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Abstract

Background: Cutaneous leishmaniasis (CL) caused by Leishmania species, is a geographically extensive disease that
infects humans and animals. CL is endemic in half of the 31 provinces of Iran, with 29,201 incidence cases reported
in Fars province from 2010 to 2015. CL is polymorphic and may result in lesions characterized by different clinical
features. Parasite genetic diversity is proposed to be one of the factors affecting the clinical outcome and lesion
characteristics in CL patients. However, there is still very limited data regarding the genetic variation of Leishmania
spp. based on the sequencing of Cytochrome b (Cyt b) gene.

Methods: All patients originated from endemic regions in Fars province. The amplification of the Cyt b gene from
isolates of 100 patients with disparate clinical forms of CL was accomplished using Nested-PCR. Sequence analysis
of the amplified Cyt b was used to scrutinize the genetic variations among Leishmania isolates and connect the
results with clinical pictures. The clinical demonstrations were basically of two types, typical and atypical lesions.
Molecular phylogenetic tree was constructed using the Neighbor-Joining method, with species/strains from this
study compared to species/strains from other geographical regions.

Results: Leishmania major was identified as the predominant infecting Leishmania spp. (86% of cases), with the
remainder of cases being infected by Leishmania tropica. Clinical examination of patients revealed 12 different clinical
CL forms. Among Leishmania samples analyzed, five distinct haplotypes were recognized: three in L. major and two in
L. tropica. We found a correlation between clinical outcomes and Cyt b sequence variation of Leishmania spp. involved.
Moreover, we observed a higher presence of polymorphisms in L. major compared with L. tropica. This difference may
be due to the different eco-epidemiologies of both species, with L. tropica being an anthroponosis compared to L.
major, which is a zoonosis.

Conclusions: The sequence analysis of Cyt b gene from 25 L. major and L. tropica strains demonstrated genetic
variability of L. major and L. tropica causing CL in southern Iran, and a feasible connection amid the genetic
heterogeneity of the parasite, geographical source and clinical appearance of the disease in human was detected.
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Background
Cutaneous leishmaniasis (CL), is a vector-borne zoonotic
infectious disease caused by protozoan parasites of the
genus Leishmania (Kinetoplastida, Trypanosomatidae)
[1, 2]. It is transferred to humans through the bite of in-
fected female phlebotomine sand flies of the genera
Phlebotomus and Lutzomyia [3]. CL can cause by 21
Leishmania spp. and result in a wide spectrum of clinical
manifestations in humans, with the infecting species be-
ing a great determinant of clinical outcome [4]. Contin-
gent upon the species of Leishmania involved, humans
and a large spectrum of mammals operate as reservoirs
[5]. The disease is endemic in the tropical and subtrop-
ical regions of 98 countries across four continents. More
than two thirds of new cases of CL transpire in six coun-
tries: Afghanistan, Algeria, Brazil, Colombia, Iran and
Syria. An estimated of 0.7–1.3 million new cases occur
worldwide annually [4, 6]. In Iran CL is caused by Leish-
mania tropica, (the agent for anthroponotic CL), Leish-
mania major (the agent of zoonotic CL), and rarely by
Leishmania infantum [7–9]. In addition, it is common
for different species to coexist in the same endemic
areas, as seen in Fars province [7–9]. Single or multiple
CL lesions typically occur on exposed parts of the body,
such as face, and upper and lower extremities. Lesions
usually self-heal in a few months, but may persist for
many years (e.g. when super-infected or when located
on joints), causing considerable morbidity and large
scars [10].
There have been several reports from studies in Iran

of atypical manifestations of the disease due to either
uncommon sites of lesions or their unusual morphology.
Lesions on atypical sites result in a more complex differ-
ential diagnosis [7, 8]. Uncommon clinical presentations
include lupoid, verrucous, sporotrichoid, erysipeloid, ec-
zematous, psoriasiform, zosteriform, keloidal, whitlow,
paronychia, carcinoma-like, and midfacial destructive le-
sions [7, 8, 10–12]. Occasionally CL may manifest as iso-
lated lymphadenopathy, or proceed into disseminated
CL [13, 14].
The genetic heterogeneity may cause various pheno-

types that manifest themselves in the variability of clin-
ical features observed. Therefore, bestowed genetic
variations in Leishmania populations, disease control
and treatment could be challenging [15]. Multi-locus en-
zyme electrophoresis (MLEE) has traditionally been the
gold standard for strain and species characterization [16,
17]. However, this customary classification has been
challenged using nuclear and mitochondrial molecular
markers, as they inclined to be more specific and stable
[18]. Generally, DNA analysis demands reiterated copy-
ing of the genome, and the levels of inter- and
intra-species diversity has to be taken into account. In
order to appraise genetic characterization, a number of

