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A few antibiotics can represent the total
hospital antibiotic consumption
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Abstract

Background: Appropriate antibiotic use has become an important issue. However, collecting data on the use of all
antibiotics in a hospital is difficult without an advanced computerized system and dedicated staff. This paper
examines if 1–3 antibiotics can satisfactorily represent the total antibiotic consumption at the hospital level.

Methods: We collected antibiotic data from six large university hospitals in Korea for some years between 2004
and 2012. Since the total antibiotics consist of a few chosen representative antibiotics and the rest, we used those
chosen antibiotics along with additional variables constructed only with t (time) such as t, t2, and t3 to capture the
time trend and whether t belongs to each month or not to capture the monthly variations. The ordinary least
squares method was used to explain the total antibiotic amount with these variables, and then the estimated
model was employed to predict the use for 2013. To determine which antibiotics were the most representative in
tracking general trends in antibiotic use over time, we tried various combinations of antibiotics to find the
combination that best minimized the 2013 prediction error.

Results: We found that fluoroquinolones and aminoglycosides were the most representative, followed by beta-
lactam/beta-lactamase inhibitors and 4th-generation and 3rd-generation cephalosporins. The mean prediction error
over 12 months in 2013 with these few antibiotics was only 1–3% of the monthly antibiotic consumption amount.

Conclusions: The total antibiotic consumption amount at the hospital level can be represented sufficiently by a
few antibiotics, such as fluoroquinolones and aminoglycosides, which means that hospitals can save resources by
tracing only the usage of those few antibiotics instead of the entire inventory. Since the choice of fluoroquinolones
and aminoglycosides is based solely on our Korean data, other hospitals may follow the same modelling
methodology to find their own representative antibiotics.
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Background
Antimicrobial resistance is a worldwide problem, which
poses a serious threat to global public health [1]. In 2011,
to prevent further worsening of the problem, the World
Health Organization (WHO) urged nations to be alert for
antimicrobial resistance and called for urgent action to de-
crease antimicrobial consumption [2]. In accordance with
the initiative, the Korean government launched a national
action plan on antimicrobial resistance in 2016 [3].

As is well documented, the overuse/misuse of antibi-
otics has been recognized as a key factor for the
emergence of antimicrobial-resistant organisms [4]. In-
appropriate antibiotic use also causes extra medical ex-
penses: unnecessary or duplicative antibiotic use in US
hospitals led to an estimated $163 million in excess costs
[5]. Hence, many experts have suggested establishing
antimicrobial stewardship programmes in hospitals as
well as in communities [1]. The first step to combat
antibiotic abuse is finding out the severity of the prob-
lem. This calls for a proper measurement of antibiotic
consumption [6], which helps to understand the epi-
demiology of antimicrobial resistance and provides hos-
pitals with useful data to implement policies and
guidelines about proper antibiotic usage [6].
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To this end, we collected data on antibiotic prescrip-
tions from six large Korean university hospitals with good
computerized systems. There were considerable difficul-
ties in collecting data on antibiotics because there were
too many different types of antibiotics but no experi-
enced/dedicated staff to collect data on antibiotics. There
was no problem obtaining data on the prescription depart-
ment, administration route and volume of drug, but a big
problem in the data collection was that antibiotics were
recorded by the brand name, not by the ingredient names
nor by the antibiotic class name. This required extra effort
to convert the data into a suitable and consistent form.
The goal of this paper is to explore whether it is pos-

sible to look at only a couple of representative antibiotics
to determine the total antibiotic consumption at the
hospital level. If yes, this means a considerable savings in
terms of time and effort to keep track of all antibiotic
use. To this goal, we built a statistical model, in which
1–3 representative antibiotics are chosen to predict the
total antibiotic consumption at the hospital level, with
an acceptably small magnitude of prediction error.

