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Abstract

Background: Influenza causes an estimated 3000 to 50,000 deaths per year in the United States of America (US).
Timely and representative data can help local, state, and national public health officials monitor and respond to
outbreaks of seasonal influenza. Data from cloud-based electronic health records (EHR) and crowd-sourced
influenza surveillance systems have the potential to provide complementary, near real-time estimates of influenza
activity. The objectives of this paper are to compare two novel influenza-tracking systems with three traditional
healthcare-based influenza surveillance systems at four spatial resolutions: national, regional, state, and city, and to
determine the minimum number of participants in these systems required to produce influenza activity estimates
that resemble the historical trends recorded by traditional surveillance systems.

Methods: We compared influenza activity estimates from five influenza surveillance systems: 1) patient visits for
influenza-like illness (ILI) from the US Outpatient ILI Surveillance Network (ILINet), 2) virologic data from World
Health Organization (WHO) Collaborating and National Respiratory and Enteric Virus Surveillance System (NREVSS)
Laboratories, 3) Emergency Department (ED) syndromic surveillance from Boston, Massachusetts, 4) patient visits for
ILI from EHR, and 5) reports of ILI from the crowd-sourced system, Flu Near You (FNY), by calculating correlations
between these systems across four influenza seasons, 2012-16, at four different spatial resolutions in the US. For the
crowd-sourced system, we also used a bootstrapping statistical approach to estimate the minimum number of
reports necessary to produce a meaningful signal at a given spatial resolution.

Results: In general, as the spatial resolution increased, correlation values between all influenza surveillance systems
decreased. Influenza-like lliness rates in geographic areas with more than 250 crowd-sourced participants or with
more than 20,000 visit counts for EHR tracked government-lead estimates of influenza activity.

Conclusions: With a sufficient number of reports, data from novel influenza surveillance systems can complement
traditional healthcare-based systems at multiple spatial resolutions.
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Background

Every year influenza epidemics are responsible for sub-
stantial clinical and economic burdens in the United
States of America (US) [1]. Consequently, local, state, and
national health authorities require quantitative evidence
that is timely and representative to make informed deci-
sions regarding the selection and allocation of resources.
The Centers for Disease Control and Prevention (CDC), a
governmental agency, has been continuously collecting in-
formation on the number of outpatient visits for
influenza-like illness (ILI) from a diverse network of
healthcare providers as well as on the number of
influenza-positive lab specimens from public health and
clinical laboratories across the US for multiple decades
[2]. Although influenza surveillance occurs throughout
the calendar year, the influenza season is defined by the
Morbidity and Mortality Weekly Report (MMWR) week
40 through week 20, which corresponds with months Oc-
tober through May. Due to the time to collect, process,
and aggregate this information, CDC influenza surveil-
lance reports are traditionally published with a 1-2 week
delay. Alternative data sources that are available in
near-real time may aid in the design, initiation, or com-
munication of timely strategies and mitigate the impact of
influenza.

Over the past decade, Internet-based technologies
have been explored as new ways to monitor influenza
activity and provide more immediate estimates of disease
activity. These Internet-based technologies include
systems such as Yahoo [3], Google [4-6], Baidu [7],
Twitter posts [8—10], clinicians’ database queries [11],
cloud-based Electronic Health Records (EHR) [12], and
online participatory cohorts that allow individuals to re-
port symptoms [13—15]. The ability of these novel
Internet-based and crowd-sourced approaches to com-
plement, track, and forecast traditional provider-based
influenza surveillance systems has been established at
the national and regional levels in the US [12, 15-20].
However, because characteristics of activity may differ
across states and sub-populations [21], further investiga-
tion of these novel systems is essential at finer spatial
resolutions [22].

In this paper, we evaluate two novel influenza-
tracking systems, athenahealth, a cloud-based EHR-
based system, and Flu Near You (ENY), a crowd-
sourced system. Founded in 1997, athenahealth is a
provider of cloud-based services and mobile applica-
tions for medical groups and health systems. Similar
to traditional health-care based surveillance systems,
athenahealth collects data on individuals who seek
medical care. Because athenahealth’s network is
cloud-based, the proportion of patients with ILI
symptoms in their national network of providers can
be estimated in near real-time, potentially providing
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estimates of influenza activity faster than the national
surveillance systems (https://insight.athenahealth.com/
flu-dashboard-2016). Flu Near You is an online
crowd-sourced surveillance system that allows volun-
teers in the US and Canada to report weekly if they
have experienced ILI symptoms [15]. The majority
(65%) of FNY respondents who report ILI do not
seek medical attention, therefore, this system captures
illness activity among a population not routinely in-
cluded among the other healthcare-based systems
considered in this paper.