nuclear and extra nuclear DNA markers have been
employed, including kDNA [19], GP63 [20], ITS1 [21],
ITS2 [22], the N-acetylglucosamine-1-phosphate trans-
ferase gene [23], Cytochrome Oxidase II [24], Cyto-
chrome b (Cyt b) [25], Miniexon [26], 7SL RNA [27],
HSP70 [28], and Cysteine Proteinase B [29].
The mitochondrial genome has been disclosed to be a

splendid origin of accessible genetic variation. Analysis
of mitochondrial DNA has been used to understand the
evolutionary biology at the inter- and intra-species levels
[30, 31]. Mitochondrial DNA’s rapid rate of evolution,
clonal patrimony, and absence of recombination makes
it an ideal target for phylogenetic studies and a source of
genetic markers of species and geographically confined
populations [30, 31]. Mitochondrial kinetoplastid DNA
(kDNA), arranged as mini and maxicircles, encodes pro-
teins involved in energy production and ribosomal
RNAs. Minicircles are about 800-bp in size, closely
600-bp variable and 200-bp conserved region, and re-
peated 10,000 times. Maxicircles are around 20–35 kb in
size, and have 20–50 repetitions in the genome [30, 31].
The mitochondrial genome can encode gene products
such as Cyt b in the cellular respiration cycle [32]. Cyt b
is the principal redox catalytic subunit of Quinol, which
is engaged in the electron transport process of the mito-
chondrial respiratory chain, and is regarded one of the
most functional genes for phylogenetic studies [32–34].
In the present study, the sequence analysis of the amp-

lified Cyt b gene was applied to investigate the presence
of genetic polymorphisms among Leishmania isolates
and correlate the findings with the clinical features of
CL lesions in Fars province, Iran, over a 2-year period.
Moreover, molecular phylogenetic relationships were
assessed using Cyt b gene sequences obtained by this
study and download from the GenBank database.

Methods
Ethics statement
The research protocol was endorsed (approval no. 94–
7548) by the Institutional Ethics Clearance Committee
(IECC) of Shiraz University of Medical Sciences and per-
formed in accordance with international policies estab-
lished by the Declaration of Helsinki.

Written informed consent
Written informed consent (Code: IR.SUMS.REC.1394.S282)
to participate in the study and use clinical images in publi-
cations was obtained from all adult patients and/or par-
ents/legal guardians for children under the age of 16 years.

Patients
One hundred patients who showed different types of CL
lesions participated in this study. The patients were re-
ferred to the Dermatology Clinic of Saadi Hospital and
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Fajr Health Center from January 2015 to the end of De-
cember 2016. Selected patient lesions (the most recent,
in case of multiple lesions) were first photographed and
standard clinical descriptions for these lesions were ob-
tained from the attending dermatologist. All patients
originated from different rural and urban regions of Fars
province. We excluded patients with clinical evidence of
intercurrent bacterial or fungal superinfection of the
ulcer, and those undergoing active treatment for CL. For
each patient a structured questionnaire was completed
with all demographic information about the patient (in-
cluding code, age, sex, address, and travel history), the
lesion (including the number of lesions, localizations,
onset of the disease, and clinical characteristics), and
therapeutic data. The questionnaire used in our study,
was designed and developed for this study.

Dermal scraping
For the margin dermal scraping, a deep disinfecting of
the indurated active margin of the lesion with 70% etha-
nol was performed. Samples were taken by using a no.
15 disposable sterile surgical blade (Unicut, Chicago, IL,
USA) to make an incision in the border of the lesion.
Exudates and dermal tissues from the wall of the slit
were scraped and smeared on two glass slides [7, 8]. The
touch impression smears were air dried, methanol-fixed,
stained with Giemsa (Merck, Darmstadt, Germany), and
finally examined for amastigotes by microscopy.

In vitro culture
Moreover, the dermal syringe-sucked fluid was collected
under sterile conditions from each patient as follows:
0.1 mL of sterile saline solution was injected using an in-
sulin syringe (1-mL, 25-gauge needle) into the nodule
and the needle was rotated gently several times. A small
amount of saline solution was injected into the tissue,
and then aspirated. The fluid was transferred to two
tubes of modified NNN culture medium. Modified NNN
medium was biphasic, comprise of horse blood agar base
and an overlay Locke’s solution [7, 8]. The specimens
were inoculated into the medium and incubated at 25 °
C. Every 2 to 3 days, the liquid phases of cultures exam-
ined under invert microscope, in order to observe motile
promastigotes. Positive cultures were mass cultivated in
RPMI-1640 medium (Gibco, Frankfurt, Germany) sup-
plemented with 15% heat-inactivated Fetal Calf Serum
(Gibco, Frankfurt, Germany), 2 mM L-glutamine, 100 U/
mL Penicillin, and 100 μg/mL Streptomycin (Gibco,
Frankfurt, Germany) [7, 8]. Nearly 2 × 106 promastigotes
were harvested by centrifugation (10,000 g for 10 min)
and washed thrice in cold sterile PBS (pH 7.2). Parasites
pellets were stored at − 20 °C until used.