Methods
Study design
We build a simple linear statistical model, where the
total antibiotic consumption at the hospital level is ex-
plained by 1–3 representative antibiotics along with time
and month dummy variables–the time and month
dummy variables are “free”, as they depend on time
index t only. Because the total amount consists of the
representative antibiotics and the remaining (non-repre-
sentative) ones, this modelling strategy amounts to
explaining the remaining antibiotics using their correla-
tions with the representative antibiotics as well as the
time and month dummy variables. We estimate the
model using the observations over 2004–2012 of six
large university hospitals in Korea, one of which is the
Hanyang University Seoul Hospital (HUS). Then, the
model prediction capability is evaluated for the ensuing
year (2013), using the data from HUS.

Data source
We collected data on the total antibiotic prescriptions
for inpatients and their total patient days in 2004, 2008
and 2012 from six university hospitals (4 tertiary and 2
secondary) in Korea: Hanyang University Seoul Hospital
(758 beds), Chungbuk University Hospital (620 beds),
Chonnam University Hospital (970 beds), Gyeongsang
University Hospital (889 beds), Hanyang University Guri
Hospital (578 beds), and Korea University Ansan
Hospital (543 beds). In addition, we collected data from
HUS for each year between 2004 and 2013 on the total
antibiotic prescription records and the total patient days.

All data were extracted from the electronic billing sys-
tem by the data processing department in each hospital.

Definitions
We define antibiotics as medications with class J01 in
Anatomical Therapeutic Chemical (ATC), which does
not include antifungal agents nor anti-tuberculosis
agents. Systemic agents with oral or parenteral adminis-
tration routes are included, but topical agents are ex-
cluded. We convert each class of antibiotic amount to a
defined daily dose (DDD) by using the ATC of the
WHO and then standardize for 1000 patient days [7].
We classify antibiotic agents into 19 classes: 1st-

generation cephalosporins (1st CEP), 2nd-generation
cephalosporins (2nd CEP), 3rd-generation cephalosporins
(3rd CEP), 4th-generation cephalosporins (4th CEP), ami-
noglycosides (AG), beta-lactam/beta-lactamase inhibitors
(BL-BLI), carbapenems, fluoroquinolones (FQ), glycopep-
tides, lincosamide, macrolides, metronidazole, monobac-
tam, oxazolidinone, penicillins, polymyxin, tetracyclines,
tigecycline and trimethoprim/sulfamethoxazole. Other an-
tibiotics such as amphenicol, fosfomycin, and streptogra-
min are excluded because they are rarely used.
Let nht denote the patient days for hospital h = 1 … 6

and month t; t ranges over 1 … 12 (year 2004), 49 … 60
(year 2008) and 97 … 108 (year 2012) for the hospitals
other than HUS, and t ranges over t = 1 … 108 for HUS.
Let DDDaht denote the DDD for antibiotics a, hospital h,
and time t. With ‘≡’ standing for “defined as”, let ‘all-
hospital patient days at time t’ and ‘all-hospital DDD for
antibiotics a at time t’ be

nt ≡ n1t þ … þ n6t and DDDat ≡DDDa1t þ … þ DDDa6t

Then, the all-hospital DDD per 1000 patient days for
antibiotics a at month t is

Xat ≡
DDDat

nt
� 1000:

Let m (‘m’ for main) be the number of the main (i.e.,
representative) antibiotics; m = 1, 2 or 3 in this paper.
Listing the main antibiotics first, the total antibiotic
amount at time t can be written as

Y t ≡ the main antibiotic amount
þ the others

¼
Xm
a¼1

Xat þ
X19

a¼mþ1

Xat

ð1Þ

Statistical Methodology
To achieve our goal of representing the total Yt with the
main antibiotics, it is necessary to account for the

remaining part
P19

a¼mþ1Xat in (1) in a simple way. We
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achieved this by replacing the sum
P19

a¼mþ1Xat with
“free variables”. If the free variables can representP19

a¼mþ1Xat well enough, then we do not have to collect
data on those remaining antibiotics.
We used three types of free variables to account forP19
a¼mþ1Xat : (i) time index t to capture the trend, (ii)

month dummies to capture the monthly variations,
(iii) and some calendar time dummies to capture
“structural breaks” (i.e., big events), if there are any.
Since all three types are determined by t, no data col-
lection is needed for them. We illustrate these three
types next. Let 1[A] = 1 if A holds, and 0 otherwise.
Suppose we have t = 1 … 17 monthly observations over

