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Abstract

metronidazole and vancomycin.

have nosocomial origins.

Background: Clostridium difficile infection (CDI) is a major cause of morbidity and mortality in North America and
Europe. The aim of this study was to identify epidemiologically-confirmed cases of community-acquired (CA)-CDI in
a large North American urban center and analyze isolates using multiple genetic and phenotypic methods.

Methods: Seventy-eight patients testing positive for C. difficile from outpatient clinics were further investigated by
telephone questionnaire. CA-CDI isolates were characterized by antibiotic susceptibility, pulsed-field gel electrophoresis
and whole genome sequencing. CA-CDI was defined as testing positive greater than 12 weeks following discharge or
no previous hospital admission in conjunction with positive toxin stool testing.

Results: 51.3% (40/78) of the patients in this study were found to have bona fide CA-CDI. The majority of patients were
female (71.8% vs. 28.2%) with 50-59 years of age being most common (21.8%). Common co-morbidities included
ulcerative colitis (1/40; 2.5%), Crohn's disease (3/40; 7.5%), celiac disease (2/40; 5.0%) and irritable bowel syndrome (8/40;
20.0%). However, of 40 patients with CA-CDI, 9 (29.0%) had been hospitalized between 3 and 6 months prior and 31 (77.
59%) between 6 and 12 months prior. The hypervirulent North American Pulostype (NAP) 1-like (9/40; 22.5%) strain was the
most commonly identified pulsotype. Whole genome sequencing of CA-CDI isolates confirmed that NAP 1-like
pulsotypes are commonplace in CA-CDI. From a therapeutic perspective, there was universal susceptibility to

Conclusions: All CA-CDI cases had some history of hospitalization if the definition were modified to health care facility
exposure in the last 12 months and is supported by the genomic analysis. This raises the possibility that even CA-CDI may

Background

Clostridium difficile infections (CDI) are the most common
cause of infectious diarrheal infection amongst hospitalized
patients in North America and Europe [1]. CDI has
recently surpassed methicillin-resistant Staphylococcus aur-
eus as a hospital acquired infection [2, 3]. The incidence,
mortality and associated health care costs associated with
CDI are significant, with 10-25% of all cases of
antibiotic-associated diarrheal onset attributed to CDI [4].
Clinically, nosocomial CDI has been well-studied with
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several risk factors for acquisition including hospitalization
at time of infection, prior hospitalization, older age (> 65),
antibiotic therapy (in particular fluoroquinolones, cephalo-
sporins and clindamycin [5, 6]), use of nasogastric tubes,
surgical procedures in the gastrointestinal tract, history of
inflammatory bowel disease (IBD) and other states of
immunosuppression [6, 7]. The pathogenicity of CDI is
primarily attributed to the production of two exotoxins,
toxin A and B that cause subsequent clinical manifestation
including colonic dysregulation and cellular death [8]. A
“binary” toxin has also been reported that may further con-
tribute to pathogenesis in certain strains [1]. Additionally,
CDI is spore-forming, allowing survival in the physical
environment for prolonged periods of time [9], which chal-
lenges infection control and prevention in the hospital
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setting. Several other factors including gut microbiota dis-
ruption by antibiotic use and host endogenous antibodies
to the toxins have also been implicated in CDI disease pro-
gression [6, 7, 10].

Recently, several studies have described the onset of
community-acquired CDI (CA-CDI) [6]. The definition
of CA-CDI requires the patient to not have been in a
hospital or health care facility within the previous
12 weeks or to develop CDI symptoms within 48 h of
hospital admission [11]. In contrast, nosocomial CDI re-
quires that symptoms occur greater than 48 h after hos-
pital admission or in less than 4 weeks after discharge
from a health care facility [11]. Finally, indeterminate
cases occur in the community between 4 and 12 weeks
after hospital discharge has occurred [11]. CA-CDI rates
are on the rise, with 20-45% [1, 9] of all CDI cases at-
tributed to community onset, and a further 22% of pa-
tients having no history of antimicrobial several months
prior to CDI onset [12].

