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Abstract

Background: Malaria prevalence in Cameroon is a major public health problem both at the regional and urban-rural
geographic scale. In 2016, an estimated 1.6 million confirmed cases, and 18,738 cases were reported in health facilities
and communities respectively, with about 8000 estimated deaths. Several studies have estimated malaria prevalence
in Cameroon using the analytical techniques at the regional scale. We aimed at identifying malaria clusters and
hotspots at the urban-rural geographic scale from the Demographic and Health Survey (DHS) data for households
between 2000 and 2015 using ArcGIS for intervention programs.

Methods: To identify malaria hotspots and analyze the pattern of distribution, we used the optimized hotspots
toolset and spatial autocorrelation respectively in ArcGIS 10.3 for desktop. We also used Pearson’s Correlation
analysis to identify associative environmental factors using the R-software 3.4.1.

Results: The spatial distribution of malaria showed statistically significant clustered pattern for the year 2000 and
2015 with Moran’s indexes 0.126 (P < 0.001) and 0.187 (P < 0.001) respectively. Meanwhile, the years 2005 and
2010 with Moran’s indexes 0.001 (P = 0.488) and 0.002 (P = 0.318) respectively, had a random malaria distribution
pattern. There exist varying degrees of malaria clusters and statistically significant hotspots in the urban-rural
areas of the 12 administrative regions. Malaria cases were associated with population density and some environmental
covariates; rainfall, enhanced vegetation index and composite lights (P < 0.001).

Conclusion: This study identified urban-rural areas with high and low malaria clusters and hotspots. Our maps can be
used as supportive tools for effective malaria control and elimination, and investments in malaria programs and research,
malaria prevention, diagnosis and treatment, surveillance, should pay more attention to urban-rural geographic scale.
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Background
Malaria remains an international public health
challenge as there has been an increase in the
number of estimated malaria cases; 5 million malaria
cases from 2015 (211 million) to 2016 (216 million)
[1]. Worldwide,109 countries are now malaria-free,
whereas malaria is still an endemic disease in about
99 countries [2]. About 90 and 91% of malaria cases

and deaths respectively, reported in 2016 occurred in
the WHO Africa region with about 15 counties all
in Sub-Saharan Africa (SSA) [1]. The most prevalent
malaria parasite in SSA is the Plasmodium falciparum,
accounting for 99% of malaria cases and most occurring
in children under the age of five [1]. In Cameroon, the
epidemiological transmission of malaria is high (> 1 case
per 1000 population) in about 71% (16.6 million people)
and low (0–1 cases per 1000 population) in about 29%
(6.8 million) in people of all sexes and age groups. Malaria
prevalence in Cameroon is a major public health problem
at both the regional (larger) and urban-rural (smaller)
geographic scales, with an estimated 1.6 million confirmed
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cases reported in health facilities and 18,738 cases at the
community level and 8000 (6000-10,000) estimated deaths
in 2016 [3]. Generally, malaria intervention policies and
control strategies in both the regional and urban-rural
scales in Cameroon, have been reported to focus on the
use of insecticide treated bed-nets (ITNs), indoor residual
spray (IRS),larval control, diagnostic testing, treatments,
disease surveillance, and national campaigns [3–6].
The WHO and the roll back malaria global action plan

[7] anticipate having a malaria-free world by 2030
through its set milestones and targets pillars with a
major focus to ensure universal access to malaria
prevention, diagnosis, and treatment. Malaria prevention
strategies based on the use of ITNs and or IRS in
Cameroon, has been a great method in the reduction of
incident cases of the disease as about 13.6 million ITNs
deliveries of the 80% ITNs deliveries in SSA, was made
in Cameroon between 2014 and 2016 [1].
Malaria risk maps and the applications of spatial mal-

aria epidemiology in the fight against malaria in Africa
has been limited. A review by Omumbo [8], examining
the most recent national malaria strategies, monitoring
and evaluation plans, as well as the types of maps
presented and how they have been used to define prior-
ities for investments in malaria control in 47 countries
in Africa, found that about 32% of the countries did not
present malaria maps within their national malaria
prevention strategies.
Small-area statistical analysis and spatial epidemiology