The objectives of this paper are to assess whether
these novel systems, EHR and crowd-sourced, correlate
with traditional influenza surveillance systems across
multiple spatial resolutions with different sample sizes
and to determine the minimum number of visits or re-
ports necessary in each of these novel systems to pro-
duce influenza activity estimates that resemble the
historical trends recorded by traditional surveillance sys-
tems for a given spatial resolution.

Methods

Data

Electronic health records (EHR) from athenahealth

Weekly state-aggregated counts of total visits, influ-
enza vaccine visits, influenza visits, ILI visits, and un-
specified viral or ILI visits were provided by the
athenahealth research team for the time period of
2012-16 (http://www.athenahealth.com). For the ana-
lysis presented in this paper, ILI was defined as Un-
specified Viral or ILI Visit Count, which included the
number of visits where the patient had an unspecified
viral diagnosis, an influenza diagnosis, or a fever diag-
nosis with an accompanying sore throat or cough
diagnosis. Influenza-Like Illness rates for a given loca-
tion were calculated by dividing the Unspecified Viral
or ILI Visit Count by the total number of visits.

Crowd-sourced from flu near you

Flu Near You was created in 2011 through collaboration
between HealthMap of Boston Children’s Hospital and
the Skoll Global Threats Fund (https://flunearyou.org/).
[15] This system maintains a website and mobile appli-
cation that allows volunteers in the United States and
Canada to report the health information of the user and
their family using a brief weekly survey. Flu Near You
ILI rates were calculated by dividing the number of par-
ticipants reporting ILI, defined by a symptom report of
fever plus cough and/or sore throat, in a given week, by
the total number of FNY participant reports in that
same week at each spatial resolution. Participants were
aggregated at each spatial resolution using the zip code
provided at registration for the time-period of 2012-16.


https://insight.athenahealth.com/flu-dashboard-2016
https://insight.athenahealth.com/flu-dashboard-2016
http://www.athenahealth.com
https://flunearyou.org
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CDC ILINet national/regional/state

Information on patient visits to health care providers
for ILI is collected through the US Outpatient
Influenza-like Illness Surveillance Network (ILINet,
https://www.cdc.gov/flu/weekly/overview.htm) [2]. For
this system, ILI was defined as fever (temperature of
37.8 °C [100 °F] or greater) and a cough and/or a sore
throat without a known cause other than influenza.
Weighted percent ILI, calculated by weighting the per-
centage of patient visits to healthcare providers for ILI
reported each week on the basis of state population,
was used as the influenza activity measure. For regional
analyses, we used the ten Health and Human Services
(HHS) defined regions. Each region consists of three to
eight US states or territories.

CDC virology

Virological influenza surveillance data is collected through
participating US World Health Organization (WHO) Col-
laborating Laboratories and National Respiratory and En-
teric Virus Surveillance System (NREVSS) laboratories
located throughout the US. The number of specimens test-
ing positive for influenza was used in these analyses [2].

Boston epidemiological data

The Boston Public Health Commission (BPHC) has
operated a syndromic surveillance system since 2004.
All nine acute care Boston hospitals electronically
send limited data for all emergency department (ED)
visits every 24 h. Data sent includes visit date, chief
complaint, zip code of residence, age, gender, and
race/ethnicity. Influenza-Like Illness visits were de-
fined as fever and a cough or sore throat using chief
complaints. Greater Boston was defined as zip codes
associated with Suffolk, Norfolk, Middlesex, Essex,
and Plymouth counties. These zip codes are associ-
ated with over 90% of Boston ED visits.
Influenza-Like Illness rates for Greater Boston were
calculated by using the number of ILI visits divided
by the total number of ED visits.

Statistical analysis

Correlation with traditional influenza surveillance systems
across multiple spatial resolutions with different sample sizes
We used Pearson correlations to compare EHR and
crowd-sourced ILI rates to ILI rates from ILINet along
with the number of specimens testing positive for influ-
enza from the virologic surveillance system. Correlations
were calculated at the national and HHS-defined re-
gional resolutions during the time period of October 1,
2012 through May 21, 2016, and for each of the four in-
dividual influenza seasons within this time period
(MMWR weeks 40 to 20) separately. We also present
comparisons of EHR to CDC ILINet for 46 states and
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comparisons of crowd-sourced ILI to CDC ILINet for 49
states that voluntarily provided historic data across all
seasons. Finally, crowd-sourced ILI rates were also com-
pared to ILI rates estimated from ED visits in the
Greater Boston area. Boston was chosen as a pilot city
because of the large ENY user base and availability of
data. Electronic Health Record data at this spatial reso-
lution was not available.