January 2004 to May 2005. First, use a polynomial func-

tion such as
Pp

q¼0αq tq (e.g.,
P2

q¼0αq tq ¼ α0 þ α1t

þ α2t2 ) to account for the trend, where α s are the pa-
rameters to be estimated using (1, t …tp). Second,
capture the monthly variations with the month
dummies; e.g., the February dummy 1[t ∈ February] is to
capture the February effect relative to the baseline
January, where ‘∈’ means “belonging to”, and the March
dummy 1[t ∈ March] is to capture the March effect
relative to January. Third, there might be a big policy
change, say, a crackdown on antibiotic abuse at t = 6 and
onwards, in which case 1[6 ≤ t] can be used to account
for the crackdown that is a structural break.
Since the main antibiotics and t-based variables are

in the model, whereas the other antibiotics are not,
in essence, the omitted non-representative antibiotics
are explained by their correlations with the main anti-
biotics and the t-based variables. After the model
parameters are estimated using the time-series data
up to t = 108 (December 2012), we then construct the
predicted Yt for t = 109~ 120 (2013) for HUS using

the estimated model; let Ybt denote the predicted
value.
After model estimation using t = 1~ 108, predicting

Ybt for t = 1~ 108 is “in-sample prediction”, and pre-
dicting Ŷ t for t = 109~ 120 is “out-sample prediction”.
The out-sample prediction is to pick the representa-
tive antibiotics, and the in-sample prediction is just
to see how the chosen representative antibiotics
perform in fitting the in-sample observations. Since
we put more emphasis on predicting the future than
on explaining the past, the out-sample prediction is
our primary criterion to determine the representative
antibiotics, whereas the in-sample prediction is
secondary.
To explain how to select 1–3 main antibiotics, sup-

pose m = 2. For each main antibiotic candidate, we

obtain Yb109; :: Yb120 for 2013 and its “mean prediction
error”:

1
12

X120
τ¼109

Y τ −Ybτj
��� ð2Þ

In other words, (2) is the average of the monthly abso-
lute deviations for 2013 between the actual and pre-
dicted antibiotic uses in DDD/1000 patient days. The
particular combination of two antibiotics minimizing (2)
is the best choice.
To explain why we consider different values for m, the

reason is that there is a trade-off in setting m large v.
small. If m is large, say 10, we can trace the overall anti-
biotic consumption better, but then the representative-
ness will be worse; if m is small, say 1, then the opposite
happens. Between these extremes, 1–3 seem to be rea-
sonable values, and for each chosen value of m, we try
different combinations of antibiotics.
The model for the ordinary least squares (OLS) esti-

mator, where the main antibiotic amount and the above
“free” t-based variables collectively explain Yt, is shown
in Additional file 1: Tables S3 and S4; Additional file 1:
Table S3 uses all six hospitals’ data, whereas Additional
file 1: Table S4 uses only the HUS data for the model es-
timation. In each table, the OLS estimates and their
standard errors (SE) are provided. Dividing an estimate
by its SE gives the ‘t-value’ or ‘z-score’. It being above 2
in absolute value indicates statistical significance at the
5% error level, i.e., we set statistical significance at P < 0.
05. R2 shows the proportion of the Yt variation explained
by all “regressors” (i.e., explanatory variables) jointly.

