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Abstract

Background: Avian influenza H5N1 has a high human case fatality rate, but is not yet well-adapted to human
hosts. Amino acid substitutions currently circulating in avian populations may enhance viral fitness in, and thus viral
adaptation to, human hosts. Substitutions which could increase the risk of a human pandemic (through changes to
host specificity, virulence, replication ability, transmissibility, or drug susceptibility) are termed key substitutions (KS).
Egypt represents the epicenter of human H5N1 infections, with more confirmed cases than any other country. To

date, however, there have not been any spatial analyses of KS in Egypt.

Methods: Using 925 viral samples of H5N1 from Egypt, we aligned protein sequences and scanned for KS.
We geocoded isolates using dasymetric mapping, then carried out geospatial hot spot analyses to identify
spatial clusters of high KS detection rates. KS prevalence and spatial clusters were evaluated for all detected
KS, as well as when stratified by phenotypic consequence.

Results: A total of 39 distinct KS were detected in the wild, including 17 not previously reported in Egypt. KS
were detected in 874 samples (94.5%). Detection rates varied by viral protein with most KS observed in the
surface hemagglutinin (HA) and neuraminidase (NA) proteins, as well as the interior non-structural 1 (NST)
protein. The most frequently detected KS were associated with increased viral binding to mammalian cells
and virulence. Samples with high overall detection rates of KS exhibited statistically significant spatial clustering in two
governorates in the northwestern Nile delta, Alexandria and Beheira.

Conclusions: KS provide a possible mechanism by which avian influenza H5N1 could evolve into a pandemic
candidate. With numerous KS circulating in Egypt, and non-random spatial clustering of KS detection rates, these
findings suggest the need for increased surveillance in these areas.
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Background

Highly pathogenic avian influenza H5N1 has a case fatality
rate approximately ten times higher than the HIN1 “Span-
ish Flu” pandemic of 1918, but has much lower infectivity
[1, 2]. Given the high pathogenicity of the virus, an H5N1
virus capable of airborne human-to-human transmission
could lead to a devastating pandemic [3-5]. Indeed, this
scenario has been predicted for many years [1, 2, 6, 7]. A
number of important genetic differences between avian
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and human strains of influenza exist, which have so far
prevented H5N1 from being transmitted directly from
human to human [8-11]. However, years of viral evolution
in domestic poultry populations involving close contact
with humans and other mammals has the potential to lead
to an accumulation of mutations improving mammalian
adaptation [1, 12].

Egypt has reported more confirmed human cases of
avian H5N1 than any other country, and is regarded by
many observers as the epicenter of human H5N1 infec-
tions [1, 13—17]. Human infections have been increasing in
Egypt, and nearly all cases have been linked to direct con-
tact with poultry [18]. The potential for direct
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human-poultry contact is high in Egypt. In addition to the
commercial poultry industry, which supplies most of the
meat consumed in the country, some 4-5 million Egyptian
families raise poultry at home in backyard flocks [19, 20].
A 3-year seroprevalence study found approximately 2% of
Egyptians exposed to poultry had been infected with H5N1
[21]. Contact between human and avian hosts is a precon-
dition for virus transfer, so an environment conducive to
frequent contact, such as exists in Egypt, increases the
probability of a human-adapted strain emerging [22, 23].

Genetic changes in viral proteins can have phenotypic
consequences that increase pandemic risk [24]. A number
of specific amino acid substitutions have been implicated in
host specificity, particularly changes in the hemagglutinin
(HA) protein that allow the virus to bind with and infect
mammalian cells [2, 25-28]. In addition, there are genetic
mutations known to alter the pathogenicity of the virus, in-
crease the replicative ability of the polymerase complexes,
and grant aerosol transmissibility without reassortment
[28—31]. Viral genetic changes have been identified that
alter susceptibility to current anti-viral drugs such as zana-
mivir and oseltamivir [24, 32]. All of the above are exam-
ples of phenotypic changes resulting from amino acid
substitutions, often SNPs. Some potentially dangerous mu-
tations may simultaneously compromise viral fitness, re-
quiring the presence of other counteracting or “permissive”
mutations to restore viral fitness in order to present a threat
[33]. We refer to these genetic changes (or sets of concur-
rent changes) that alter host specificity, virulence, replica-
tion efficiency, transmissibility, or drug susceptibility in
ways that increase human risk as key substitutions (KS).