Spatial resolutions were classified into three author-
defined categories based on correlation values with CDC
ILINet across all seasons. Spatial resolutions with correla-
tions less than 0.5 were classified as “poor”, spatial resolu-
tions with correlations between 0.5 and 0.70 were classified
as “good”, and spatial resolutions with correlations greater
than or equal to 0.70 were classified as “excellent”. Data
were analyzed using R, version 3.3.2, [23] and descriptive
statistics are presented as median (Interquartile Range,

IQR).

Bootstrapping approach to estimate the minimum number
of crowd-sourced reports necessary to produce estimates
that resemble the historical government-lead surveillance
system trends

As above, weekly ILI rates from the crowd-sourced sys-
tem were compared to weighted ILI rates from CDC
ILINet and the number of specimens testing positive for
influenza at national and regional resolutions during the
2015-16 influenza season. State and city resolutions
were not included in this analysis because the
crowd-sourced user base was not large enough. At the
national level, Pearson correlations were calculated for
subsets of the crowd-sourced data from 0.1 to 15% of
the full dataset in increments of 0.1%, and at the re-
gional level, Pearson correlations were calculated from 1
to 100% of the full dataset in increments of 1%. This
process was repeated 1000 times using sampling with re-
placement (bootstrapping), stratified by week at each
spatial resolution. The 95% confidence intervals were
calculated by ordering the Pearson correlation coeffi-
cients and selecting the 2.5th and 97.5th percentiles.
This method was not performed for EHR because avail-
able data was aggregated at the state level.

Results

Correlation with traditional influenza surveillance systems
across multiple spatial resolutions with different sample
sizes

Electronic health records

Pearson correlations between CDC ILINet and EHR
and mean weekly visits at all spatial resolutions are
shown in Additional file 1: Table S1. Across all sea-
sons, the national mean weekly visits was 863,361,
and the national correlation was 0.97. At the regional
level, the median of the mean weekly visits was


https://www.cdc.gov/flu/weekly/overview.htm
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69,077 (IQR: 26,584, 126,455). Region 7 (lowa, Kan-
sas, Missouri, and Nebraska) had the smallest mean
weekly visits (10,177) and Region 4 (Alabama, Florida,
Georgia, Kentucky, Mississippi, North Carolina, South
Carolina, and Tennessee) had the largest mean weekly
visits (195,142). The median regional correlation was
0.93 (IQR: 0.91, 0.95), and all regions were classified
as “excellent”. At the state level, the median of the
mean weekly visits was 11,840 (IQR: 4204, 30,740),
and the median correlation was 0.86 (IQR: 0.80, 0.92).
Using the cutoff values defined in the methods sec-
tions, 41 of the states with data available were classi-
fied as “excellent” and five were classified as “good”.

Crowd-sourced reports
Pearson correlations of crowd-sourced ILI rates versus
CDC ILINet and BPHC as well as mean weekly
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correlation was 0.81. At the regional level, the median
of the mean weekly reports was 889 (IQR: 707, 1157).
Region 7 had the smallest mean number of weekly re-
ports (415), and Region 4 had the largest mean num-
ber of weekly reports (1798). The median correlation
was 0.74 (IQR: 0.73, 0.76). Across all seasons, 9 re-
gions were classified as “excellent” and one region
was classified as “good”. The median of the mean
weekly reports at the state level was 128 (IQR: 57,
263), and the median correlation with CDC ILINet
was 0.55 (IQR: 0.43, 0.63). Two states, Massachusetts
and California, were classified as “excellent”, 26 states
were classified as “good”, and 21 states were classified
as “poor”.

Fig. 1a and b display correlations across all seasons
plotted as a function of the mean weekly visits (EHR) or
mean weekly reports (FNY). As shown in this figure, in

reports at all spatial resolutions are shown in general, correlation values increased as the mean
Additional file 1: Table S2. The national mean weekly  weekly visits or reports increased for both EHR and
reports across all seasons was 9699, and the crowd-sourced at all the regional and state resolutions
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across all seasons. For EHR, spatial resolutions with
at least 2.5% (approximately 20,000/863,361) of total
weekly visits are more likely to be classified as “excel-
lent” compared to “good” or “poor” (Fig. 1c). Spatial
resolutions with at least 2.5% (approximately 250/
9699) of total weekly crowd-sourced reports are more
likely to be classified as “good” compared to “poor”,
and spatial resolutions with at least 5% (approxi-
mately 500/9699) of weekly crowd-sourced reports are
more likely to be classified as “excellent” compared to
“good” or “poor” (Fig. 1d).