DNA extraction
Total genomic DNA was extracted from each clinical
sample using the QIAamp® DNA Mini Kit (QIAGEN,
Hilden, Germany), according to manufacturer’s instruc-
tions. Following the centrifugation and washing steps,
the DNA was eluted from the silica spin columns with
50-μL elution buffer to increase its concentration. The
quantity and quality of the extracted DNA was deter-
mined by measuring optical absorbance at 260 nm using
a Nano spectrophotometer (NanoDrop® 2000, Thermo
Fisher Scientific, Wilmington, DE, USA). Each samples
for PCR assays were prepared with aerosol-guard pipette
tips to avoid contamination. All reactions were per-
formed in appropriated places, following the good prac-
tice of laboratories to avoid sample contamination [7, 8].
The extracted DNA was stored at − 20 °C until used.

kDNA semi-nested PCR
All samples (cultures and impression smears) were iden-
tified to Leishmania species level using kDNA primers
before they were subjected to Cyt b amplification.
The conserved area of the minicircle kDNA from the

Leishmania species of all the samples was amplified by
semi-nested PCR using primers LINR4 (forward)
(5′-GGG GTT GGT GTA AAA TAG GG-3′), LIN17
(reverse) (5′-TTT GAA CGG GAT TTC TG-3′), and
LIN19 (reverse) (5’-CAG AAC GCC CCT ACC CG-3′)
for species identification [7, 8, 35].
PCR was performed in a Bio-Rad MyCycler Thermo-

cycler (Hyland Scientific, Stanwood, WA, USA). The
PCR conditions were composed of pre-denaturation at
94 °C for 5 min, then 40 cycles of denaturation at 94 °C
for 30 s, annealing at 52 °C (LINR4 and LIN17) or 58 °C
(LINR4 and LIN19) for 45 s, and extension at 72 °C for
1 min, followed by final extension at 72 °C for 10 min.
Amplicons were analyzed on 1.5% agarose gels
(AddGene, Watertown, MA, USA) by electrophoresis at
90 V in 1 × TAE buffer (40 mM Tris-acetate and 1mM
EDTA, pH 8.3) and visualized by UV light (Uvitec, Cam-
bridge, UK) after being stained with GelRed® (Biotium,
Hayward, CA, USA). Cross-contamination was moni-
tored by negative controls for sample extraction and
PCR solutions.

Cyt b nested-PCR
Maxicircle Cyt b gene was amplified using nested-PCR.
Nest 1 primers corresponded to COIIIF (5′ - GTT TAT
ATT GAC ATT TTG TAG ATT - 3′) and MURF4R (5′
- CGA CGA ATC TCT CTC TCC CTT - 3′). Nest 2
primers matched to LCBF1 (5′ - GGT GTA GGT TTT
AGT TTA GG - 3′) and LCBR2 (5′ - CTA CAA TAA
ACA AAT CAT AAT ATA CAA TT - 3′) [34].
The partial region of the Cyt b gene was amplified

with Pfu DNA Polymerase (Agilent Technologies, Santa
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Clara, CA, USA) under the following conditions: initial
denaturation at 94 °C for 5 min, followed by 40 cycles,
each consisting of 30 s at 94 °C, 45 s at 58 °C (COIIIF
and MURF4R) or 50 °C (LCBF1 and LCBR2), 1 min at
72 °C, and a final extension at 72 °C for 10 min. Electro-
phoresis and visualizing were performed under the same
conditions as described above.
Roche Molecular Diagnostics Laboratories (Roche,

Penzberg, Germany) synthesized all primers.
Reference strains of L. major (MHOM/IR/54/LV39)

and L. tropica (MHOM/IR/89/ARD-L2) were used as
positive controls.