have emerged to solve issues of where disease clusters
and hotspots are located. Spatial epidemiology deals with
the analysis and description of geographic health data
with respect to demographic, environmental, behavioral,
socioeconomic, genetic and other infectious agents or
risk factors [9]. A study by Elliot [9] on the current ap-
proaches and future challenges of Spatial epidemiology
reported that, recent advancements in data availability
and analytical methods have created new openings for
studies to improve on the local reporting of diseases at
national or regional scale by observing changes in
disease prevalence rates at a smaller scale. Although,
they reported on the absence of a satisfying definition of
the term small-area in studying the variations in disease
incidence and mortality, [10] suggested a working
definition as a rough guide which we will apply in our
study; any region containing fewer than about 20 cases
of a disease can be considered a small area. For example,
a disease with an annual incidence rate of about 5 per
100, 000 for a period of 5 years, a small area constitutes
a population size of around 100, 000 or fewer in clusters
of disease occurrence in a remote area or small village.
They also identified four types of Spatial analysis at a
small-area scale: disease mapping, geographic correlation
studies, disease clusters, and surveillance. Some of the

main techniques of spatial methods reviewed by Robert-
son [11], used in emerging infectious disease research
include; spatial autocorrelation, space-time interactions,
hotspots and clusters.
The global spatial autocorrelation technique is used to

characterize a full map in one quantitative value. This
method measures the total joint counts of nearby
regions, attributes or locations against a null hypothesis
of no spatial autocorrelation [11]. Moran’s I and Geary’s
c statistics are common methods of spatial auto-
correlation. Positive spatial autocorrelation indicates the
existence of clustered patterns of a disease, negative auto-
correlation can suggest a dispersion in the transmission
pattern or surveillance among given regions. Hotspot
mapping and cluster detection are analyses executed
through local spatial analysis methods. The basic tech-
nique is to calculate a test statistic for each location and
then evaluate the distribution of these test statistics
against a theoretical or random reference distribution.
This technique is important in infectious diseases surveil-
lance in that, it helps to identify geographic areas where
and to what extent an observed spatial pattern of a disease
is anticipated relative to a null hypothesis [9, 11].
Smith [12], conducted a systematic review of published

reports of outbreak investigations worldwide to estimate
the prevalence of infectious diseases using spatial
methods such as dot maps, Moran’s I, rate maps,
Gestis-Ord Gi* on different diseases; hepatitis, influenza,
malaria, rabies and many others. Bhatt [5], found that,
Plasmodium falciparum infection in endemic Africa has
reduced and incidence of the clinical disease fell by 40%
between 2000 and 2015; the authors used the Geograph-
ical Information Systems (GIS) applications. The GIS
computer system can describe, analyze, and predict dis-
ease patterns using feature (cartographic) and attribute
data. GIS has been used in many epidemiologic applica-
tions, including disease mapping, rate smoothing, cluster
or hotspot analysis, and spatial modeling and have been
reported and applied in small area units such as
urban-rural and lower administrative scales [9–13]. Dot
maps and geographic profiling have been used both in
the United Kingdom and Egypt as spatial methods to
identify locations of sources of cholera and malaria in-
fections respectively [14]. The Moran’s I spatial method
has also been used to identify cholera clusters in areas
with lower coverage of latrines in a peri-urban area of
Lusaka, Zambia and advise for effective drainage sys-
tems [15]. Moreover, during the 2003 severe acute re-
spiratory syndrome (SARS) outbreak in Hongkong, the
Moran’s I technique was used to identify SARS cluster
patterns at the community level [16]. Findings from a
study carried out in the small-area rural highlands of
Western Kenya, identified significant spatial clusters of
malaria in school children during an outbreak [17]. The
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authors used household survey data and their analyses
used the spatial scan statistic software.
Most studies focusing on malaria prevalence and

incidence, or the use of ITNs / IRS, in Cameroon have
applied the analytical statistics methods, tools evaluation,
vector control and molecular techniques at both the
higher and lower administrative levels [4, 18, 19].
Understanding the distribution of malaria cases in