Several KS have already been detected in Egypt, from
samples at least as early as 2010 [18, 34, 35].
Gain-of-function studies have suggested that as few as four
or five KS may be sufficient to provide H5N1 with airborne
transmission, and at least two of these have been previously
identified in Egyptian isolates [5, 31, 36]. Using viral genetic
sequences for H5N1 uploaded to GenBank (https://
www.ncbinlm.nih.gov/genbank/), we performed a descrip-
tive spatial analysis to examine the distribution of KS in
Egypt [37]. A spatial analysis of KS in H5N1 influenza sam-
ples has not been performed previously, despite the import-
ance of such information to a properly designed
surveillance system and subsequent intervention efforts
[13, 38]. Importantly, viruses can undergo local adaptation
in response to environmental selective pressures and pro-
duce clusters of KS [39]. Areas where known KS occur with
high frequency and exhibit non-random spatial clustering
may indicate environments particularly conducive to the
natural emergence of de novo KS.

Methods
We obtained Egyptian H5N1 sequences collected be-
tween 2005 and 2015 from the Influenza Virus Sequence
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Database, hosted by the National Center for Biotechnology
Information (NCBI) [40]. We extracted metadata for Egyp-
tian samples, including geographic location information,
from the full GenBank records, obtained using the Entrez
Direct utilities via UNIX terminal [37, 41]. Inclusion criteria
included all partial and complete protein sequences from
avian hosts (both poultry and wild birds) with a geographic
location more detailed than “Egypt.” A large number of
H5N1 KS have been identified by the WHO Collaborating
Center for Influenza Reference and Research at the CDC
and are catalogued in a Genetic Changes Inventory, pub-
licly available online (www.cdc.gov/flu/avianflu/h5n1/inven-
tory.htm). We used this inventory in the current study as
the definitive list of known KS. KS have been identified in
all 10 viral proteins, including the surface proteins HA and
neuraminidase (NA) responsible primarily for virus bind-
ing, cell fusion, and viral release, and the internal proteins
(M1, M2, NP, NS1, NS2, PB1, PB1-F2, and PB2) involved in
viral structure, replication, suppressing host antiviral re-
sponse, and more [2]. We performed an initial screening
for over 100 KS, ultimately testing for the presence of 39
separate substitutions.

Most of the selected KS (n = 29) are SNPs, such as the
substitution from glutamic acid to lysine at position 627
(E627K) in the PB2 gene, shown to enhance mammalian
host adaptation; two KS are amino acid deletions; and
the remaining eight KS are sets of mutations (i.e., KS
formed from the interaction of multiple independent
substitutions), such as the dual substitutions of N200S
in the NS1 gene and T47A in the NS2 gene, which to-
gether decrease host antiviral response but do not con-
stitute KS individually. Table 1, adapted from the CDC’s
Genetic Changes Inventory, lists all detected KS in
Egypt, including the number of isolates in which each
KS was detected, whether or not the KS had been previ-
ously reported in Egypt, and the phenotypic conse-
quences identified in previous literature. All 39 KS are
associated with increased human risk, with two partial
exceptions: 1) a triple substitution of S155 N, T156A,
and S223 N in the HA gene associated with both in-
creased mammalian adaptation and reduced lethality in
mice; and 2) the N66S substitution in the PB1-F2 gene
associated with increased virulence and increased host
antivirus response [42-45]. We selected five phenotypic
consequences groups (PCGs) using the CDC’s Inventory
to group KS by the resultant changes in viral characteris-
tics (i.e. phenotypic consequences): PCG1 — host specifi-
city, PCG2 - virulence, PCG3 — replication efficiency,
PCG4 - transmissibility, and PCG5 - antiviral suscep-
tibility. These phenotypic consequences were identified
by the CDC as “signal[ing] adaptation to mammalian
species or alter[ing] susceptibility to existing antivirals”
thereby rendering the virus more dangerous to
humans [46].