CA-CDI rates amongst the pediatric population have
also increased over time [13]. The clinical significance of
C. difficile detection in infants and young children less
than two years old is unclear, as they have been estab-
lished as asymptomatic carriers [14]. Nevertheless, chil-
dren may still serve as a means of transmission to other
individuals in the household by exposure to spores
within the same physical environment [15]. Exposure to
C. difficile in the outpatient setting may serve as a means
of transmission [16]. Two-thirds of CA-CDI patients
had some form of occupational exposure within
health care fields that may have preceded their illness
[17]. There is also evidence that food-borne exposure
to C. difficile may be a means of transmission within
the community as spores have been demonstrated to
survive normal cooking temperatures [18]. Zoonotic
reservoirs exist in several animals including cattle and
pigs [15, 19-23].

The aim of this study was to better understand the im-
pact of CA-CDI by identifying risk factors linked to epide-
miologically confirmed CA-CDI cases in the metropolitan
center of Calgary (approximately 1.3 million people). C.
difficile isolates from CA-CDI cases were further charac-
terized by antibiotic susceptibility testing, pulsed field gel
electrophoresis and whole genome sequencing.

Materials and methods

Study population

Patients whose stool specimens were submitted from pa-
tient service centers to Calgary Laboratory Services and
positive for C. difficile toxin between March and October
2012 were included in the study. These patients were in-
cluded based on physician suspicion of C. difficile infec-
tion and test submission. The physician decision to test
was not scrutinized by the study team but taken at face
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value. A control group of nosocomial strains were col-
lected from inpatients admitted during the study period.
All stools were diarrheal. A nosocomial strain was defined
as a stool specimen positive for C. difficile from a patient
admitted to one of the four major hospitals in the city of
Calgary. Medical records including hospitalizations, rele-
vant laboratory tests and diagnosis was obtained through
a centralized provincial database. Ethical approval was ob-
tained through University of Calgary Conjoint Health Re-
search Ethics Board (ID 13-0406).

Telephone survey

For the purposes of this study, CA-CDI was defined as in-
fection occurring greater than 12 weeks following dis-
charge or no previous hospital admission. CA-CDI
patients (n =78) were, within 12 months of testing posi-
tive, assessed by telephone questionnaire for epidemio-
logical data related to the mode of acquisition. The
telephone study was designed to gauge risk factors trad-
itionally associated with CDI acquisition reported in the
literature. For patients who could not recall their last
hospitalization, an electronic medical record (EMR) was
interrogated to determine the date and site of visit if any.

Specimen collection, testing, culture, and deoxyribonucleic

acid (DNA) isolation

Patients’ stools were tested for CDI using a two-step test-
ing algorithm which includes GDH screening by ELISA
(Diasorin LIAISON® C. difficile GDH) followed by toxin
testing (Cepheid Xpert® C. difficile/Epi) from outpatient
physician offices. C. difficile isolates were selected on cy-
closerine cefoxitin fructose agar (CCFA) and species con-
firmed by matrix assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS) Genomic
DNA was extracted for whole genome sequencing using
an in-house modified protocol from the QIAamp DNA
Mini Extraction Kit (Qiagen, USA). Colonies were
re-suspended in 0.9% saline to a McFarland standard of
2.4-3.0 and subsequently centrifuged at 13,000 rpm (rpm)
on a tabletop centrifuge for one minute with supernatant
discarded. The remaining pellet was re-suspended in
180 pL of enzyme solution (20 mg/mL lysozyme, 20 mM
Tris-HCI, 2 mM EDTA and 1.2% Triton X). The solution
was then incubated for 30 min at 37 °C until clearing of
the solution was noted. Twenty pL of reconstituted Pro-
teinase K solution (Sigma-Aldrich, USA) was added with a
further incubation at 56 °C overnight. The remainder of
the protocol followed instructions as denoted in the man-
ufacturer’s protocol. The final pellet was re-suspended in
50 pl DNase/RNase free water.

Antibiotic susceptibility testing
In brief, cultured isolates grown on agar plates for 48 h
were suspended in 0.9% saline and standardized to a 1.0
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McFarland density. The inoculum was then evenly spread
over blood agar and incubated in anaerobic incubation
conditions for 24 h. Metronidazole and vancomycin E-test
strips (BioMerieux, USA) were stored at -20 °C until use.
Following inoculation of plates, E-test strips were then
placed and incubated for a further 48 h before measure-
ment. Epidemiological cut-off (ECOFF) guidelines were
used from EUCAST with the following breakpoint: vanco-
mycin >2 mg/L as non-susceptible and <2 mg/L as sus-
ceptible; metronidazole > 2 mg/L as non-susceptible and
<2 mg/L as susceptible [24]. E-test strips were used to
correlate with disk diffusion based on prior research dem-
onstrating adequate agreement [25].