Cameroon with the use of spatial statistical analysis
approach, will help inform malaria control programs at a
smaller scale. Thus, we aim to identify malaria clusters
and hotspots in Cameroon at the urban-rural scale using
the DHS Global Positioning System (GPS) data for
households. Our objectives are to; i) use the spatial auto-
correlation technique to analyze malaria spatial patterns
in ArcGIS for desktop, ii) map the distribution of malaria
cluster points, iii) identify urban-rural clusters with statis-
tically significant hotspots of the disease, and iv) identify
environmental factors associated with the distribution of
malaria cases.

Methods
Data acquisition
Data for this study was obtained after a granted
request for registered users from the DHS program
website https://dhsprogram.com funded by the
United States Agency for International Developments
(USAIDS) MEASURE DHS Project in collaboration
with the National Institute of Statistics (Institute
Nationale de la Statistique) and the Ministry of Public
Health Cameroon. The DHS are nationally-representative,
probabilistic, household surveys that include a wide range
of key demographic and health indicators used to monitor
and evaluate population, health, and nutrition programs
[20]. The data contains the Cameroon 2011 DHS malaria
data for a five-year (2000, 2005, 2010, and 2015) interval
and some environmental covariates; enhanced vegetation
index, rainfall, composite lights, and Population density at
the urban-rural scale.

GPS data
The GPS point data for each sampled urban-rural cluster
residence was linked to all the households and individual
level attributes such as survey information for Malaria
Indicator Survey (MIS) and AIDS Indicator Survey to be
analyzed with ArcGIS. For reasons of confidentiality, the
GPS urban-rural location points were masked [21, 22]
and a python script in ArcGIS was used to displace the
data within the appropriate administrative boundaries.
For small-area administrative units, urban residence
clusters were displaced a distance up to 2 km and rural
clusters up to 5 km, with a further randomly selected 1%
of the rural clusters displaced up to 10 km [20].

Sample population
The DHS urban-rural residence clusters (Fig. 1) as
defined by the country’s census bureau, is usually part of
the sampling domain for lower levels of administrative
units. Census enumeration areas can be a city block or
apartment building for urban areas while in rural areas
is typically a village or group of villages. The population
and size of sample clusters vary between and within
countries (Table 1). Generally, clusters contain 100 to
300 households, of which 20 to 30 households are
randomly selected for survey participation [20, 23].

Malaria data description
A malaria year was described as the average number of
people per year who show clinical symptoms of
Plasmodium falciparum malaria within the cells whose
centroid falls within a radius of 10 km (for rural points)
or 2 km (for urban points). In surveys that collected
specimens for malaria testing (primarily MIS), indicators
of the prevalence of malaria are provided, based on both
rapid diagnostic tests (RDT) and on laboratory analysis
[20]. A clinical case was defined as a malaria-attributable
febrile episode (body temperature in excess of 37.5 °C),
typically accompanied by headaches, nausea, excess sweat-
ing and or fatigue censored by a 30-day window [24, 25].

Statistical analyses
Malaria spatial pattern analysis
The global spatial autocorrelation (Moran’s I) statis-
tical toolsets in ArcGIS10.3 was used to identify
statistically significant malaria clusters over the study
area for the different regions in Cameroon between
2000 and 2015. The Moran’s Index (M.I) statistical
technique, evaluates the spatial autocorrelation of
malaria cases at the urban-rural cluster locations
where a Moran’s I value close to zero signifies spatial
randomness of the disease, a positive value indicates
spatial clustering [11, 26]. To evaluate whether the
spatial pattern is clustered, dispersed or random, a
statistically significant estimate of Moran’s I (p < 0.05,
z score ≥ 1.96) indicates neighboring urban-rural areas
have similar malaria cases under the null hypothesis that
the distribution of malaria cases at the urban-rural
scale is completely spatially random. The spatial auto-
correlation tool runs through an input feature class, a
conceptualization of spatial relationship (which include
inverse distance, travel time, fixed distance, K nearest
neighbors, and contiguity), and a distance band or
threshold distance (cases have at least one neighbor).
The tool returns five values: the Moran’s I Index,
expected index, variance, z-score, and p-value. This
tool calculates a z-score and p-value which are mea-
sures of statistical significance to indicate whether or
not the null hypotheses can be rejected.
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Mapping malaria, INTs / IRS and population density
distributions
The average number of people per year who showed clin-
ical symptoms for malaria in the urban-rural residence