https://www.ncbi.nlm.nih.gov/genbank
https://www.ncbi.nlm.nih.gov/genbank
http://www.cdc.gov/flu/avianflu/h5n1/inventory.htm
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Table 1 Detected KS in Egypt with phenotypic consequences and references, adapted from CDC's Inventory

Protein Amino Acid Change(s) Detections in Egypt Previously Reported in Egypt Phenotypic Consequences
HA D94N 738 Yes Increased viral binding to alpha,2—6; enhanced virus
fusion [59]
S133A 40 Yes Increased pseudovirus binding to alpha,2-6 [77]
A134V 1 Yes Increased infectivity in SIAT Cells [78, 79]
G139R 7 No Increased virus binding to alpha,2-6 [80]
S155N 470 Yes Increased virus binding to alpha,2-6 [81]
T156A 656 Yes Increased virus binding to alpha,2-6 and increased
transmission in guinea pigs [81, 82]
N182K 3 Yes Increased virus binding to alpha,2-6 [78, 80, 83]
E186G 1 No Increased virus binding to alpha,2—6 [25]
T188l 17 Yes Increased pseudovirus binding to alpha,2-6 [77]
K189R 722 Yes Increased virus binding to alpha,2-6 [81]
Q192R/H 1 Yes Increased virus binding to alpha,2—6 [25, 80, 84]
N193K 1 No Increased virus binding to alpha,2-6 [80]
V210l 12 Yes Increased virus binding to alpha,2-6 [84]
S223N 6 Yes Increased virus binding to alpha,2-6 [25, 78, 83, 85, 86]
P235S 733 Yes Increased virus binding to alpha,2-6 [84]
E75K, S123P 1 No Increased virus binding to alpha,2-6 [80]
L129- 51T 453 Yes Increased virus binding to alpha,2-6 [84, 87]
S133A, T188l 1 No Increased pseudovirus binding to alpha,2-6 [77]
S155N, T156A 359 Yes Increased virus binding to alpha,2-6 [81]
S155N, T156A, S223N 3 No Increased virus binding to alpha,2-6; reduced lethality and
systemic spread in mice [42]
T156A, S223N 6 No Increased virus binding to alpha,2-6 [81]
M1 N30D 99 Yes Increased virulence in mice [88]
T215A 100 No Increased virulence in mice [88]
M2 V27A 1 No Reduced susceptibility to amantadine and rimantadine
[89-92]
S31IN/G 53 Yes Reduced susceptibility to amantadine and rimantadine
(89, 90, 93-97]
NA 49-68 deletion 366 Yes Enhanced virulence in mice [98, 99]
197V 1 No Reduced susceptibility to oseltamivir [100-102]
1203M/V/L/K/R 1 No Reduced susceptibility to oseltamivir [103-107]
H254Y/R 379 No Reduced susceptibility to oseltamivir and peramivir
[103, 108-112]
N275S 4 Yes Reduced susceptibility to oseltamivir
[106, 108, 109, 113-115]
NS1 P42s 118 Yes Increased virulence in mice [116]
80-84 deletion 128 Yes Increased virulence in mice [117, 118]
L98F 11 No Increased virulence in mice [119, 120]
o 118 No Increased virulence in mice [119, 120]
NST & NS2  N200S (NST), T47A 38 No Decreased antiviral response in host [121]
(NS2)
PB1-F2 N66S 1 Yes Increased virulence, replication efficiency, and antivirus
response in mice [43-45]
PB2 E627K 94 Yes Increased replication efficiency in cell culture and enhanced

virulence in mice; enhanced polymerase activity and
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Table 1 Detected KS in Egypt with phenotypic consequences and references, adapted from CDC's Inventory (Continued)

Protein Amino Acid Change(s)

Detections in Egypt Previously Reported in Egypt Phenotypic Consequences

D701N 1 No
L89V, G309D, 1 No
T339L, R477G,

1495V, L627E,

A676T

mammalian host adaptation; transmissible among ferrets
[29, 31, 122-131]

Enhanced replication efficiency, increased virulence and
transmission in guinea pigs; mammalian host adaptation;
increased virulence in mice [27, 82, 127, 132]

