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Abstract

Background: Several studies have applied ecological factors such as meteorological variables to develop models
and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies
that investigated this premise, the modeling approaches differ from each study and only use a single statistical
technique. It raises the question of whether which technique would be robust and reliable. Hence, our study aims
to compare the predictive accuracy of the temporal pattern of Dengue incidence in Metropolitan Manila as influenced
by meteorological factors from four modeling techniques, (a) General Additive Modeling, (b) Seasonal Autoregressive
Integrated Moving Average with exogenous variables (c) Random Forest and (d) Gradient Boosting.

Methods: Dengue incidence and meteorological data (flood, precipitation, temperature, southern oscillation index,
relative humidity, wind speed and direction) of Metropolitan Manila from January 1, 2009 — December 31, 2013 were
obtained from respective government agencies. Two types of datasets were used in the analysis; observed meteorological
factors (MF) and its corresponding delayed or lagged effect (LG). After which, these datasets were subjected to the four
modeling techniques. The predictive accuracy and variable importance of each modeling technique were calculated and
evaluated.

Results: Among the statistical modeling techniques, Random Forest showed the best predictive accuracy. Moreover, the
delayed or lag effects of the meteorological variables was shown to be the best dataset to use for such purpose. Thus, the
model of Random Forest with delayed meteorological effects (RF-LG) was deemed the best among all assessed models.
Relative humidity was shown to be the top-most important meteorological factor in the best model.

Conclusion: The study exhibited that there are indeed different predictive outcomes generated from each statistical
modeling technique and it further revealed that the Random forest model with delayed meteorological effects to be the
best in predicting the temporal pattern of Dengue incidence in Metropolitan Manila. It is also noteworthy that the study
also identified relative humidity as an important meteorological factor along with rainfall and temperature that can
influence this temporal pattern.
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Background

Dengue fever is a mosquito-borne disease transmitted
by the bite of a female Aedes aegyti and Ae. albopic-
tus mosquitoes, the primary and secondary mosquito
vectors respectively, leading to clinical manifestations
of influenza-like symptoms to life-threatening shock
syndrome [1]. It had been estimated that 3.9 billion
people in 128 countries or 40% of the world popula-
tion are at risk of contracting the disease [2]. The
dynamics of dengue transmission is said to be influ-
enced by three central risk factors that are biological,
sociological and environmental in nature [3]. The
focus of our study is primarily on the environmental
factors such as meteorological patterns that have been
attributed to the spread and occurrence of dengue. A
list of growing evidence has demonstrated the asso-
ciation between these factors and its epidemiology [4]
thus claiming that dengue transmission is sensitive to
meteorological variability and change [5-8]. Moreover,
many researchers are asserting the possible future
spatial and temporal expansion on the ecology of Ae.
aegypti along with its virus in the midst of climate
change scenarios [8-11].

Meteorological factors such as temperature, rainfall
and humidity can influence dengue epidemiology by
increasing mosquito development, population growth,
virus replication and mosquito-human interactions
[7]. Rainfall and flood have been shown to be impor-
tant factors in providing appropriate breeding sites of
Ae. aegypti necessary for increasing female mosquito
density that may lead to outbreaks [12]. Temperature,
on the other hand, has an effect in the reproductive
and biting rate of the mosquito vector and the extrin-
sic incubation of the dengue virus [13]. Humidity
tends to influence the vector’s longevity and rapid
replication of the virus [14, 15]. In contrast to the
three meteorological factors, wind speed or velocity
has been shown to suppress mosquito flight, thus,
affecting their oviposition and density [16—19]. Wind
direction, on the other hand, had been explored [18]
but there is no mention of how this meteorological
variable may influence dengue transmission.

Analyzing the impact of meteorological factors to
local dengue disease occurrence has become signifi-
cant not only because it allows us to understand the
role of these factors towards the spread of the dis-
ease, but also provides an opportunity to create and
adopt an early warning dengue outbreak system [19,
20]. Many Southeast Asian countries had studied the
role and association of meteorological variables
towards its local dengue epidemiology. High dengue epi-
demics were considered seasonal and coincides the rainy
season in Malaysia [21-23], Thailand [24, 25],Vietnam
[26, 27] and the Philippines [28]. On the other hand,
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Singapore has shown that mean temperature, relative hu-
midity [6, 29, 30] and Southern Oscillation index [31]
were important meteorological factors in forecasting or
predicting dengue outbreaks. Parts of Indonesia show that
both temperature and rainfall are highly associated with
high dengue incidence that can lead to epidemics [32]. In
the Philippines, changing rainfall patterns [28],
temperature and incidence of La Nina contribute varying
dengue incidence [33].