Pulsed-field gel electrophoresis (PFGE)

PFGE was conducted on CA-CDI isolates as outlined in
previous methods [26, 27]. Briefly, DNA was prepared
by lysis of cells within agarose plugs. The resultant plugs
were then digested with Smal as described previously
[28]. A BioRad Chef Mapper was used to visualize the
resulting fragments [27]. PFGE profiles were then com-
pared using BioNumerics, version 5.1 (Applied Maths,
Belgium) with standardized C. difficile NAP serotypes
that were run as controls in parallel with samples. The
resulting dendograms were then categorized using an
unweighted-pair group method using average linkages
(UPGMA), Dice similarity coefficient (optimization
1.5%, tolerance 1%) [28, 29]. Clustering of PFGE re-
sults was performed using Advanced Cluster Analysis
algorithm from BioNumerics, version 5.1 (Applied
Maths, Belgium).

Whole genome sequencing

Next-generation sequencing libraries were prepared
using quarter-volume reactions of Nextera XT (Illumina)
and 1 nanogram of genomic DNA with 14 cycles of
amplification. Barcoded libraries were pooled and se-
quenced on an Illumina HiSeq 2x250bp (nosocomial iso-
lates; control group) and the Illumina MiSeq (CA-CDI
isolates; study group). Two different sequencers were
used due to logistical reasons. Only a subset of CA-CDI,
indeterminate, and nosocomial isolates (17 =71) were se-
quenced due to study budgetary constraints. Paired-end
reads were run through the nullarbor (https://github.-
com/tseemann/nullarbor) pipeline using the C. difficile
630 genome (NC_009089) as a reference. Phylogenetic
trees were constructed based on the core genome SNP
alignment using MrBayes (http://mrbayes.sourcefor-
ge.net/). The dendogram was viewed and exported using
FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Results
Patients (n=78) testing positive for CDI from outpatient
physician offices were contacted by telephone questionnaire
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to assess epidemiological risk and exposures in detail. Fur-
ther characterization based on clinical timelines reclassified
patients into CA-CD], defined as greater than 12 weeks fol-
lowing discharge or no previous hospital admission
(40/78; 51.2%; Table 1). Overall, the majority of pa-
tients were female (71.8% vs. 28.2%) and between 50
and 59 years of age (21.8%).

The most common co-morbidities in CA-CDI patients
included ulcerative colitis (1/40; 2.5%), Crohn’s Disease
(3/40; 7.5%), celiac disease (2/40; 5.0%) and irritable
bowel syndrome (8/40; 20.0%) (Table 2). Among the 40
patients with CA-CD], 31 (77.5%) had no recent hospi-
talizations within the last 6 months prior to infection.
Twenty-one patients (52.5%) had a household contact
admitted to the hospital the year prior to onset of CDL
Seventeen patients (42.5%) had a household contact that
had confirmed CDI in the year prior.

PFGE analysis was done on CA-CDI isolates collected
during the study. Figure 1 highlights the CA-CDI PFGE
pulsotypes. Amongst the CA-CDI isolates, both NAP1
(9/40; 22.5%) and NAP 4 (8/40; 20%) were the most
abundant, followed by NAP 2/11 (5/40; 12.5%), NAP 12
(4/40; 10%), and NAP 6 (4/40; 10.0%) (Table 3). Anti-
biotic susceptibility for metronidazole and vancomycin
was tested for CA-CDI isolates received from the com-
munity. There was universal susceptibility amongst all
isolates to metronidazole and vancomycin based on
accepted interpretive breakpoints (data not shown).