Sequencing
The amplified DNA fragments of both kDNA and Cyt b
genes were visualized on 1.5% agarose gels, parallel with
standard DNA marker (Fermentas, Vilnius, Lithuania) to
permit sizing. The PCR products were extracted from
gel sections using the QIAquick® Gel Extraction Kit
(QIAGEN, Hilden, Germany).
Sequencing of 200 ng of the amplified kDNA gene

products were accomplished by using the LINR4 and
LIN19 primers. Direct sequencing was performed to
bridge gaps in nucleotide sequences.
Sequencing of the amplified Cyt b gene products were

executed by using Nest 2 primers (LCBF1, LCBR2) and
two specific internal primers LCBF4 (5′ – TGT TAT
TGA ATA TGA GGT AGT G - 3′) and LCBR4 (5′ –
GAA CTC ATA AAA TAA TGT AAA CAA AA - 3′).
DNA sequencing was carried out on an ABI PRISM®

3730xl Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA) by the Sanger dideoxy chain termination
method using the Big Dye™ Terminator Cycle Sequen-
cing Ready Reaction Kit (Applied Biosystems, Foster
City, CA, USA). Sequence accuracy was confirmed by
sequencing both directions through the sequencing ser-
vice of Roche Molecular Diagnostics (Roche, Mannheim,
Germany). Special attention was paid to the double
peaks and the accurate direction of the sequences was
guaranteed. The variations between and within Leish-
mania species, and the number of different nucleotides
in each sequence was determined.

Phylogenetic analysis
The raw nucleotide sequences and chromatograms of
both forward and reverse directions were viewed and an-
alyzed using the Chromas (2.6.6) program. The nucleo-
tide sequences were aligned and analyzed using the
MUSCLE multiple sequence alignment program [36].
Consensus sequences were compared with homologous
sequences in the GenBank database using the BLAST al-
gorithm [37]. The sequences were assembled and edited
with the BioEdit (7.2.6) to identify single nucleotide
polymorphisms (SNPs) [38]. Multiple alignments were

performed with data related to Leishmania species from
Iran and other countries deposited in GenBank. The
parasite species were confirmed based on the homology
with kDNA and Cyt b genes sequences from Leishmania
reference strains. A molecular phylogenetic tree was
constructed by the Neighbor-Joining (NJ) method and
genetic distances were calculated with Maximum Com-
posite Likelihood model using MEGA-X [39]. The reli-
ability of the NJ tree was assessed by the bootstrap
method with 1000 replications. Leishmania equatorensis
was treated as out-group in Cyt b phylogenetic analysis.

Statistical analysis
The Fisher’s Exact Test was used for analyzing the rela-
tion between clinical features and Leishmania species in-
volved. All statistical analyses were performed using
SPSS (SPSS 24.0, Chicago, IL, USA). A P-value < 0.05
was considered statistically significant.

Nucleotide sequence accession numbers
The partial sequences of the Cyt b gene obtained in this
study were deposited in the GenBank database under ac-
cession numbers KX176846, KY290231, KY360312-
KY360314.

Results
Clinical results
From clinical standpoint, 58 out of 100 patients sur-
mised to have CL were male. The patients were part of
an incongruous population in Fars province, Iran. Their
ages sorted from 0.7 to 89 years. The period of the cuta-
neous lesion fluctuated between 2 weeks to 2 years.
The relative distribution of Leishmania species in Fars

province was shown to be heterogeneous. The majority
of CL was due to L. major (86% of all cases), with the re-
mainder due to L. tropica. While L. major was isolated
from patients originating throughout Fars province, L.
tropica was exclusively isolated from patients originating
from the city of Shiraz (14% of L. tropica isolates
reported).
Lesions were categorized into three main typical and

nine atypical forms according to the clinical features.
Three main types categorized as follows: 1- Elevated ery-
thematous lesions smaller than 0.5 cm in diameter were
defined as papular. 2- Elevated deeply seated erythema-
tous lesions larger than 0.5 cm were elucidated as nodu-
lar. 3- Erythematous elevated lesions larger than 1 cm in
diameter with ulcer were illustrated as ulcerative plaque.
The majority of the patients had lesions over exposed
parts of the body, most commonly hands and arms,
followed by legs, face, and trunk. Sixty-six patients had
one lesion, 19 patients had two lesions, and 15 patients
had three or more lesions. The clinical features of the
patients are summarized in Table 1.
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The most common clinical presentation was nodular
CL with 21 patients, followed by ulcerative plaque 19,
hyperkeratotic 19, erythematous 9, eczematous 9, vol-
canic 8, multi-lesional 5, verrucous 4, psoriasiform 2,
papular 2, carcinoma-like 1 [7, 8], and 1 recidivans-type
(lupoid) (Fig. 1a-j). Numerous intracellular and scattered
extracellular amastigotes were observed microscopically.
Employing Giemsa, amastigotes are seen within the
cytoplasm of macrophages as pale blue oval bodies with
a dark blue nucleus and a small rod-shaped kinetoplast
with a specified mitochondrial frame that contains
extra-nuclear DNA (Fig. 2). CL was confirmed by micro-
scopic examination of smears in 80% of 100 patients.