Enhanced polymerase activity and increased virulence in
mice [60]

We aligned the sequences with the A/Vietnam/1203/
2004 virus, except for the NA and NS1 proteins, which we
aligned with A/goose/Guangdong/1/1996, for consistent
amino acid numbering with the CDC’s Inventory, and then
tested for the presence of each selected KS. H5N1 samples
in GenBank varied in the number of proteins for which full
sequence data were available. This variation occurs when
researchers choose not to sequence certain proteins or fail
to upload sequences to GenBank due to quality concerns,
such as unconfirmed frame shifts. As not all proteins were
present in GenBank for each virus sample, the specific
number of KS tested for varied between samples. Detection

rates by viral sample were calculated as the number of KS
detected divided by the number of KS tested for, which var-
ied according to the number of proteins sequenced for each
isolate. Results were summarized by viral protein, sample
year, and by PCG.

Geospatial hot spot analyses have been used to help tar-
get areas with a disproportionate burden of disease [47, 48].
We employed the Getis-Ord Gi* statistic to identify statisti-
cally significant hot spots, or spatial clusters of elevated
rates of KS detection [49]. The Getis-Ord Gi* has been
shown to be effective even with low incidence rates [49,
50]. For a hot spot to be detected, a location with a high
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Fig. 1 Locations for which spatial clusters of high KS detection rates were evaluated. Governorate centroids and boundaries shown, with
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value (e.g., many KS detected) must have neighbors with
high values. Neighbors are determined in one of two ways.
First, because the scale at which clustering occurs is not
known a priori, we used Incremental Spatial Autocorrel-
ation to identify a statistically significant peak distance at
which clustering across the whole study area was most pro-
nounced [51-53]. This distance was then used to select
neighbors during hot spot analyses. If no peak was detected,
an average distance was calculated to yield thirty neighbors.
The local sum for a feature and its neighbors is compared
proportionally to the sum of all features, then a z-score is
calculated to determine when this difference is too large to
be the result of random chance. Statistical significance is
adjusted to account for multiple testing and spatial depend-
ence using Benjamini’s and Hochberg’s false detection rate
(FDR) correction, which reduces the critical p-value thresh-
olds as a function of the number of input features and the
neighborhood structure used [54, 55].

The majority of H5N1 samples from Egypt did not in-
clude geographic information below the governorate level
to allow hot spot detection, consequently dasymetric ad-
justment was employed to approximate sample locations
within governorates [56]. We randomly distributed point
locations only within populated places, as identified using
the 2010 population density estimates from worldpop.org
with a minimum density value of 10 persons per square
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kilometer [57]. This removed large uninhabited portions of
many governorates from the analysis. Acknowledging the
bias introduced by estimating point locations, the random
distribution of points was repeated 10,000 times, with hot
spot analysis performed after each iteration. Only statisti-
cally significant hot spots (p < 0.05) were kept. We summa-
rized results for each governorate by counting the total
number of iterations in which at least one hot spot was de-
tected. We considered governorates with 9500 or more de-
tections to be probable hot spots. For comparison, we also
performed a single hot spot analysis using each governor-
ate’s geometric centroid, consistent with prior phylogeo-
graphic studies of influenza in Egypt [16, 58]. Figure 1
shows the sets of locations for which spatial clusters of high
KS detection rates were evaluated.

Results

From 2006 to 2015, 925 H5N1 samples with at least one se-
quenced gene segment and a geographic location more de-
tailed than “Egypt” were listed in GenBank. Of these, 874
samples contained at least one KS (94.5%), with an average
of 3 PCGs represented. The majority of KS-positive sam-
ples (584/925) were located in Lower Egypt, particularly in
the governorates of Alexandria (n=50), Beheira (1 =96),
Monufia (z = 90), Qalyubia (n = 109), Dakahlia (# = 82), and
Shargia (n = 88) (see Fig. 2).