between 2000 and 2015 was symbolized using graduated
symbols with five classes natural breaks Jenks; which is a
symbology technique in ArcGIS that shows quantitative
differences in data values with varying symbol sizes. The

Fig. 1 DHS Urban-Rural Cluster point locations (grey dots) and the percentage of people who slept under ITNs and or use IRS the previous night
during the 2011 DHS Survey
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data is classified into ranges that are each then assigned a
symbol size to represent the range. The percentage of
people who slept under ITNs and or use IRS the previous
night during the DHS survey was mapped using the
choropleth mapping technique where color shades range
from light (lower data values) to dark (higher data values).
The average number of people per square kilometer (UN
Population density) for the different administrative regions
was mapped using the heat map symbology technique.
This approach displays the relative density of points using
a color scheme, ranging from low density to high density
of points.

Malaria hotspot analysis
Moran’s I have well established statistical properties to
describe global spatial autocorrelations but has not been
effective in identifying clustered spatial patterns and
hotspots [26]. For hotspots identification, we employed
the optimized hotspot analysis tool in ArcGIS10.3 to
identify the malaria incident hotspots at the urban-rural
clusters. The optimized hotspots analysis creates a map
of statistically significant hotspots (areas with high mal-
aria cases) and coldspots (areas with low malaria cases)
using the Getis-Ord Gi* statistic; which uses a default
count incident points within fishnet polygons as the
incident data aggregation method. The software gener-
ates polygons and aggregates these points into the poly-
gons. The fishnet polygon technique produces a map of
malaria incident cases with similar attribute values and
automatically classifies them as coldspots (blue areas) or
hotspots (red areas).

Correlational analysis
Malariological measures such as those of the environ-
ment, have been reported to be associated with malaria
prevalence [17, 27, 28]. To understand the association
between malaria case distribution and environmental
factors in our study, we measure the associations between
the five-year interval malaria cases and environmental

covariates such as rainfall, enhanced vegetation, and
nightlights composite, by applying the Pearson’s prod-
uct -moment Correlation Coefficient (PCC) denoted
by r. The PCC was analyzed using the R-Statistic
Software (version 3.4.1). The mathematical computa-
tions and the applications of PCC are documented in
[29] and was applied in the spatiotemporal distribu-
tion and hotspots of hand, foot and mouth disease in
Northern Thailand, where the authors found rainfall
to be associated with the spread of the disease [26].
The statistically significant result r, measuring the
strength of the associations from − 1 (perfectly inverse
association) to + 1(perfectly strong association) were
obtained.

Results
Spatial autocorrelation pattern
The global MI was greater than zero (more positive) for
the 2000 and 2015 malaria year (Fig. 2) with Moran’s
indexes 0.126(P < 0.001) and 0.187(P < 0.001) respectively.
Whereas, the year 2005 and 2010(Fig. 3) had values close
to zero with Moran’s indexes 0.001(P = 0.488) and 0.002
(P = 0.318) respectively (Table 2).

General malaria distribution
In this study, we looked at the average number of people
per year suffering from malaria between the years 2000
and 2015. Figures 4, 5, 6 and 7 shows the distribution of
malaria cases by urban-rural clusters in each administra-
tive region. Throughout each of the five-year intervals,
2000, 2005, 2010 and 2015, the highest and lowest
urban-rural malaria cases are illustrated with graduated
symbols as shown in Figs. 4, 5, 6 and 7.