Molecular, sequencing, and phylogenetic analysis findings
Semi-nested PCR was accomplished for amplification of
the conserved area of the minicircle kDNA from the
Leishmania spp. A 650-bp fragment was amplified for L.
major, while a 760-bp fragment was amplified for L. tro-
pica (Fig. 3). All 100 samples were sequenced for kDNA
gene. The kDNA sequence analysis showed 14 cases of
L. tropica and 86 cases of L. major.
Nested-PCR was executed for amplification of estimated

size of 866-bp fragment of the internal Cyt b region in the
second PCR reaction (Fig. 4). In this study, many of the
100 patients had similar skin lesions in size and clinical
picture. Thus, 25 CL patients with various size lesions and
different clinical outcomes were randomly selected and
fully characterized for Cyt b gene sequencing. The result-
ing sequences of Cyt b gene were aligned and compared
with those of existing sequences related to Leishmania in
GenBank. The achieved sequences confirmed the presence
of L. major and L. tropica that were recognized by the
kDNA sequence analysis.
In this study, two different strains of L. major (MRHO/

IR/75/ER and MHOM/SU/73/5ASKH) and one strain of L.
tropica (MHOM/SU/74/K27) were detected in Fars

province, Iran. The Cyt b sequence analysis of 25 CL pa-
tients showed a 99–100% similarity to the previously pub-
lished strains of Leishmania spp. The sequences of L. major
patients with accession number KX176846 showed 99%
identity to the published strains MRHO/IR/75/ER, and
HU64, Abrkouh/Iran (KU680828 and KU680829). The se-
quences of L. major patients with accession number
KY360312 showed 100% identity to the published strain
MHOM/SU/73/5ASKH (EU140338, EF579898, and
AB095961). Also, these isolates showed 99% identity to the
published KU680827. The sequences of L. major patients
with accession number KY360313 showed 100% identity to
the published strain MRHO/IR/75/ER (KU680828). Also,
these isolates showed 99% identity to the published strain
HU64, Abrkouh/Iran (KU680829). The sequences of L. tro-
pica with accession number KY360314 showed 100% iden-
tity to the published strain MHOM/SU/74/K27 (KU680
831, HQ908270, and EF579904). Furthermore, the se-
quences of L. tropica with accession number KY290231
showed 99% identity to the published strain MHOM/SU/
74/K27 (EF579904, HQ908270, and KU680831) (Fig. 5).
The common term of haplotype is a specific group of

mutations or a collection of SNPs in the orthologous
gene of the parasite. In this study, the haplotype diversity
of Cyt b gene was observed to be higher in L. major
population. Three haplotypes of Cyt b polymorphism of
L. major were identified. In the sequencing result of L.
major haplotype II (KX176846), thymine (T) is replaced
by cytosine (C) at nucleotide position 258, C is replaced
by T at nucleotide positions 394 and 801, and T is re-
placed by adenine (A) at nucleotide position 813. Align-
ment of the amino acid sequence corresponding to the
non-edited region of haplotype II revealed Phe→Tyr
substitution. Haplotype II was observed in the psoriasi-
form, and eczematous lesions.
In L. major haplotype III (KY360313), T is replaced by

C at nucleotide position 280, C is replaced by T at

Table 1 Clinical presentations in patients with cutaneous leishmaniasis

Clinical Patterns No. Location Sex Duration

Nodular 21 upper and lower extremities, Lip, Trunk, Neck M and F 2 weeks-7 months

Ulcerative Plaque 19 upper and lower extremities, Face M and F 3 weeks-2 years

Hyperkeratotic 19 upper and lower extremities, Face, Neck, Nose M and F 3 weeks-10 months

Erythematous 9 upper and lower extremities, Face M and F 3 weeks-5 months

Eczematous 9 upper and lower extremities, Face, Neck M and F 5 weeks-8 months

Volcanic 8 upper and lower extremities M and F 5 weeks-7 months

Multi-Lesional 5 upper and lower extremities, Trunk M and F 3–6 months

Verrucous 4 Foot, Forehead F 2–6 months

Papular 2 Hand, Finger M and F 4months

Psoriasiform 2 Hand, Ear M and F 3–5 months

Carcinoma-Like 1 Eyelid F 5 months

Recidivans Type (Lupoid) 1 Wrist F 15 months
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nucleotide position 416, and T is replaced by A at nu-
cleotide position 839. Alignment of the amino acid se-
quence corresponding to the non-edited region of
haplotype III revealed two amino acid substitutions: One
Trp→Arg substitution, and one Thr→ Ile substitution.
Haplotype III was principally observed in the
carcinoma-like lesions.
Moreover, in L. tropica (KY290231), T is replaced by