New Valley
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3 Kafr El Sheikh
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5 Damietta

6 Port Said 11 Ismailia
7 Gharbia 12 Cairo

8 Qalyubia 13 Faiyum
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Fig. 2 Counts of viral samples that met inclusion criteria by governorate
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Table 2 Summary of KS detections by viral protein

Protein # of KS # of Samples with KS Detected/Total Samples (%)
HA 21 789/825 (95.6)

M1 2 100/112 (89.3)

M2 2 54/103 (52.4)

NA 5 381/381 (100)

NS1 4 130/130 (100)

NS2 1 38/108 (35.2)

PB1-F2 1 1/88 (1.1)

PB2 3 94/116 (81)

Total® 39 874/925 (94.5)

“Many samples included multiple protein sequences, so the total number of
samples is smaller than the sum of the individual protein sequences
would suggest

The most commonly sequenced protein was HA
(n =825), followed by NA (n=381); other viral pro-
teins were much less frequent in the GenBank data.
Detection rates varied by protein with the NA and
NS1 proteins having one or more KS present in
100% of samples tested, while the PB1-F2 protein
had only a single detected KS out of 88 samples
tested. The average number of KS tested for was 22.6 per
sample, with an average of 6.4 KS detected, giving an over-
all mean detection rate of 0.28. A total of 39 KS were de-
tected at least once in H5N1 samples from Egypt. Table 2
summarizes the detected KS by protein and includes the
proportion of samples in which KS were present.

Although H5N1 was first reported in Egypt in 2006, 2
positive viral samples were collected in December 2005.
The number of isolates uploaded to GenBank with gov-
ernorate location information rose above 100 each year
in 2007-2010, but dropped after 2011. Similarly, the
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average number of proteins sequenced per virus ranged
from a high of 2.7 in 2008 to a low of 1.3 in 2014. Be-
tween 2005 and 2015, mean detection rates by year
(total KS detected per year divided by total KS tested for
in that year) ranged from a high of 0.38 in 2007 to a low
of 0.18 in 2014. Figure 3 summarizes the temporal distri-
bution of detected KS by year, with the 95% margin of
error for KS detection rates shown.

The single most commonly detected KS was the change
in the HA protein at amino acid site 94 from aspartic acid
to asparagine, associated with increased virus binding to
human sialic acid receptors [59]. KS were grouped accord-
ing to phenotypic consequences as identified in the CDC’s
Inventory. Among the detected KS were several not previ-
ously reported in Egypt (1 =17), representing all 5 PCGs
and including 5 of the 8 detected KS associated with anti-
viral susceptibility. One KS not previously reported in
Egypt was a set of 7 amino acid substitutions in the PB2
gene, associated with both PCG 2 and PCG 3 [60]. For a
full list of detected KS with phenotypic consequences, see
Table 1. The number of viral samples with one or more
detected KS in each group as well as mean detection rates
by PCG are summarized in Table 3.

Results of hot spot analyses

Two governorates contained probable hot spots of overall
KS detection rates using both governorate centroids
(single run) and dasymetrically-adjusted governorate
boundaries (>9500 iterations): Alexandria and Beheira.
These two governorates are immediate neighbors in the
northwestern portion of the Nile River Delta (see Fig. 4).
No other governorates were identified as hot spots using
centroids, and no other governorates exceeded the thresh-
old of 9500 iterations using dasymetric adjustment.
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Fig. 3 Temporal distribution of viral samples and KS detection rates by year
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Table 3 Summary of detected KS by phenotypic consequences groups (PCG)

Phenotypic Consequences Group (PCG) KS in PCG Samples w/ KS Detected Mean Detection Rate
PCGT1: Host Specificity 23 800/836 0.26
PCG2: Virulence 13 851/918 0.58
PCG3: Replication 5 98/846 0.08
PCG4: Transmissibility 3 704/836 0.71
PCG5: Antiviral Susceptibility 8 400/446 0.25

Geospatial hot spots were also evaluated for individual
PCGs, using a p-value cutoff of 0.05 to evaluate statis-
tical significance. We detected probable hot spots based
upon dasymetric adjustment for PCG1 in Alexandria
and Beheira and for PCG2 only in Beheira, however the
remaining PCGs falling below the 9500 iterations thresh-
old. Results were not consistent between centroid and
dasymetrically-adjusted analyses. Using a single iteration
with all samples placed at governorate centroids, hot
spots were found for PCG1 in Beni Suef, Dakahlia, and
Faiyum; for PCG2 in Alexandria and Beheira; and for
PCG4 in Asyut, Faiyum, and Monufia; while PCG3 and
PCG5 again did not contain any hot spots (see Fig. 5).
The number of iterations in which probable hot spots

were detected using dasymetric adjustment, as well as
detections using centroids, are shown in Table 4.