Figure 2 provides the time series of CDC ILINet,
BPHC, EHR, and crowd-sourced (FNY) ILI rates and
CDC number viral specimens across all seasons at four
spatial resolutions: National, Region 1 (Connecticut,
Maine, Massachusetts, New Hampshire, Rhode Island,
and Vermont), Massachusetts, and Greater Boston. Al-
though the amount of noise increases as the spatial reso-
lution increases and the mean weekly visits or reports
decrease, a meaningful signal is retained for both EHR
and crowd-sourced ILI rates.
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Bootstrapping approach to estimate the minimum number
of crowd-sourced reports necessary to produce estimates
that resemble the historical government-lead surveillance
system trends

During the 2015-16 influenza season, a total of
401,993 crowd-sourced reports were collected in the
US, corresponding to a weekly average of 12,182 re-
ports. The Pearson correlation coefficients during the
2015-16 influenza seasons for the full crowd-sourced
dataset and CDC ILINet and the number of
viral-positive specimens were 0.84 and 0.92, respect-
ively. Figure 3a shows the mean Pearson correlation
coefficient and 95% CI of 1000 bootstrap runs be-
tween the crowd-sourced system and both CDC ILI-
Net and the number of viral-positive specimens for
increasing weekly reports. As shown in this figure,
the correlation coefficient increases as the number of
weekly reports increases, but the rate of growth slows
around 250 weekly reports. Although the crowd-
sourced data appear to correlate more strongly with
virological data during this influenza season, this
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pattern is not consistent across all seasons and re-
gions (Additional file 1: Table S3). The correlations
for 1800 weekly crowd-sourced reports (approximately
10%) were 0.80 and 0.86 for CDC ILINet and CDC
number of viral-positive specimens, respectively. At
an arbitrary cut-off value of 250 weekly reports, the
correlation between the crowd-sourced system and
CDC ILINet was approximately 0.60, and the correl-
ation between the crowd-sourced system and the
number of viral-positive specimens was 0.65. When
the number of reports is less than this value, correl-
ation coefficients drop-off sharply. A similar pattern
is shown at the regional level (Fig. 3b). Although
some regions reach saturation at higher correlations
than other regions, there is non-linear growth in the
correlation coefficient until estimates include approxi-
mately 250 weekly reports.

Discussion

Traditional surveillance systems currently used by gov-
ernmental agencies are robust, well accepted, and pro-
vide the best basis for tracking influenza activity.
However, because estimates only include individuals
who visit a medical care facility and there is typically a
delay from onset of patient symptoms to final publica-
tion of reports, alternative data sources have the poten-
tial to minimize these delays in reporting and
complement these traditional systems. Although there is
still a time delay from onset of patient symptoms to
presentation at a health-care provider, the EHR
cloud-based system allows symptom reports to be aggre-
gated in near-real time. On the other hand, the
crowd-sourced system does not include the same time
delay as health-care based systems and captures individ-
uals who do not seek medical care. However, while

participants have the option to report symptoms the
same day as onset, most participants do not report until
they receive the weekly reminder and data is typically
aggregated once a week.