The compendium of literature that assessed different
meteorological effects on Ae aegypti and dengue incidence
featured different statistical modeling techniques and used
different dependent variables (e.g. current or lagged me-
teorological variables). The most commonly used model-
ing techniques are cross-correlations, Poisson Regression,
Generalized Additive Modeling (GAM), Autoregressive
Integrated Moving Average (ARIMA) [4] and distributed
lag non-linear model (DLNM) [19, 34]. Most studies have
used GAM and ARIMA models because it became the
standard reference for associating environmental factors
towards disease outcome and a tool for time series predic-
tion analysis [35-37]. Although these statistical modeling
techniques are widely used, they suffer certain drawbacks
or disadvantages such as handling of missing values, out-
lier sensitivity, and multicollinearity [38]. More recently,
new modeling approaches such as Machine learning
methods are gaining popularity and interest because of its
flexibility in handling complex and multiple interacting el-
ements [39]. Our study focuses on two popular Machine
Learning methods, Random Forest (RF) and Gradient
Boosting (GB), because of its wide use in ecology and pub-
lic health [40—42]. These two approaches are designated
as tree-based algorithms because of its fundamental
process in splitting the dataset into two or more homoge-
neous sets based on the most significant input variables.
The end-result is a tree-like diagram where each node has
a partitioning rule [43]. Tree-based learning algorithms
are considered to be the best and widely used machine
learning methods in generating a model of high and
accurate prediction [44, 45]. Previous studies which used
these modeling approaches (RF and GB) were able to
predict the occurrence of dengue using either clinical
(e.g. complete blood counts, symptoms) [46-48] or
land use (e.g. residential, commercial sites) [49] vari-
ables. Moreover, it has also been applied to project
the spatial extent of the dengue mosquito vector
under climate change scenarios [50].

The critical systematic review of Naish et al. [4]
outlined methodological issues that modeled dengue
occurrence using climate variables such as study de-
sign, time periods and scale of analysis. What stands
out is the diverse use of different statistical modeling
techniques [51]. These studies commonly concentrate
towards one statistical technique and produce
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combinations of meteorological factors in determining
the best model for prediction. Although the review
paper [4] highlighted each statistical modeling tech-
nique used, it wasn’t able to emphasize what ap-
proach can be robust or reliable in predicting and
forecasting dengue incidence. For that reason, our
study addresses this gap by evaluating and comparing
prediction accuracy of four statistical modeling
techniques in forecasting dengue incidence: General
Additive Modeling (GAM), seasonal autoregressive in-
tegrated moving average (SARIMA), Random Forest
(RF) and Gradient Boosting (GB). Moreover, another
worth investigating is the type of dependent variables
used to predict dengue incidence. Some studies would
apply delayed effects or time lags of meteorological
variables since it indirectly influence the occurrence
of dengue. However, there are still some studies that
use current observations of meteorological factors as
well. Nevertheless, our study also aims to examine
this area and provide basis on what kind of predictors
would be well suited for prediction. Lastly, our study
also explores the meteorological factors that strongly
influences the dengue incidence of Metropolitan
Manila based on the best model.

Methods

Data collection and processing

Reported dengue cases of Metropolitan Manila from
January 1, 2009 until December 31, 2013 (Figure 1) were
obtained from the National Epidemiology Center of the
Department of Health. Most of the reported dengue
cases during this period are suspected or probable cases
according to standard definitions and are not laboratory
confirmed. The incidence rate of dengue was calculated
by dividing the total number of dengue cases by the total
population of Metropolitan Manila for a particular year
multiplied by a factor of 1000. The factor of 1000 refers
to “per 1000 persons” in the population. The population
statistics for this region were obtained from the Philip-
pine Statistics Authority agency (www.psa.gov.ph) [52].
Since the Philippine population census was done only
for years 2010 and 2015, we used the compounded
population growth rate to calculate the population for
years 2009, 2011, 2012, and 2013. Dengue incidence was
log transformed in order to reduce the skewing of the
data and to destabilize the variance which can be useful
in the subsequent time series analysis.