Whole genome sequencing (WGS) was performed on
a subset of epidemiologically confirmed CA-CDI isolates
(n=30). Figure 2 demonstrates the phylogenetic tree
derived from whole genome sequencing of CA-CDI

Table 1 Demographics of Patients Contacted for Community C.
difficile Study

Demographic Characteristics

CA-CDI Strains®

Total 40 (51.2)

Gender
Male 11(27.5)
Female 29 (72.5)

Age
<10 1(25)
10-19 1(25)
20-29 6 (15.0)
30-39 2(50)
40-49 1(25)
50-59 8 (20.0)
60-69 10 (25.0)
70-79 5(12.5)
>80 6 (15.0)

“Defined as > 12 weeks following discharge or no previous hospital admission.
CA-CDI; community-acquired C. difficile infection
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Table 2 Telephone Survey Results of Patients Contacted for Community C. difficile Study
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CA-CDI (%)°

Total

Prior diagnosis of CDI

Most recent hospitalization:
> 6 months
Within 6 months
Within 3 months

Previous week

Times hospitalized in last 6 months:

1

2-5

5-10
Prior history of Ulcerative Colitis
Prior history of Crohn's Disease
Prior history of Celiac disease
Prior history of IBS

Institutional care in prior year

Visit someone in nursing home or hospital prior year before CDI

Household contact in hospital in prior year before CDI infection

Occupation in health care field

Work with patients diagnosed with CDI in prior year
Household contact hospitalized in year prior to CDI infection

Household contact with CDI infection in year prior to CDI

Children in household
No
0-1 year
1-2 years
2-5 years
7-10 years
Household pets:
No
Dogs
Cats
Fish
Birds
Other

Occupational work related to pork products

Consume pork products
No
Yes, 1 time per week
Yes, 2-4 times per week
Yes, > 4 times per week

Vegetarian

40 (51.2)
15 (37.5)

31(775)
9 (225)
0 (0.0)

0 (0.0)

17 (42.5)
21 (52.5)
4 (44.4)
125
17 (42.5)
9 (22.5)

15 (37.5)
8 (20.0)
3(7.5)
10 (25.0)
20 (50.0)

16 (40.0)
9 (225)
4 (10.0)
2 (5.0)
5(125)
5(125)
5(125)

12 (30.0)
7 (17.5)
11 (27.5)
10 (25.0)
8 (20.0)

“Defined as > 12 weeks following discharge or no previous hospital admission. CA-CDI; community-acquired C. difficile infection
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isolates. Concordance between PFGE and WGS was ob-
served based on phylogenetic analysis in terms of clus-
tering with reference North American pulsotypes. A
NAP-1 like cluster (CD25, CD41, CD13, CD63, CD104,
CD103, CD48 and CD52) was noted from the WGS
phylogenetic tree (bottom of Fig. 2). This cluster isolates
represented patients with no hospitalizations in the six
months prior to positive stool toxin, suggesting the
possibility of a community-acquired NAP-1 like cluster.
There was no other significant epidemiological associ-
ation noted between these patients.

In order to determine whether unique clusters exist in
CA-CDI (n=30) as compared to indeterminate isolates
(n = 8) from this study or a set of nosocomial isolates (n

=33) collected from the hospitals during the study
period, a WGS phylogenetic analysis was performed.
Nosocomial isolates were obtained from a separate con-
trol group of patients admitted to hospital during the
study period. A phylogenetic tree comparing all three
epidemiological categories is presented in Fig. 3, demon-
strating that CA-CDI and nosocomial strains are geno-
mically indistinguishable.

Discussion

CA-CDI is associated with significant clinical complica-
tions. It is estimated that 40% of patients require
hospitalization, 20% suffer severe infection, 4.4% go on to
have severe complications, 20% end up with treatment
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Table 3 Community acquired (CA) C. difficile Isolates (n = 40)
categorized by related North American Pulsotype (NAP)

NAP Type CA-CDI (%)°
NAP1 9 (22.5)
NAP2/11 5(12.5)
NAP3 1(25)
NAP4 8 (20.0)
NAP5 0 (0.0)
NAP6 4 (10.0)
NAP7 0 (0.0)
NAP8 0 (0.0)
NAP9 0 (0.0)
NAP10 0 (0.0)
NAP12 410.0)
Non-NAP 9 (22.5)

“Defined as greater than 12 weeks following discharge

failure, and 28% have recurrent CDI [30]. An eco-
nomic analysis from Canada found nearly 38,000
cases of CDI in 2012 with a total cost to society of
$281 million, in part due to in-hospital investigations,
community management and productivity loss [31].
Furthermore, management of CDI relapses alone was
over $65 million. This has tremendous impact on the
health care system in terms of costs, patient outcomes
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and burden on already limited resources [15]. We under-
took to closely examine CA-CDI using a patient-based
telephone questionnaire, to better understand this epi-
demiological group. We also analyzed the isolates using
multiple laboratory methods to determine if unique traits
associated with CA-CDI such as antibiotic resistance or
genetic features exist.