Results
Most prescribed antibiotics in the pooled data
Pooling all time-series data of the six hospitals into one big
data set, Table 1 provides descriptive statistics in all six hospi-
tals, including HUS, as well as HUS alone; the unit for all
numbers is DDD/1000 patient days. The average total anti-
biotic consumption of the six hospitals plus/minus the stand-
ard deviation (SD) is 864 ± 55.5, and that of HUS is 915 ±
100. Overall, 3rd CEP was used most in all six hospitals (24.
8% from 213.82/862.94), followed by FQ (12.1%, 104.11/862.
94), 2nd CEP (11.4%, 98.17/862.94), 1st CEP (10.6%, 91.84/
862.94) and BL-BLI (10.5%, 90.27/862.94). Similarly, 3rd CEP
(18.8%, 173.26/920.69) was used most in HUS, followed by
1st CEP (15.5%, 143.10/920.69), FQ (13.4%, 123.15/920.69),
2nd CEP (12.7%, 116.94/920.69), AG (9.8%, 90.57/920.69)
and BL-BLI (8.0%, 74.11/920.69). In contrast, monobactam,
oxazolidinone and tigecycline were rarely used; there was
even no use at all of these antibiotics for some months.

Out-sample prediction, representative antibiotics, and
in-sample fitness
Table 2 shows the main antibiotics minimizing the mean
prediction error (2). For example, the mean prediction
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error is 26.2 DDD/1000 patient days using only AG for
m = 1, and it is 17.2 using AG and 4th CEP for m = 2,
where the predictors were obtained with all six hospitals’
data. In contrast, the mean prediction error is 20.7
DDD/1000 patient days using only FQ for m = 1, and it
is 18.3 using FQ and AG for m = 2, where the predictors
were obtained with only the HUS data.
In Table 2, when all six hospitals’ data are used in the

left half, AG does best (with the mean prediction error
26.2 when used alone), followed by FQ, 4th CEP, and

BL-BLI. When only the HUS data are used, FQ or BL-
BLI does best, followed by AG and 3rd CEP. Combining
these findings, we may state that FQ is the most repre-
sentative, followed by AG, BL-BLI, 4th CEP and 3rd
CEP. Since the total number of observations is 180
(=36 months times 5 hospitals) plus 108 (12 months
times 9 years from HUS) and HUS takes only 37.5% of
the total observations 288 = 180 + 108, the result based
on the entire data set that AG is the best changes when
only the HUS observations are used. The details on the

Table 1 Antibiotic consumption in all hospitals and in only Hanyang University Seoul hospital (unit: DDD/1,000 patient days)

Six hospitals (2004, 2008, 2012 : 36 months) Hanyang University Seoul hospital (2004-2012 : 108 months)