For both EHR and crowd-sourced ILI, as the number
of total reports increases, the correlations with trad-
itional ILI estimates from governmental agencies also in-
crease. However, EHR data showed higher correlations
with CDC ILINet and the number of viral-positive speci-
mens compared to crowd-sourced data at similar spatial
resolutions. EHR correlations with CDC ILINet are close
to one, which shows that healthcare-based influenza sur-
veillance with different data capture strategies lead to
similar ILI incidence curves. Although both EHR and
the CDC use data from patients seeking medical atten-
tion, the proportion of visit settings differs slightly be-
tween the two systems, with emergency department
visits being under-represented in the EHR. On the other
hand, crowd-sourced correlations with CDC ILINet
never reach a correlation of one. Instead, crowd-sourced
correlations converge to approximately 0.8-0.9, as
shown using both empirical and theoretical approaches.
A similar observation was observed when comparing
methods of provider recruitment in Texas [24]. This dif-
ference in correlation saturation may be a result of dif-
ferences in the activity being measured (e.g. ILI reports
out of all persons enrolled vs. visits with ILI out of the
total number of patient visits) and the population under
surveillance, as the crowd-sourced population includes
individuals who may not seek medical attention. Based
on preliminary analyses, we estimate that approximately
65% of the FNY population who reported ILI symptoms
did not seek medical attention. The Italian crowd-
sourced counterpart, INFLUWEB, has also reported that
approximately two thirds of their participants did not
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seek medical assistance [25]. Furthermore, studies in the
US have shown that approximately 40% of individuals
with ILI seek healthcare [26]. The crowd-sourced
population also differs by demographics. Females and
middle-aged individuals are over-represented in the
crowd-sourced population [27]. In addition, crowd-
sourced estimates can be affected by media attention
and by user participation. For example, the large peak
observed in January 2013 occurred after FNY was
featured in NBC’s Nightly News with Brian Williams.
Investigators have applied a few methods to adjust for
these reporting biases, including dropping first reports
and a spike-detector method [15]. We did not adjust for
these biases in this paper.

In general, both crowd-sourced and EHR ILI rates
showed higher correlations with CDC ILINet compared
to the number of viral-positive specimens at the national
and regional resolutions (Additional file 1: Table S3).
One interesting pattern to note is that when using the
bootstrap resampling approach, crowd-sourced correla-
tions with CDC laboratory confirmed influenza speci-
mens reaches the saturation faster than correlations with
CDC ILINet. This pattern is also evident at the regional
resolution.

Based on the results from this study, we estimate that
ILI rates from EHR and crowd-sourced data track trad-
itional ILI estimates from governmental agencies at
spatial resolutions that have at least 20,000 weekly EHR
visits and 250 weekly crowd-sourced reports. Some
spatial resolutions are not well represented in the in-
cluded novel systems. During the 2015-16 influenza sea-
son, for example, 47 states were represented in this EHR
network and 26 of these states reached the 20,000
threshold. Although all 50 states are represented in the
crowd-sourced system, 32 states did not reach the 250
weekly report threshold during the 2015-16 influenza
season. In addition, the geographic distribution of
crowd-sourced reports shows large gaps of information
especially in the middle and southern areas of the US,
and participants tend to cluster around large urban
areas, with especially large user bases in the greater
metropolitan areas surrounding Boston, New York City,
and San Francisco. Flu Near You has made recent efforts
to recruit new users through online media campaigns
through Facebook, and other previously successful re-
cruitment strategies, such as encouraging current users
to recruit friends and colleagues to join, [28] can be
easily employed.

Ideally, we would want to compare ILI rates from
crowd-sourced reports to laboratory confirmed influenza
cases in the general population. Currently, the CDC pro-
vides yearly estimates of seasonal influenza burden in
the general population using laboratory-confirmed
influenza-associated hospitalization rates from their
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Influenza Hospital Surveillance Network (FluSurv-NET).
However, they do not provide weekly estimates to the
public of laboratory-confirmed influenza burden. Al-
though the mechanisms of capture differ between the
syndromic systems, the general seasonal trends are simi-
lar and provide valuable information about changes in
influenza activity.

Conclusions

Our findings suggest that both EHR and crowd-sourced
ILI estimates correlate with ILI estimates from trad-
itional influenza surveillance systems in various spatial
resolutions with a sufficient number of visits or reports.
Spatial resolutions with at least 250 mean weekly
crowd-sourced reports display correlations higher than
0.5 with traditional influenza surveillance systems. Fur-
thermore, spatial resolutions with approximately 20,000
weekly EHR visit counts consistently show correlations
greater than 0.7 with traditional influenza surveillance
systems. As the FNY user base and availability of EHR
data are increased throughout the US, these internet-
based surveillance tools may become a complementary
way to timely monitor influenza activity, especially in
populations who do not access health care systems, areas
with limited surveillance data, and community based
populations.

Additional file

Additional file 1 Table S1. Pearson correlations between EHR and CDC
ILINet and average weekly EHR visits at the national, regional, and state
resolutions. Table S2. Pearson correlations between Crowd-sourced and
CDC ILINet/BPHC and average weekly crowd-sourced reports at the national,
regional, state, and state resolutions. Table S3. Pearson correlations between
CDC number positive viral reports and EHR, crowd-sourced (FNY), and CDC
ILINet. (DOCX 81 kb)
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