Daily meteorological data of Metropolitan Manila from
January 1, 2009 until December 31, 2013 (Figure 1) were
obtained from the Philippine Atmospheric Geophysical and
Astronomical Services and Administration (PAGASA). The
meteorological variables include temperature (maximum,
minimum and average), total precipitation, relative humid-
ity, wind speed and wind direction. In this study, we
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averaged by week the daily meteorological measurements
in order to conform to the weekly reported dengue cases.
The average, minimum or maximum measurement of the
meteorological variable for the week was used in the study
for subsequent analysis. It should be noted that the wind
direction variable was divided into two observations (Mini-
mum and Maximum) because the reported values repre-
sent directionality (0°-360°).

The climate of the Philippines is highly affected by the
naturally occurring El Nino/Southern Oscillation
(ENSO) phenomenon that develops in the Pacific Ocean.
The monitoring of ENSO in the Philippines is relatively
significant because of its impact to the various sectors of
the society and environment [53]. Thus, we deemed it as
an important and relevant factor in the study. The
Southern Oscillation Index (SOI) is considered to be the
atmospheric representation of ENSO and calculated
using Troup’s formula [54]. Daily calculation (January 1,
2009 until December 31, 2013) of the Southern Oscilla-
tion Index (SOI) were obtained from the Queensland
Government Meteorology Bureau (http://www.longpad-
dock.qld.gov.au) [55] using the National Climate Cen-
tre’s revised SOI calculation based on Troup’s formula.
Similar to the meteorological variables, the daily mea-
surements were aggregated into its weekly average for
subsequent analysis.

Flood occurrence in Metropolitan Manila was data-
mined based on real-time public warnings of the Metro-
politan Manila Development Authority (MMDA) through
their social media platform, Twitter. Since flood may
occur in selected parts of Metropolitan Manila because of
scattered rain showers, the study considered only a flood
occurrence when nearly all major roads of Metropolitan
Manila are impassable due to flood. The dates of these re-
ports were recorded and counterchecked from existing
news article from credible Philippine news agencies. In
the study, the presence or absence of flood during the
week was done for subsequent analysis.

The entire dataset consisted of 260 observations of
dengue incidence and its meteorological variables. Prior
to subjecting the dataset to analysis, the dataset was di-
vided into training and test subsets. The training subset
consisted observations from the 1st morbidity week of
2009 until the last morbidity week of 2012 (n=208)
while the test subset consisted observations from all
morbidity weeks of year 2013 (n=52). The training
dataset was used to build the model for the different
statistical modeling techniques while the test dataset was
used to validate the model.

Two types of datasets were used for each statistical
modeling technique. The first dataset (MF) consisted of
meteorological factors of the appropriate dengue mor-
bidity week while the second dataset (LG) consisted only
the delayed time lags of the meteorological factors. To
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Fig. 1 Weekly Dengue Cases and Meteorological time series of Metropolitan Manila from 2009 to 2013. (@) Number of dengue Cases; (b) Total
amount of Precipitation and Presence of Flood occurrence [dots]; (c) Percentage of Relative Humidity; (d) Maximum [orange], Average [yellow]
and Minimum [green] Temperatures; (e) Southern Oscillation Index; (f) Average Wind Speed and (g) Maximum [blue] and Minimum [green]

Weeks

determine the appropriate time lag for each meteoro-
logical factor, a cross correlation analysis from O to
25 week lags was done and the highest lag association
was identified and used for the LG dataset. The number
of lag weeks (n=25) were identified due to cross-
correlation results of past studies [18, 37, 56] using ei-
ther monthly or weekly time scales.

Modeling approaches

In our study, the natural log of dengue incidence (y) is
the independent or predicted variable while the me-
teorological factors and its corresponding time lags are
the dependent variables or predictors (xj, X, X3 ..... Xp)-
The statistical techniques employed are the following:
(a) General Additive Modeling, (b) Seasonal
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autoregressive integrated moving average or SARIMA,
(c) Random Forest and (d) Gradient Boosting.