Mean (SD) Rangea Mean (SD) Rangea

1st CEP 91.7 (8.8) 78.5-114.0 142.0 (23.4) 93.7-210.0

2nd CEP 98.4 (21.9) 60.8-138.0 115.0 (31.7) 77.9-204.0

3rd CEP 214.0 (15.4) 188.0-249.0 172.0 (19.6) 136.0-231.0

4th CEP 11.4 (5.8) 3.73-21.0 14.6 (9.7) 0-38.0

AG 71.2 (47.4) 19.5-146.0 86.6 (56.2) 18.3-184.0

BL-BLI 90.2 (7.4) 74.8-101.0 74.9 (15.8) 44.1-123.0

Carbapenems 14.7 (5.4) 6.4-24.6 9.9 (5.7) 0-22.1

FQ 104.0 (7.0) 90.3-121.0 123.0 (14.2) 88.6-172.0

Glycopeptides 23.3 (2.1) 18.3-27.2 18.7 (4.6) 9.3-32.4

Lincosamide 16.6 (3.8) 10.7-23.8 15.6 (4.9) 4.6-31.2

Macrolides 41.8 (8.1) 29.4-59.3 44.8 (14.6) 21.3-88.2

Metronidazole 41.0 (7.8) 30.6-61.9 43.6 (7.7) 21.3-61.2

Monobactam 0.6 (0.5) 0-2.0 0.8 (1.0) 0-4.5

Oxazolidinone 0.7 (0.6) 0-2.1 1.1 (1.1) 0-4.8

Penicillins 20.4 (6.4) 10.1-37.7 17.6 (7.5) 2.0-41.2

Polymyxin 2.8 (2.1) 0-6.3 2.3 (2.6) 0-11.6

Tetracyclines 9.7 (6.4) 3.5-30.9 4.7 (4.6) 0-21.7

Tigecycline 0.3 (0.5) 0-1.7 0.7 (1.2) 0-4.8

Trimethoprim/sulfamethoxazole 11.2 (1.9) 8.1-17.1 26.2 (10.1) 5.8-51.5

Total 864.0 (55.5) 766.0-975.0 915.0 (100.0) 770.0-1121.0
aMonthly consumption averaged over the years
Abbreviations: 1stCEP 1st-generation cephalosporins, 2ndCEP 2nd-generation cephalosporins, 3rdCEP 3rd-generation cephalosporins, 4thCEP 4th-generation
cephalosporoins, AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors, FQ fluoroquinolones

Table 2 Representative antibiotics and mean prediction error (unit: DDD/1,000 patient days)

Six hospitals Hanyang University Seoul hospital (HUS)

# main antibiotics Representative antibiotics Prediction error Representative antibiotics Prediction error

m = 1 AG 26.2 FQ 20.7

FQ 26.9 BL-BLI 22.0

m = 2 AG + 4th CEP 17.2 AG + FQ 18.3

AG + penicillins 18.1 BL-BLI + FQ 18.7

m = 3 AG + BL-BLI + 4th CEP 12.3 BL-BLI + FQ + 3rd CEP 15.0

AG + 4th CEP + monobactam 14.0 AG + BL-BLI + 3rd CEP 15.4

Abbreviations: 3rdCEP 3rd-generation cephalosporins, 4thCEP 4th-generation cephalosporins, AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors,
FQ fluoroquinolones
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OLS used for prediction are provided in the Additional
file 1.
Define the “mean prediction error multiplied by 100

and divided by the monthly antibiotics consumption
amount in Table 1” as the “relative mean prediction
error”. Using the six hospitals’ data, the relative mean
prediction error for m = 1, 2, and 3 is, respectively,

26:2
864

� 100 ¼ 3:0%;
17:2
864

� 100

¼ 2:0%;
12:3
864

� 100 ¼ 1:4%

Using the HUS data, the relative mean prediction error
for m = 1, 2, and 3 is

20:7
915

� 100 ¼ 2:3%;
18:3
915

� 100

¼ 2:0%;
15:0
915

� 100 ¼ 1:6%

Judging from the m = 2 and 3 cases here and the rows
for m = 2 and 3 in Table 2, although the predicted Y is
for HUS, using all the hospital data is preferable to using
only the HUS data to minimize the prediction error.
Figure 1 shows the out-sample prediction time-series

plot and the difference between the observed and pre-
dicted values using all hospital data, and Fig. 2 shows
the same using only the HUS data. The figures show
that the predicted lines match the actual line (dotted)
well, and the 95% confidence interval for the prediction
error includes zero in almost all cases.
Figure 3 presents the in-sample actual and fitted

(m = 1,2,3) values for the six hospitals, and the fitness

looks good; Fig. 4 does the same for HUS. Notice a
large drop at t = 52 in Fig. 4, which prompted using
1[52 ≤ t] in the OLS for the HUS data.

The most prescribed antibiotics are not necessarily the
most representative
Taking the most prescribed antibiotics (FQ, 1st CEP and
3rd CEP) as the three representative antibiotics, we redrew
Figs. 1, 2, 3 and 4 to present the result in Figs. 5, 6, 7.
Comparing Figs. 1 and 2 to 5, 3 to 6 and 4 to 7, it is clear
that the most prescribed antibiotics do not constitute the
most representative antibiotics. Specifically, the mean pre-
diction errors with all six hospitals in Fig. 5 (solid line)
and with only HUS (double line) when the three most pre-
scribed antibiotics are used are 41.7 and 33.0, respectively,
whereas the mean prediction errors with m = 3 are
approximately 12–15 in Table 2.