Several studies have assessed epidemiology and risk
factors associated with CA-CDI. One recent study from
Japan [32] found the average age to be 58.8 with 50% >
65 years of age, similar to our findings. The gender dis-
tribution was also noted to be similar between studies
(26.9% male). Interestingly, this study found the majority
of patients were more likely to have received antimicro-
bials (oral fluoroquinolones most notably) and antacids.
A recent report from the US found 40% of patients with
CA-CDI were not previously exposed to antimicrobials
[33]. Our study did assess antimicrobial prescription
through the telephone survey but resulted in a large pro-
portion of patients unable to recall the timeframe of
antibiotic use. The most striking epidemiological finding
in the current study is that all CA-CDI cases had some
history of hospitalization if the definition were modi-
fied to hospital exposure in the last 12 months rather
than the last 12 weeks as currently accepted. This
raises the possibility that even CA-CDI has nosoco-
mial origins albeit remote.

NC_009089
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Fig. 2 Core genome SNP phylogeny of community-acquired isolates (“CD") sequenced in this study. Reads from 30 community-acquired C.
difficile isolates (CA-CDI) were run through the nullarbor pipeline using C. difficile 630 genome (NC_009089) as the reference and core SNP
genome phylogenies were constructed using MrBayes using the 630 reference genome as the outgroup. A NAP-1 like cluster (CD25.CD52) is

noted. The bootstrap support values for all branches are 100
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Metronidazole and vancomycin are considered first
line agents in the clinical treatment of nosocomial C. dif-
ficile infection. The susceptibility observed with both an-
tibiotics in our study suggests antibiotic resistance in
CA-CDI is not a predisposing factor. There have been
some reports [34] and in vitro data [35] suggestive of
antibiotic resistance in nosocomial CDI, but limited data
exists for CA-CDI. Furthermore, increasing resistance
has been reported in toxigenic C. difficile strains. A
study from Spain found resistance to metronidazole and
intermediate resistance to vancomycin amongst nosoco-
mial CDI, albeit with none resulting in treatment failure
[36]. Ultimately, as antibiotic exposure increases in the
CA-CDI population, it will be necessary to further moni-
tor resistance patterns and assess clinical utility of stand-
ard antibiotic treatment regimens.

Molecular characterization by PFGE analysis and
WGS demonstrated the predominance of the NAP1
ribotype in CA-CDI. The NAP1 hypervirulent strain has
been associated with increased toxin production within
animal models and increased antibiotic resistance, in

particular to fluoroquinolones [37]. Reports exist of in-
creased detrimental clinical outcomes including inten-
sive care admission, requirement for colectomy, or death
with this strain [38, 39]. Clinical reports of the hypervir-
ulent NAP1 strain have been primarily associated thus
far with nosocomial C. difficile infection. The presence
of NAP 1 in the community with no recent hospital
exposure implies that this strain can enter the nosoco-
mial setting upon admission. Our WGS analysis suggests
that CA-CDI isolates are indistinguishable from nosoco-
mial isolates and no unique cluster is especially adapted
to the community. CA-CDI essentially mirrors nosoco-
mial isolates at the genomic level in this study. Micro-
biome analysis has been well elucidated in nosocomial
infections, with significant dysbiosis shown in patients
following infection [40—42]. Dysbiosis may also be a pre-
disposing factor in the acquisition of CDI not only in
the hospital but also in the community.

Limitations of this study include the small sample size
and number of patients lost to follow-up when contacted
by telephone survey. As well, community clinics are
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within the vicinity of our hospitals and there is a possi-
bility that these patients had some kind of incidental
hospital contact in recent weeks (i.e. less than 12). A study
performed on CA-CDI in a rural community where no
hospitals are in the vicinity would rule this possibility out.
Further limitations include data only acquired from a single
centre (at least geographically); limited patient-level data
available; observational study design; lack of inclusion of
hospitalized patients with CA-CDI; lack of ability to distin-
guish CDI from C. difficile colonization; and recall or
memory with a timespan of months between the occur-
rence of CDI and the telephone interview. Longitudinal
studies may be of value where patients in the community
are tested and followed over time in a prospective fashion.
Nevertheless, there is a paucity of epidemiological and
strain typing data on CA-CDI and these results support a
community-nosocomial linkage even in cases traditionally
attributed to the community.
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