Malaria hotspots identification
Our main goal in this study was to identify malaria hotspots
locations for future intervention using the spatial autocorrel-
ation statistical techniques. In the year 2000, statistically
significant malaria hotspots (95% confidence) were identified
in urban-rural clusters of the West, Southwest, Douala,
Yaoundé, Littoral, Center and the South regions (Fig. 4). In
2005, there were no statistically significant malaria hotspots
in all the 12 DHS administrative regions. The Far north had
areas with statistically significant coldspots; areas with
low malaria cases (Fig. 5).
In 2010, some urban-rural areas of the Southwest and

South regions had statistically significant malaria hot-
spots (Fig. 6). In 2015, most urban-rural areas in the
West, Southwest, Douala, Center, and East had statisti-
cally significant malaria hotspots (95% confidence).
Some communities in the North had statistically signifi-
cant malaria coldspots as illustrated in Fig. 7.
The map of the UN population density shows high

population densities in the urban-rural clusters of

Table 1 DHS VI National Coverage for the 2011 field work

Major Survey Parameters Size Weighteda (Weighted by clusters)

Households 14,214

Women (15–49 years) 15,426

Men 7191

Children < 60 Months 11,732 11,748

Household Members 72,622 72,884

All Births 42,312 42,071

Couples 2973 3003

Urban-Rural GPS Clusters 578
aWeights are adjustment factors applied to each case in the DHS survey to
adjust for differences in probability of selection and interview between cases
in a sample, due to different study designs [20]

Tewara et al. BMC Infectious Diseases          (2018) 18:636 Page 5 of 15



Yaoundé, Douala and West regions and low population
densities in some parts of the Southwest, Northwest,
North and Far North regions (Fig. 8).
Table 3 demonstrates the strength (r) of the associ-

ation between the distribution of malaria cases and
environmental factors.

Discussion
The application of spatial analytical techniques focusing
on malaria is not new. However, very limited studies
have focused on smaller administrative levels [17, 30,
31]. Given the z scores: 5.07 and 15.6 for the year 2000
and 2015 respectively, indicate there is a less than 1%
likelihood for the observed clustered pattern to be due
to chance (Fig. 2). The null hypothesis of complete ran-
domness is rejected, and the presence of cluster patterns
indicate neighboring locations have high malaria cases at
a given urban-rural area. The z scores: 0.69 and 0.99 for
the year 2005 and 2010 respectively, illustrate that the
malaria pattern does not appear to be significantly

different than random (Fig. 3), and the null hypothesis
of complete randomness is accepted. This suggests that
malaria cases are randomly spread across the urban-
rural areas. Knowing the hotspot locations of areas with
clustered malaria patterns can inform for national mal-
aria prevention programs and surveillance.
The distribution of urban-rural malaria cases observed

as graduated symbols in Figs. 4, 5, 6 and 7 call for preven-
tion programs as some urban-rural areas in Yaoundé,
Douala, Center, South West, North West, Littoral, West,
and South region had high malaria cases, and low cases in
Adamawa, East, North, and Far North region. Our finding
is consistent with that reported by Gemperli [28] where
they found high malaria prevalence in the West and low
prevalence in the North and Far North. Contrary to our
study that focused on the distribution of malaria cases at a
smaller scale, the author focused on malaria prevalence at
a regional scale. Understanding the distribution of malaria
cases and prevalence in these areas will advise for invest-
ments and prevention programs.