Discussion
Collecting data on all antibiotics is a tedious and pains-
taking task in Korea, and this may be the case in other
countries as well. We showed that it is possible to use
only 1–3 representative antibiotics to track the total
antibiotic consumption at the hospital level. Our main
finding is that FQ and AG are the most representative,
followed by BL-BLI, 4th CEP and 3rd CEP. Our mean
prediction error is only 1–3% of the monthly antibiotic
consumption amount, which is the average across the
hospitals and years in our data. Whether or not these
levels of prediction error are tolerable depends on how
much we save in terms of time and money by not col-
lecting data on the other antibiotics.

Fig. 1 Out-sample prediction for Hanyang University Seoul Hospital, 2013, using six hospital data sets. Abbreviations: 4th CEP 4th-generation
cephalosporins, AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors, CI confidence interval
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Although our representative antibiotics were selected,
not based on their medical effectiveness, but based on how
well they collectively represented the total antibiotics usage,
the representative antibiotics also happened to be the most
commonly prescribed for inpatients, except for 4th CEP.
To better monitor antibiotic consumption in hospitals, one
of the broad-spectrum antibiotics or antibiotics against
multi-drug resistant pathogens (such as carbapenems)
could be co-monitored with our representative antibiotics.
The overall antibiotic usage patterns in our data differ lit-

tle from other studies in Korea. A single-centre study found
that 3rd CEP was the most commonly prescribed antibiotic
for hospitalized patients in Korea, followed by FQ, BL-BLI
and 1st CEP [8]. Additionally, a population-based study
showed that 3rd CEP was the most prescribed antibiotic

for inpatients in Korea, followed by AG, 1st CEP and FQ
[9]. These studies suggest that we might have found almost
the same representative antibiotics had we analysed other
Korean hospitals’ data that are not in our data set.
The antibiotic usage pattern is different at various

levels. For instance, in Italy and the UK, AG are not
used as frequently as in Korea [10, 11], which illustrates
country-level differences; also, there are large differences
in the consumption profiles for treatments of the same
bacterial infection among European countries [12]. Even
among the hospitals in the same country, large differ-
ences in antibiotic usage patterns exist; e.g., medium-
sized, private and university hospitals use more
antibiotics [13]; additionally, antibiotic usage patterns
differ between small and large community hospitals in

Fig. 2 Out-sample prediction for Hanyang University Seoul Hospital, 2013, using Hanyang University Seoul Hospital data only. Abbreviations: 3rd
CEP 3rd-generation cephalosporins, AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors, FQ fluoroquinolones, CI confidence interval

Fig. 3 In-sample prediction (2004, 2008, 2012) for six hospitals, using six hospitals’ data. Abbreviations: 4th CEP 4th-generation cephalosporins,
AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors
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Korea [9]. Possible reasons for these differences are vari-
ations in bacterial epidemiology at hospital level, the
medical staff ’s attitude towards prescribing antibiotics,
antimicrobial stewardship programme effectiveness, etc.
Hence, if possible, it would be ideal for each hospital to
conduct a study of its own (as was done in this paper) to
find its own representative antibiotics.
The methodology we presented used basic statistics for

predicting future time-series variables. It should not be too
difficult for hospitals to tailor the methodology to meet
their needs, finding a few representative antibiotics by
using, e.g., different functions of t and different structural
breaks at different times. Once the methodology is set, the
hospital would then address the problem of selecting a few
representative antibiotics, which is in fact more difficult
than it looks; e.g., if three are to be chosen out of 20 antibi-
otics in total, there are 1140 possible combinations. In this
case, despite many differences across countries and hospi-
tals within the same country, our findings should be helpful

in choosing antibiotics to consider first (it would be FQ,
AG, BL-BLI, 4th CEP and 3rd CEP); of course, the most
commonly prescribed antibiotics in the hospital would also
make good candidates.
We attribute the structural break in Fig. 4 at HUS to the

pre-authorization of an antibiotic use programme that
started in 2008. The programme put restrictions on pre-
scribing broad-spectrum antibiotics such as carbapenems,
glycopeptides, oxazolidinone, polymyxin and tigecycline
by requiring an extra approval step from the infectious
disease department [14]. Additionally, the programme re-
inforced educating physicians on the appropriate use of
antibiotics and collecting feedback after drug use.
As the HUS time-series data plot illustrates in Fig. 4, a

structural break can move the intercept substantially,
the ignorance of which would result in large biases in
the other estimates because the other estimates would
be adjusted downward to account for the large drop in
the intercept. Detecting structural breaks is relatively