Generalized additive modeling

Generalized additive modeling (GAM) is as one
approach to non-parametric regression with multiple
predictors. What makes GAM unique is that it applies
a “smoothing function” and it helps in capturing the
predictive variables which are assumed to be non-linear
in nature. GAM is often described as “data-driven” be-
cause the smoothing function automatically allows the
response curve to fit for each predictor without a priori
knowledge, thus generating the estimated parameters
[57]. The workflow of GAM starts by first separating
the predictors into sections called knots (k) then spline
functions are used to fit the data into each section
independently [58]. The spline function is a piecewise
polynomial curve that joins these independent knots
and the commonly used are the natural or B-splines.
Afterwards, all functions of k are added to predict the
smoothing link function. To avoid overfitting, the
smooth terms of the GAM model are represented by
penalized regression splines.

Seasonal autoregressive integrated moving average with
exogenous variables (SARIMAX)

The Autoregressive Integrated moving Average
(ARIMA) model is considered to be the widely used
forecasting model because it can project future values of
a series based entirely on its own values. This approach
consists of three features the Autoregressive (AR) model,
Moving Average (MA) model and an initial differencing
step or called Integrated (I). The first step of this ap-
proach is to meet the assumption of “stationarity” of the
ARIMA model. Stationary means that the time series
has no trend and its variations are around the mean and
have a constant amplitude. If the original time series
values are not considered stationary, then it is either
transformed (i.e. natural log) or replaced the time series
values with the difference (I) between the actual value
and its previous value. The ARIMA model is a linear re-
gression type of equation in which the predictors are the
two remaining features, AR and MA. The AR part indi-
cates the variable is regressed on its own lagged values
while the MA corresponds to the autocorrelation error.
Thus, the ARIMA model is classified as (p,d,q) model
where p stands for the number autoregressive (AR)
terms, d is the number of differences needed for station-
arity while q is the number of lagged error in the predic-
tion equation. Identification of the appropriate number
of the AR(p) and MA(q) parameters are determined by
analyzing the autocorrelation (ACF) and partial autocor-
relation (PACF) function plots. The ARIMA(p,d,q) is
considered to be non-seasonal model. However, if the
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time series has a seasonal component, it can be extended
into a Seasonal ARIMA (SARIMA) where the seasonality
terms are denoted as (B,D,Q)m. The BD and Q parame-
ters refer to the autoregressive, differencing, and moving
average terms respectively while m denotes the seasonal
frequency. Thus a SARIMA consists of both the non-
seasonal (p,d,q) and seasonal ((PD,Q)m) components.
The SARIMA model can be further extended to include
exogenous variables or regressors (SARIMA-X). The best
parameters of SARIMA(p,d,q)(PD,Q)m with exogenous
variables can be selected by choosing the lowest value of
Akaike Information Criterion (AIC). This model, then,
can be used to forecast the dynamics of the time series.

Random Forest and gradient boosting

Random Forest (RF) and Gradient Boosting (GB) are
considered to be tree-based ensemble methods wherein
it creates multiple tree sub-models and combine them to
produce an improved final model. The difference
between the two ensemble methods lies on the process
of creating multiple tree models. RF uses the bootstrap
aggregation (bagging) ensemble method in generating a
large number of independent bootstrapped trees at ran-
dom from the dataset. The various tree models are then
aggregated or combined using the mean [59]. The final
tree model estimates the importance of every predictive
variable by inspecting how much the prediction error in-
creases [60, 61]. In contrast with RF, Gradient Boosting
(GB) uses stochastic gradient boosting where the model-
building process is a stage-wise procedure. The task of
this method is to improve the decision tree by minimiz-
ing the loss function (deviance) at each tree split. Hence,
this type of ensemble method is considered to be power-
ful because it can enhance weak predictors by adding a
predictor at a time, so that the next predictor is trained
to improve the already trained ensemble therefore,
improving the predictive accuracy [40].

Implementation

All statistical modeling techniques were performed in R
program version 3.3.3 [62]. Initially, Pearson’s correlation
analysis was done to assess the degree of association of
dengue incidence and the meteorological factors. More-
over, the correlation analysis among meteorological fac-
tors was also done to determine which meteorological
factors are highly correlated with each other.