G at nucleotide position 810, and conversely at nucleo-
tide position 811. Alignment of the amino acid sequence
corresponding to the non-edited region of L. tropica
(KY290231) revealed Leu→Cys substitution. This
haplotype was essentially observed in the LR (lupoid) le-
sions. All variations occurred in microsatellite regions
and were due to SNPs. In Fig. 5, the partial sequences of
five haplotypes obtained in this study and deposited in
the GenBank database, were analyzed.
The tree based on the classification of lesions grouped

the 25 genotypes into 7 clusters (Fig. 6). Cluster I con-
tained isolated strains from the verrucous, volcanic, and

Fig. 2 Touch impression smear. Numerous intracellular and scattered
extracellular amastigotes are present (Giemsa stain; original
magnification, × 1000). Kinetoplasts are visible in many amastigotes

Fig. 1 Clinical presentations of CL lesions caused by L. tropica and L. major: (a) Hyperkeratotic; (b) Multi-Lesional; (c) Erythematous; (d) Eczematous; (e)
Psoriasiform; (f) Verrucous; (g) Discoid Lupus-Like; (h) Paronychia, Eczematous, and Hyperkeratotic; (i) Erythemato-Ulcerative; and (j) Wet Ulcerative Plaque
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psoriasiform variants of CL patients who came from the
same geographical region (isolates 27, 34, 50, 52, and 87).
Cluster II included isolated strains from the erysipeloid
and eczematous variants of CL patients who came from
the same geographical origin (isolates 29, 37, 54, and 91).
Cluster III comprised isolated strain from the ulcerative
plaque of CL patients who came from the same geograph-
ical source (isolates 64, 71, and 75). Cluster IV embraced
isolated strains from the hyperkeratotic variants of CL pa-
tients who came from the same geographical region (iso-
lates 28, 30, and 59). Cluster V combined isolated strains
from the erythematous variant of CL patients who came
from the same geographical zone (isolates 9, 10, and 31).
Cluster VI incorporated isolated strain from the
carcinoma-like of CL (isolate 24). Withal, Cluster VII
hugged isolated strains from the LR, papular, nodular, and
multi-lesional variants of CL patients who came from the

Fig. 5 Molecular phylogenetic relationship among various Leishmania
isolates to each other as inferred by Neighbor-Joining tree based on
Cyt b gene. Numbers on branches are percentage bootstrap values of
1000 replicates. The evolutionary distances between sequences were
computed using the Maximum Composite Likelihood method. The
scale bar indicates an evolutionary distance of 0.01 nucleotides per
position in the sequence. The reference sequences accession numbers
are inserted. Evolutionary analyses were conducted in MEGA-X

Fig. 4 PCR result of Leishmania spp. isolated from CL lesions. The
PCR product size is approximately 866 bp. The 8 lanes contained the
products from positive controls of L. tropica (lane 4) and L. major
(lane 5), negative control (lane 6), cutaneous lesions due to L. major
and L. tropica (lanes 1–3), and molecular marker (MM)

Fig. 3 Electrophoresis of PCR products of DNA extracted from
positive smears and cultures. The 8 lanes contained the products
from positive controls of L. tropica (lane 6) and L. major (lane 7),
negative control (lane 5), cutaneous lesions due to L. major and L.
tropica (lanes 1–4), and a molecular marker (MM)

Mohammadpour et al. BMC Infectious Diseases           (2019) 19:98 Page 7 of 13



same geographical area (isolates 15, 20, 26, 49, 60, and
96). In Fig. 6, raw sequencing data of 25 Cyt b sequenced
CL patients with different clinical pictures and sizes were
used for phylogenetic consensus tree. The data shown in
this phylogenetic consensus tree disclosed that those pa-
tients, who had the same clinical outcomes and came
from the same geographical source, were infected with
closely related strains of L. major in the phylogeny.
The analysis of the phylogenetic tree revealed two dis-

tinct clades: L. major and L. tropica. Within the clades
intra-species divergence was more pronounced in L.
major than in L. tropica. The Iranian strains of L. major
and L. tropica found in this study were more similar to
strains from the eastern and northern neighbor coun-
tries of Iran (Fig. 5).

Discussion
Cutaneous leishmaniasis is a polymorphic disease that
can divulge distinctive clinical outcomes, and is

characterized by skin lesions and ulcers on exposed
parts of the body, departing perpetual scars. CL is al-
lotted in greater than half of the 31 provinces of Iran,
with 29,201 incidence cases reported in Fars province
from 2010 to 2015 [40]. Fars province in southern
Iran is a hyper-endemic region of CL [41]. Early iden-
tification and genetic characterization of causative
agents of CL using Cyt b gene or other genetic
markers has been avail for appraisal of Leishmania
polymorphisms, since infected Leishmania species are
confederated with the clinical presentation and drug
susceptibility.
In this study, we used Cyt b gene sequencing to study

genetic diversity among 100 Leishmania isolates from
the different parts of Fars province, Iran and to correlate
the genetic polymorphism of the parasite with the clin-
ical manifestations of the disease in humans. One of the
advantages about using gene sequencing is the under-
standing of the inter- and intra-species genetic diversity