Fig. 4 In-sample prediction for Hanyang University Seoul Hospital, using Hanyang University Seoul Hospital data only. Abbreviations: 3rd CEP
3rd-generation cephalosporins, AG aminoglycosides, BL-BLI beta-lactam/beta-lactamase inhibitors, FQ fluoroquinolones

Fig. 5 Out-sample prediction for Hanyang University Seoul Hospital, 2013, with three most commonly used antibiotics (FQ, 3rd CEP, and 1st CEP).
Abbreviations: FQ fluoroquinolones, 3rd CEP 3rd-generation cephalosporins, 1st CEP 1st-generation cephalosporins
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straightforward and can be accomplished by plotting the
time-series data, as in Figs. 3 and 4. Of course, if the
break magnitudes are small, then they are hard to detect
with the naked eye, but then they would not be called
“breaks”. Structural breaks might have to be incorpo-
rated using outside information such as announced law/
regulation changes.
There are some notable limitations in our study. First,

the six university hospitals were selected, not by any
sampling principle, but by ease in data collection, in
which sense our data may not be representative of the
large university hospitals in Korea that would be our
study population of interest. For five hospitals, we could
gather only three years of data, which resulted in rela-
tively larger standard errors than we would have liked.
Second, the prediction performance was gauged using
only one hospital’s single-year data, and thus, using

other hospital data or a longer time span of data may
alter/qualify our findings. Third, we adopted a relatively
simple ordinary least squares estimator to find the time
trend and monthly variations; more statistically sophisti-
cated models and approaches may refine and improve
the prediction capability. Finally, we measured antibiotic
consumption by DDD instead of days of therapy (DOT).
According to a recent guideline for antibiotic steward-
ship programmes, DOT is preferred to DDD as a meas-
ure of antibiotic consumption [15]. However, we could
not use DOT because only the total amount of antibiotic
consumption per patient was available in five of the six
hospitals.
As far as we are aware, our study is the first of its kind

to look at the possibility of using only a few antibiotics
to track the total antibiotic consumption at the hospital
level. Hopefully, more studies will be done to save

Fig. 6 In-sample prediction (2004, 2008, 2012) for six hospitals with the most commonly used antibiotics (FQ, 3rd CEP, and 1st CEP).
Abbreviations: FQ, fluoroquinolones 3rd CEP 3rd-generation cephalosporins, 1st CEP 1st-generation cephalosporins

Fig. 7 In-sample prediction for Hanyang University Seoul Hospital with the most commonly used antibiotics (FQ, 3rd CEP, and 1st CEP).
Abbreviations: FQ fluoroquinolones, 3rd CEP 3rd-generation cephalosporins, 1st CEP 1st-generation cephalosporins
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medical personnels’ time and effort surrounding non-
essential data collection, so that they can concentrate on
more important healthcare activities.

Conclusions
This study showed that the total antibiotic consumption
at the hospital level can be represented sufficiently well
by a few antibiotics. FQ and AG were the most repre-
sentative in the sense of minimizing the mean prediction
error, followed by BL-BLI, 4th CEP and 3rd CEP; the
mean prediction error is only 1–3% of the monthly anti-
biotic consumption amount. Despite this positive find-
ing, because our analysis is based solely on Korean data
and because the medical environment/practice of each
country and each hospital differs, other hospitals may
follow a similar modelling strategy to find their own rep-
resentative antibiotics instead of readily adopting the
aforementioned antibiotics as the most representative.

Additional file

Additional file 1: Supplementary materials. The model for ordinary
least squares (OLS) estimator. (DOCX 97 kb)
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SE: Standard errors; WHO: World Health Organization
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