggests that unlike in tem-
perate regions, the ILI syndromic surveillance data was less
useful for setting thresholds [18]. Therefore, priority to
virological surveillance data, such as the positive propor-
tion [30], the product of the ILI proportion and the positive
proportion, should be given when applying the MCM to
establish thresholds for influenza epidemics in subtropical
and tropical regions.
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Second, in contrast to the widely used Serfling-like
regression models requiring long series of historical data to
estimate model parameters [13, 20, 22, 26], parameters of
the MCM are prespecified. This means the MCM can be
applied in areas with limited historical data and in
analyzing influenza pandemics that usually last for a single
season. Epidemic onsets determined using empirical
thresholds [12], Serfling-type regression model [21], and
the SRM [7, 31] have been used to investigate spatial trans-
mission of both influenza pandemics and epidemics. New
insights into the spatial transmission of influenza may be
gained using the MCM as it defines epidemic onset totally
based on the properties of the epidemic curve.

Third, although the calculation in the MCM is more
complex than that in the SRM, the estimates derived
using our novel MCM were in much better agreement
with those derived using the ETM. The high consistency
between epidemic onsets derived by the ETM and MCM
implies that curve properties, such as the curvature, may
have been taken into consideration during the determin-
ation of the national epidemic onset indicator in Japan.
A comparison conducted by Charu et al. [31] showed
excellent agreement between estimates of influenza
epidemic onset in the US derived by the SRM and
Serfling-like regression method, which in essence deter-
mines epidemic onset based on thresholds. In constrast,
the agreement between the ETM and SRM was poor in
Japan. This may be linked to the differences in sentinel
surveillance systems for influenza in the US and Japan.

Finally, the MCM is robust not only to model parame-
ters n and /4 but also to the partitioning of the influenza
seasons and the determination of the epidemic peak.
Regarding the estimation of epidemic onset, the MCM
calculates the curvature at each point by fitting a
least-square circle using only n points around the
current one. While searching for the local point of max-
imum curvature, the MCM also takes into account the
changing direction of the curvature at each point, which
ensures that only points in the ascending phase of the
epidemic curve are targeted. In contrast, the SRM fits
two broken lines, using all points in the first half of the
epidemic curve. Therefore, when the influenza season
begins and ends could have an impact on the epidemic
onset estimate. In the present study, it was appropriate
to define the start of each influenza season as week 35
with the exception of Okinawa during 2012/2013, 2014/
2015, and 2016/2017 (Additional file 1: Figure S3 and
S5). For example, during 2012/2013 in Okinawa, the in-
fluenza season should have been defined to start around
week 44. The first broken line fitted by the SRM in-
cluded approximately the last 10 weeks of the previous
influenza season, which resulted in a biased epidemic
onset estimate toward earlier weeks. In this case, the
curvatures for these weeks is filtered out by the MCM as
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their directional angles were not between [0°, 90°] (Fig.
2C and D). Furthermore, taking the direction of curva-
ture into consideration may enable the MCM to over-
come the constraint of the MLRM [30] and to be
applicable to multiple epidemic waves of influenza ob-
served in subtropical and tropical regions, such as south-
ern China [25]. In addition, the SRM is more sensitive to
the determination of the epidemic peak timing than the
MCM. However, epidemic peaks may suffer from large
fluctuations, such as the sharp decrease in ILI activity
during the National Day Holiday in the 2009 pandemic
in China [53]. Under such circumstances, the SRM will
result in a large bias in the epidemic onset estimates.

There are several limitations to the proposed MCM that
deserve consideration. First, the MCM can only be used in
retrospective analysis of epidemics because data from later
weeks are required for fitting the least-square circles. Sec-
ond, the MCM implicitly relies on the smoothness of the
epidemic curve. For epidemic curves with small fluctua-
tions, we can address this limitation by increasing the num-
ber of points (e.g., n = 7) used for fitting least-square circles.
For irregular epidemic curves with large and frequent fluc-
tuations, techniques such as Savitzky-Golay filtering [54],
among others, may be used to smooth the epidemic curve
before applying the MCM. Finally, in comparison with the
SRM, the MCM cannot provide confidence intervals for
epidemic onset estimates, which limits the ability of the
MCM to take uncertainties into account.

Conclusions

In conclusion, our findings indicate that the nationwide
epidemic onset threshold of 1.0 C/S/W currently used in
the sentinel system for influenza surveillance in Japan
should be adjusted for each prefecture, especially for
Okinawa. The proposed MCM shows better agreement
with the ETM than the SRM and performs very well in
the context of Japanese influenza surveillance. The
prefecture-specific thresholds for epidemic onset and
end established using the MCM could serve as useful
complements to the influenza surveillance system in
Japan. Further research should be undertaken to evaluate
the applicability of the MCM in different public health
surveillance systems or in tropical and subtropical zones,
and in detecting the onset of influenza pandemics.
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