Fig. 6 A phylogenetic consensus tree between all Leishmania isolates using MEGA-X and clustering algorithms. L. infantum (AB095958), two L.
major (AB095961, KU680828), and two L. tropica (EF579904, KU680831) were used as out-group and standard isolates, respectively
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of Leishmania. Cyt b is situated in the maxicircle part of
the kinetoplast that is about 50 copies. There is
sufficient degree of nucleotide sequence change amid
Leishmania spp. genomes for characterization and het-
erogeneity aims [34]. Recently sequencing of the Cyt b
gene has been employed with prosperity for Leishmania
sp. identification [33, 42–47] and polymorphism [25, 34,
42, 43, 48–50]. Despite the low inter-species heterogen-
eity of the Cyt b gene, the key nucleotide positions
depicted previously corroborate the potential of this
gene as a molecular marker for Leishmania species
characterization, not only in geographically related iso-
lates, but also in widely separated regions [45].
The data from this study revealed genetic diversity of

the Cyt b gene of Leishmania spp. isolated from a wide
spectrum of clinical forms of CL in Fars province, Iran.
This is in accordance with prior studies. Myint et al. [49]
found three types of Cyt b polymorphism of L. major
and no connection between clinical presentation and
causal Leishmania parasites. Ramirez et al. [51] reported
a high genetic diversity displayed by L. panamensis and
L. braziliensis using Cyt b barcoding.
The genetic diversity of Leishmania spp. seen in aca-

demic research studies is dependent on a number of factors
ranging from the parasite’s different eco-epidemiologies
(e.g. are parasites isolated from humans, reservoir hosts or
vectors; are they transmitted anthroponotically or zoonoti-
cally) to laboratory tools and molecular tools used (e.g.
nuclear in contrast with mitochondrial DNA) [43]. Add-
itionally, the occurrence of clonal reproduction and
hybridization causes intrinsic genetic diversity in Leish-
mania [52, 53]. Of all these factors, sexual reproduction is
the basic biological process that influences the population’s
genetic structure. Many authors have reported evidence of
hybrid formation and fortuitous bouts of genetic exchange
or hybridization in Leishmania [54–57]. Clearly, infrequent
or rare sessions of sexual recombination in normally asex-
ual parasites can have a deep effect on the range of genetic
diversity. It has been informed that increased transmission
potential and a new form of CL is the result of hybrid for-
mation between L. major and L. infantum [56, 57].
A high degree of genetic polymorphisms in Leish-

mania parasites based on ITS1 and kDNA genes has
been reported previously in Iran [58–62], and in the
neighboring country of Afghanistan [63, 64]. In a pre-
ceding study by Baghaei, mutual connection between the
genetic heterogeneity of L. major and clinical presenta-
tions of ZCL in Isfahan, Iran based on PCR-RFLP of ITS
gene in the ribosomal operon, has been investigated
[58]. His study revealed that L. major is genetically
highly polymorphic and a correlation may exist between
genetic heterogeneity of the parasite and the clinical pic-
ture of the disease in human. The PCR-RFLP of the
RNA polymerase II largest subunit (RPOIILS) gene of L.

major has divulged genetic diversity in Iran [65]. The
genetic variability of L. major from Iranian isolates have
been disclosed antecedently by Single-Strand Conform-
ation Polymorphism PCR (SSCP-PCR) and sequence
analysis of the ITS gene [60]. The Permissively Primed
Intergenic Polymorphic-PCR (PPIP-PCR) displayed fur-
ther genetic heterogeneity amid the clinical isolates of L.
major causing CL in Isfahan, Iran [66]. Supplementally,
the genetic polymorphism of the rDNA gene of L. major
has been informed in Fars province, Iran [67].
In addition, substantial heterogeneity has been studied

and reported within the ITS gene of strains of L. tropica
[59, 64, 68, 69]. Oryan et al. [61] and Shirian et al. [62]
assessed the heterogeneity of L. major causing CL based
on sequencing of kDNA and showed a high genetic di-
versity of the parasite and correlations among the geo-
graphical origin and the clinical outcomes of the disease.
Moreover, conspicuous genetic variability has been ex-
hibited within the Nagt gene amidst L. tropica, L. major,
and L. infantum strains [70, 71], and by RAPD-PCR
among L. major and L. infantum strains [72–74]. Con-
siderable genetic diversity was detected among L. major
strains from different endemic areas and even between
some isolates of the same endemic area in Iran using the
RAPD technique [73]. The latter result might be eluci-
dated by substantial “Gene Flow” among isolates belong-
ing to the same area [75].
The findings of higher molecular diversity in L. major