Spatial autocorrelation pattern for the malaria year 2000(z-score:15.620773) and 2015(z-score: 
5.041183)

Fig. 2 Graph of clustered malaria pattern for the year 2000 and 2015
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The hotspots analysis identified varying intensities of
malaria hotspots in the urban-rural areas of the West,
Southwest, Northwest, Douala, Yaoundé, Littoral, Cen-
tral, and South regions (95% confidence) between 2000
and 2015(Figs. 4 and 7). In addition, there was a shift in
the malaria hotspot location paradigm as some urban-
rural areas in the East region recorded new incident
malaria hotspots for 2015 which was not seen in the
previous years. In a study(32), which focused on the
mapping of Plasmodium falciparum mortality in Africa
between 1990 to 2015, the authors reported that several

malaria hotspots areas in Cameroon, Niger, Central
Africa Republic and Ivory Coast, were associated with
high mortality rate and low coverage of antimicrobial
treatment(> 20 malaria deaths per 10,000) [32]. This
study did not locate in detail, the various regions or
urban-rural areas in Cameroon with such hotspots.
Our hotspots maps are an affirming tool at the regional
and even urban-rural scale for malaria prevention
programs. Furthermore, [32] identified regions of
Adamawa, North, and East of having high mortality
(> 20 per 10,000) and low drug treatment < 10%. Our
study reported these regions of having low malaria
cases and no statically significant malaria hotspots
except for the East region. However, our study
focused on malaria cases and advise for continues
preventive measures in the urban-rural areas or
regions of low malaria cases and high mortality.
This study reported on the use of ITNs and IRS as

one of the most effective preventive strategy for malaria
control in Cameroon and though an effective method,

Spatial autocorrelation pattern for the malaria year 2005(z-score: 0.692098) and 2010(z-score: 
0.997355) 

Fig. 3 Graph of random malaria pattern for the year 2005 and 2010

Table 2 Global Moran’s I summary for the different malaria year

Year Moran’s Index Expected Index Variance Z-Score P-value

2000 0.126795 −0.001733 0.000068 15.620773 0.000000

2005 0.001092 −0.002252 0.000023 0.692098 0.488876

2010 0.018808 −0.002252 0.000446 0.997355 0.318592

2015 0.098884 −0.001733 0.000393 5.072826 0.000000
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Fig. 1 demonstrates low (< 50%) coverage of ITNs and
or the use of IRS in all the regions. More campaigns
and universal distribution of free ITNs that was initi-
ated in Cameroon in 2011 [4] should be focused in

urban-rural areas of regions with very low ITNS/ IRS
usage. A study on the Mapping of Plasmodium falcip-
arum mortality in Africa between 1990 and 2015 esti-
mated that areas with high mortality rates(10–20 per

Fig. 4 Map of malaria cases (graduated symbol) and statistically significant hotspot locations at the urban-rural clusters for the year 2000
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10,000) were associated with low coverage of ITNs
(30–50%) for most regions in Cameroon, Nigeria,
Angola and parts of Congo, Central African Republic,
Guinea and Equatorial Guinea [32]. Furthermore, an

observational study that assesed ITNs possesion and their
protective effects on malaria infection in semi-urban and
rural communities in the South West region of
Cameroon, found that ITNs ownership was lower in rural

Fig. 5 Map of malaria cases (graduated symbol) and statistically significant hotspot locations at the urban-rural clusters for the year 2005

Tewara et al. BMC Infectious Diseases          (2018) 18:636 Page 9 of 15



settings compared to semi-urban settings [4]. This also
calls for malaria prevention and control campaigns such
as those on ITNs distributions in urban-rural areas and
particularly hotspots locations.

The population density map (Fig. 8) at the urban-rural
areas showed that malaria cases and hotspots locations
were higher in regions of higher population density and
lower in regions of lower population density. This

Fig. 6 Map of malaria cases (graduated symbol) and statistically significant hotspot locations at the urban-rural clusters for the year 2010
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corroborated with the findings of Kabaria [33] who re-
ported the relationship between human population dens-
ities and malaria infection risk in children aged < 5 in
Africa using the DHS data. They identified the correlation
between high malaria risk prevalence in urban areas and
argues for the decrease in transmission in rural areas due
to urbanization. Yaoundé (Central region) and Douala
(littoral region) are the capital and economic capital of
Cameroon respectively and are full of more human

activities than the other regions. We could not evidently
support the reasons for the association between high mal-
aria cases and high population densities and call for more
research at a smaller scale in the future.
The Pearson’s coefficient, r (Table 3) shows a positive

association with some environmental factors such as
rainfall, vegetation, and nightlights. Again, this is not a
new finding as a similar report on malaria prevalence on
climatic factors have been demonstrated in Cameroon,