For GAM, the default parameters specified are family
= “Gaussian”, link = “identity” and smoothening function
using the natural spline was applied to meteorological
variables except for flood occurrence. Missing values are
excluded from the analysis. GAM analysis was done in a
step-wise approach. Model building process was done
with independent, combination and all meteorological
factors and its corresponding lags. The best model was



Carvajal et al. BMIC Infectious Diseases (2018) 18:183

determined by Akaike Information Criterion (AIC). De-
termination of predictors important to the model were
based on its statistical significance of the p-value. This
statistical modeling method and process were performed
using the mgcv package version 1.8-17 [58].

In performing SARIMAX, the fpp package version 0.5
[63] was employed. First, the study decided that the sea-
sonal factor of “m” is set at 52 in order to account the
annual weekly trend. Next, we applied the xreg function
to group together the different predictor variables to be
included in the model. We set the parameters for model
development to be seasonal (seasonal = TRUE) and used
the default parameters such as the AIC as the informa-
tion criterion (ic = “AIC”) and KPSS test (test = “kpss”).
Afterwards, the auto.arima function was implemented
to determine the model parameters of (p,d,q,)(PD,Q)
with m at 52 along with predictor variables. The best
model was chosen based on the lowest AIC. A Kalman
filter approach was first employed to the LG dataset
which contained missing values. However, the extrapola-
tion of flood, minimum and maximum wind direction
were not possible due to the nature of being categorical.
Hence, the study still decided to remove the missing
values found in the LG dataset similar to GAM. A
stepwise approach in SARIMAX modeling building was
applied to independent, combination and all meteoro-
logical factors and its corresponding lags. Moreover,
identification of predictors important to the model was
based on the statistical significance of the p-value.

The RF method is performed using randomForest
package version 4.6.12 [64] where each model was built
based on 1000 trees (m.tree=1000). The imputation
function was applied for missing values where surrogate
values are generated based on weighted average of the
non-missing observations. Variable importance is se-
lected based on the number of times the variable was
used for splitting, then weighted by the squared
improvement to the model as a result of each split, and
averaged over all trees [40]. RF generates two variable
importance measures, the percentage increase of the
mean square error (%IncMSE) and increase node purity
(IncNodePurity). The %IncMSE is calculated as the aver-
age difference of the variables’ MSE from the original
dataset and the sets of randomly permuted variables.
The interpretation of a large %IncMSE value indicates a
large difference from randomly permuted variables, thus,
making the modeled variables important to the final
model. On the other hand, IncNodePurity is a measure
of the total decrease in node impurity that results from
splits over that variable, averaged over all trees. Since RF
shows no significance test towards which variables are
important, a randomness threshold [19, 65] was used.
This is calculated by dividing 100% to the number of
predictor variables (MF =10, LG =9), hence, the study
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only considered a randomness threshold of above 10% in
MF and 11% in LG datasets as important variables to
the model.

GB models, on the other hand, comprised the fol-
lowing model parameters that need to be set such as
learning or shrinkage rate, tree complexity and bag-
ging factor. Learning or shrinkage rate determines the
contribution of each tree to the growing model. Tree
complexity determines the degree to which predictors
may interact with each other and a higher value is
set if more levels of interaction is needed. In the
study, the interactions are fitted with a tree complex-
ity of 5 (tree.complexity =5) and learning or shrinkage
rate was set at 0.001 (learning.rate=0.001). The bag-
ging factor is set at 0.5 (bag.faction = 0.5) as suggested
by Freidman [66] and pertains that during the stage-
wise approach it will randomly select 50% of the
training data when the regression tree is fitted to the
dependent variable. In contrast with RF, GB can
accommodate missing values without the need of
imputation. The GB method was performed using the
gbm package version 2.1.3 [67]. The process of
variable importance in GB is comparable with RF,
however, it does not use %IncMSE nor IncNodePurity.
It uses the relative contribution (%) where a higher
percentage pertains to a strong relative importance of
the variable. Similarly with RF that has no test of sig-
nificance test on important variables, the randomness
threshold was used.