Discussion

This work represents the first spatial analysis of KS in
H5NI1 avian influenza virus in Egypt, and the first use of
geospatial hot spot analysis for influenza KS. The major-
ity of viral samples (874/925) contained one or more KS,
with 39 distinct KS detected including from each of the
five PCGs. The circulation of so many KS increases the
probability of recombination and reassortment produ-
cing viral genomes with combinations of KS that prove
to be well-adapted to infect, replicate in, and transmit
between humans.
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Fig. 4 Summary of hot spot analyses for overall KS detection rates. The governorates of Alexandria and Beheira were the only locations identified
as containing probable hot spots using both dasymetric adjustment (> 9500 iterations) and governorate centroids
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Samples with governorate location information
uploaded to GenBank varied from year to year, with a low
of 39 in 2005—6 and a high in 2009 with 155 isolates, how-
ever the sample sizes dropped after 2011. It is not entirely
clear why fewer isolates from Egypt are being uploaded to
GenBank than previously, although political turmoil and
social unrest in the wake of the 2011 revolution are likely
responsible. Detection rates of KS also varied, trending
down during the study period from a high of 0.38 in 2007
to a low of 0.18 in 2014 (see Fig. 3). This decline is likely
driven a smaller number of protein sequences per sample
being uploaded in later years of the study period, with the
HA gene being the most commonly uploaded. HA se-
quences tend to have lower detection rates due to the lar-
ger number of known HA KS being tested for. The
problem of outdated or incomplete reporting of avian in-
fluenza is not new in the country, and several studies sug-
gest the true burden of disease in Egypt is severely
underestimated [3, 61]. Given the inefficiency in past years
of vaccination efforts in the country, there is a pressing
need for increased biosecurity and public health education
to help limit direct contact between humans and poultry
[62—64]. Due to limited resources, the ability to focus such
campaigns in regions of greatest need is one of the pri-
mary contributions of this work.

Spatial clusters of overall KS detection rates were iden-
tified using hot spot analyses in the northwestern por-
tion of the Nile River delta region in Egypt, specifically

within the governorates of Alexandria and Beheira. Hot
spots were also identified for individual PCGs, however
the reduced sample sizes resulting from splitting the
dataset into PCGs increased the variability. This can be
observed in the differences between the results using
dasymetrically-adjusted locations and those using cen-
troids. For example, hot spots were detected using cen-
troids in Beni Suef, Dakahlia, and Monufia governorates
for various PCGs, despite these governorates containing
hot spots in less than half of the iterations using the
dasymetrically-adjusted locations. Since both centroids
and dasymetrically-adjusted locations are estimates, the
latter method is preferable as its iterative nature (ie.,
10,000 replicate analyses) provides an indication of the
reliability of our estimates and does not assume all sam-
ples were collected at the geometric centroid of the gov-
ernorate. Using dasymetrically-adjusted locations, spatial
clusters of KS detection rates were identified only in
Alexandria and Beheira for KS related to host specificity
and virulence (PCG1 and 2).

The city of Alexandria is the second largest city in Egypt
and an important seaport, as well as a popular tourist des-
tination. The neighboring governorate of Beheira is located
between Alexandria and Cairo, experiencing substantial
transport between those two urban centers. A study in
Beheira in 2015 claimed the majority of the population was
involved in raising poultry, and found most poultry
growers demonstrated poor practices with regards to avian
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Table 4 Results of hot spots analyses for overall KS detection
rates and by PCG