Fig. 7 Map of malaria cases (graduated symbol) and statistically significant hotspot locations at the urban-rural clusters for the year 2015
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where the authors derived spatial distribution maps for
malaria transmission under different climatic and inter-
vention scenarios. Their predictive study showed that
temperature and rainfall were associated with malaria
transmission [34]. The association between malaria cases
and rainfall (p < 0.001 and r = 0.25) examined in 2015 for
example, highlights the necessity for malaria surveillance
and response systems during the rainy seasons in

Cameroon since standing water provides breeding grounds
for anopheles mosquitos responsible for transmission of the
parasites. In the northern part of the country, the rainy sea-
sons are from May to September (little rainfall) and from
March to August (major rainfall) in the southern part.
Moreover, the nightlights composite (p < 0.001 and r =
0.44) in 2015 which indicates the number of human activ-
ities at night shows that cities in Cameroon such as

Fig. 8 Map showing the Population density at the urban-rural scale for the different DHS administrative regions
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Douala and Yaoundé with the highest population densities
have more night time activities due to increasing
urbanization. The government should carry out more
malaria preventive measures and campaigns in the
urban-rural areas of these regions. Vegetation Indices
are spectral shift of two or more bands designed to
heighten the contribution of vegetation properties and
allow reliable spatial and temporal inter-comparisons
of terrestrial photosynthetic activity and leaf canopy
structural changes [35]. Vegetations near human set-
tlements increase the population of malaria vectors
and thus transmission of malaria. Kar [36] in their
study; a review of malaria transmission dynamics in
forest ecosystem illustrated that forests serve as beds
for malaria transmission as they provide favorable
conditions such as vegetation cover, temperature,
rainfall, and humidity for malaria transmission. In
Cameroon, most rural settlements and villages are lo-
cated within forest areas and prevention campaigns
should be extended to such areas with malaria clus-
ters and hotspots. Our study has the following limita-
tions; i) The malaria prevalence clusters and hotspots
at the various urban-rural areas, could be misinform-
ing as the GPS clusters data for these areas were dis-
placed for confidentiality, though the clusters were
maintained within the DHS administrative unit. ii)
our study did not use socio-demographic factors that
could find the association between malaria prevalence
and social determinants of health and some related
environmental data were missing, iii) The DHS pro-
ject samples collection are subjected to bias due to
disparities in the different urban-rural settings and various
forms of bias such as the interviewee response bias. iv) the
correlation analyses may be confounded by other factors
and spatial techniques such as the geographically
weighted regression may be considered to analyze the
association between environmental variables and mal-
aria distribution. We did not apply this technique
because of missing GPS urban-rural data points in
some of the malaria years.

The strength of this study includes; the application of
spatial statistics and the use of ArcGIS in malaria research
at a smaller geographic scale for public health interven-
tions, the design of this study demonstrated the importance
of using spatial data in DHS research. Also, our study, un-
like others will provide a new insight to the prevention of
malaria in Cameroon at the small-area scale and the tech-
niques used can be applied to other disease phenomena.

Conclusion
This research focused on malaria distribution at a smaller
scale (urban-rural) and we identified urban-rural areas
with high and low malaria cases and hotspots. Global
spatial demographic health datasets have been used to
estimate the population at risk of malaria, which forms
a fundamental system of measurement for decision-
makers at national and international levels [37–39].
Our maps are supporting tools for effective malaria
control at the urban-rural scale and can be used to
inform malaria prevention and control programs. Despite
the current advances to prevent malaria, more work is
required particularly in targeting the population at the
urban-rural geographic scale on spatial data collection
and surveys, wide coverage and distribution of ITNs,
campaigns, screening, and provision of treatment that
will progressively eliminate the disease.
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