isolated from tropical and subtropical regions of the Fars
province in this study rather than L. tropica from the
Shiraz region could be related to the greater number of
animal reservoirs and diversity of sand fly fauna encoun-
tered in these regions [3, 5, 41].
In this study, an intelligible correlation was discerned

between the Cyt b gene sequence polymorphism of iso-
lates and clinical pictures of skin lesions. This is in con-
formity with previous studies [42, 49, 50]. Our results
disclosed noteworthy variations in the clinical features of
the CL caused by L. major secluded from different geo-
graphical regions of Fars province, Iran. The CL typically
demonstrates as papules, scaled-crusted nodules, and ul-
cerative plaques. However, it may sometimes pose in
various atypical clinical outcomes such as sporotrichoid,
erysipeloid, lupoid, keloidal, eczematous, erythematous,
psoriasiform, zosteriform, chancriform, hyperkeratotic,
verrucous, whitlow, paronychia, carcinoma-like and
other atypical exhibitions [7, 8, 10, 11]. Coherent with
these data, in a prior study, assessment of four L. major
isolates collected from four different endemic areas in
Iran displayed diverse clinical and immunological pat-
terns in BALB/c mice [76]. The different clinical expres-
sions of CL depend on both intra-species genetic
diversity of Leishmania and host immune status. Com-
pound lesions have been portrayed in connection to L.
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mexicana, L. braziliensis, L. tropica and L. major, the
mentioned last leading to primarily dermotropic types.
In similar circumstances, the disease disseminates from
the initial lesion by way of the lymphatic vessels, pre-
senting subcutaneous nodules or localized adenopathy
that have a similar appearance to lymphocutaneous spo-
rotrichosis [10, 11].
In addition to the intra-species genetic variability of the

Leishmania, host immune reaction performs a significant
function in the clinical presentation of CL. For example,
patients with defect of the T cell reply frequently improve
an anergic condition named diffuse CL characterized by
multiple nodular lesions full of amastigotes. Moreover,
host genetic inheritance and bacterial habitat are contrib-
uted to the outcome of CL [77–80]. It has turned into lim-
pid that the outcome of CL arises from an equilibrium
between pro- and anti-inflammatory agents [81]. In CL
patients, pathophysiology of disease is allied with a strong
Th1 immune response to Leishmania antigens. Lesion di-
mension clearly connects with the immensity of Leish-
mania antigen- aroused TNF yield by peripheral blood
mononuclear cells, and with the amount of flow TNF and
IFN-γ producing CD4+ lymphocytes [82, 83]. Further-
more, there is an alliance between the strength of the in-
flammation and the frequency of CD8+ T cells exuding
granzyme A [84].
Extra agents that have been asserted to affect the

clinical outcome of CL comprise the place of inocula-
tion, the total amount of the inoculated promasti-
gotes, hormonal secretion quality, the quantity,
quality and variety of food intake of the host, and the
temperament of the final non-blood repast of the vec-
tor. Besides, agents like a non-native person, aged
people communally, utilize of oral steroid drugs, im-
munodeficiency illnesses, and still lesion pollution
with inorganic particles are able to modify the signs
and symptoms of CL [85].
With relation to the effective causes of CL in Iran, the

high usually recognized parasites were L. major and L.
tropica, respectively. Dependent upon the results of this
study, L. major is the supreme species liable for CL in
this district. Three Leishmania spp. comprise of L.
major, L. tropica, and sometimes L. infantum had been
recognized as the causative agents of CL and ML collab-
orated with disparate clinical pictures in this territory
[7–9]. The data procured in this study disclosed that
those patients who had the similar clinical outcomes and
came from the same geographical source were affected
with almost linked strains of L. major in the phylogeny.
Certain patients with various clinical configurations were
situated in the equal bunch.
The established data from this study revealed that a

correlation might be exist between the genetic variability
of the parasite, clinical manifestation, and geographical

source of the disease in humans. This is in agreement
with previous studies [48–50].

Conclusions
The sequence analysis of the Leishmania Cyt b gene
showed genetic polymorphisms in L. major and L. tro-
pica and a feasible correlation among the genetic hetero-
geneity of the parasite, geographical source and clinical
outcome of the disease in human was found. Further-
more, these data confirm and emphasize the usefulness
of Cyt b gene sequencing on Leishmania spp. genetic
polymorphism and phylogenetic relationship analysis.
Based on our findings, we believe that different clones of
parasites or mixed populations are circulating in en-
demic regions of Fars province, Iran. It is significant to
contemplate that the clinical configuration of CL does
not solely be contingent upon the Leishmania species
involved. Meanwhile, even though certain lesion charac-
teristics maybe more commonly associated with a par-
ticular species, one should not rely on clinical patterns
to anticipate any species involvement.
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