Governorate Overall KS  PCG1  PCG2  PCG3  PCG4  PCG5
Alexandria 10000° 9927 9187 17 35 2055
Aswan 0 115 0 0 132 0
Asyut 0 1 0 0 7891 0
Beheira 100007 9909 9778% 1483 2025 5304
Beni Suef 0 4533* 3 2918 0
Cairo 4 0 10 0 1 0
Dakahlia 2 677° 103 51 658 9
Damietta 0 9 1 26 24 0
Faiyum 2 54057 0 632 84907 3
Gharbia 6955 4843 3649 422 1971 3092
Giza 143 217 133 52 477 0
Ismailia 0 0 0 0 1 1
Kafr El Sheikh 6649 5308 3333 920 1700 2143
Luxor 0 83 0 0 471 0
Matruh 326 184 62 0 0 49
Minya 0 124 0 0 1214 0
Monufia 2460 942 1484 557 1738 310
New Valley 0 6 0 0 200 0
North Sinai - - - - - -
Port Said 0 0 0 22 0 5
Qalyubia 0 0 2 0 0 0
Qena 0 m 0 0 357 0
Red Sea - - - - - -
Shargia 0 0 0 16 7 0
Sohag 0 1467 0 0 1692 0
South Sinai - - - - - -
Suez 0 1 0 0 3 0

The number of iterations (out of 10,000) in which statistically significant hot
spots were detected using dasymetric adjustment is shown for each
governorate, while an ®indicates hot spots detected in a single run using
governorate centroids

influenza prevention and control [65]. Spatial clustering of
high rates of KS in this area suggests increased surveillance
is warranted. It is not clear if the detected KS represent de
novo mutations in Egypt, or are being introduced from
outside the country. The identification of Alexandria and
Beheira as a cluster of KS detections may suggest the latter
due to their location on the Black Sea/Mediterranean
flyway, but more work is required to determine this with
confidence [66—69]. If the majority of detected KS are the
result of viral introductions, it might partially explain the
observed spatial patterns, including the relatively low rates
in and around Cairo.

A limitation of this analysis was that in most governor-
ates sample sizes were too small to allow for time series
analyses of detected hot spots, therefore spatial clusters
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were assumed to be consistent over the 10-year study
period. We were also limited by the lack of fine-grain geo-
graphic location information for influenza sequences on
GenBank, which were the primary source of data for this
study. Recognized by previous researchers as an important
shortcoming to the otherwise incredibly useful datasets
available through GenBank, the lack of consistency and
infrequent inclusion of sub-governorate location informa-
tion required the use of approximation methods which in-
troduced uncertainty into the analyses [70-72]. Previous
spatial investigations of Egyptian isolates relied solely on
geographic centroids of governorates, or even the country
[16, 58, 73-75]. This and many other studies focused on
the spatial dynamics of genetic data would benefit im-
mensely from improved geographic resolution in
GenBank records. We call on researchers uploading
genetic data to GenBank and similar repositories to in-
clude as much geographic detail in the metadata as pos-
sible, while respecting privacy considerations when
appropriate. Sampling bias, both in terms of geographic
locations chosen for sample collection and in terms of
genes selected for sequencing, was a challenge for this
study as with all secondary analyses. It is difficult to know
to what extent such bias introduced uncertainty into the
current analysis. While sampling would appear to be con-
centrated in the most densely populated areas of the
country (see Figs. 1 and 2), it is unclear from the informa-
tion available in GenBank what sampling strategies were
employed or why full genome sequences were not col-
lected or cataloged. Another challenge was that at the
time of this writing, the CDC’s H5N1 Genetic Changes In-
ventory had not been updated since June 26, 2012. This
corresponds with the publication of two papers detailing
gain-of-function experiments in which KS allowing avian
H5N1 transmission between mammals were identified
and described, leading to concerns about public dissemin-
ation of KS information [31, 36, 76]. Despite the recent
lifting of the NIH’s funding pause on gain-of-function
studies in December 2017, no updates to the June 2012
edition of the inventory were published prior to this study.

Conclusions

This work provides a descriptive baseline for the distri-
bution and spatial clustering of KS in Egypt, from which
future studies can be compared. High overall detection
rates of KS were found to cluster spatially in the north-
western portion of the Nile River delta. Large numbers
of KS were detected with a range of associated pheno-
typic consequences, which raise concerns of a pandemic
strain developing in the region. Better geographic data
and improved genetic surveillance are necessary to prop-
erly evaluate and monitor this potential threat to global
public health.
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