Performance evaluation

All the best models generated from each statistical
modeling technique were employed to predict the den-
gue incidence of 2013 from the meteorological factors
and its time lag of the test dataset. Afterwards, the pre-
dicted and observed values were used to calculate the
root mean square error (RMSE) and mean absolute error
(MAE). These two measures are commonly used to
evaluate the performance of a model and determine the
accuracy of regression type analysis with a continuous
outcome variable [68]. The RMSE is calculated by the
square root of the average of squared differences while
MAE is the average over the absolute differences be-
tween predicted and actual observations. The difference
between the two lies on the calculation of the error.
RMSE uses the square root of the average squared errors
in order to give relatively high weight to large errors.
Thus, RMSE value tends to increase along with the vari-
ance of the frequency distribution of error magnitudes.
On the other hand, MAE relies only to the variance of
the errors without considering its magnitude. As such,
MAE is considered to be an unbiased estimator while
RMSE is a biased estimator due to this difference.
Nevertheless, we adhere to the recommendation of the
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study by Chai and Draxler [68] where both measures
should be used in assessing the different modeling
approaches.

Results
Association and cross-correlation analysis
Pearson’s correlation analysis showed that 7 meteoro-
logical variables are found to be significantly associated
with dengue Incidence (Table 1). These are from highest
to lowest correlation; [1] relative humidity, [2] maximum
temperature, [3] total rainfall, [4] mean temperature, [5]
flood, [6] minimum wind direction and [7] southern os-
cillation index. Moreover, all climatic variables except
for average wind speed, average and maximum
temperature were found to have a positive association
towards dengue incidence. Also, Table 1 shows the iden-
tified highest associated time lags each meteorological
factor to dengue incidence. Relative humidity, rainfall
and flood showed the highest association from lag weeks
4—6 respectively. Minimum, average and maximum tem-
peratures showed the highest association from lag weeks
13-18. Lag weeks 10 and 25 were identified in minimum
and maximum wind direction respectively while SOI
showed highest association in lag week 20. Wind speed
had correlation coefficients near zero and found to be
not statistically significant, thus, this lag meteorological
factor was not included in subsequent analysis.
Correlation analysis among meteorological factors
(MF) (Additional file 1: Table Sla) showed that Aver-
age and Maximum Temperatures are highly correlated
(r>0.8) but not in the case of their corresponding
lags (LG) (r<0.8) (Additional file 1: Table S1b). We
still decided to include Average Temperature for both
datasets in the model development for comparative
purposes and also assess in the subsequent sections if
its exclusion may considerably affect the robustness
of the final model (Additional file 4: Table S4).
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General additive model

Additional file 2: Table S2a lists the order of the different
GAM models using the observed meteorological factors
(MF) from the lowest to the highest AIC values. The five
best models are as follows: Maximum temperature (AIC =
328.69), combination of Flood+Total Rainfall+Relative
Humidity (325.41), relative humidity (324.27), Mini-
mum-+Average + Maximum Temperatures+SOI (297.34)
and all- meteorological factors (286.18). Moreover, all-
meteorological model (GAM-MF) resulted with the high-
est adjusted R* (0.45) among all models used. In this best
model, maximum temperature, relative humidity and SOI
were considered to be the most statistically significant and
important meteorological factors (Table 3) (Additional file
3: Table S3a). On the other hand, Additional file 2:
Table S2b shows the order of the different GAM models
using the lagged meteorological factors (LG) from the
lowest to the highest AIC values. The five best models are:
Maximum Temperature (265.89), Mean Temperature
(255.96), Flood+Total Rainfall+Relative Humidity (238.42),
Minimum+Average + Maximum Temperatures+SOI (203.
63) and all- meteorological factors (145.81). The all-
meteorological model (GAM-LG) was shown to be the
best model with an adjusted R* of 0.65 and variables
that were statistically significant for the model are
flood occurrence, rainfall, relative humidity, maximum
temperature and SOI (Table 3) (Additional file 3: Table S3a).
Since Average and Maximum Temperature were highly
correlated, we examine their model quality when either
one of them are excluded in model development for
both datasets (MF and LG). In both MF and LG datasets,
exclusion of maximum or average temperatures in the
model development resulted to higher AIC values as
compared to all-meteorological models (Additional file 4:
Table S4a). Moreover, with the direct dependence of rela-
tive humidity with rainfall and temperature, we also ex-
plored the exclusion of this meteorological factor in
model development and compared the model quality in

Table 1 Correlation and Cross-Correlation Analysis of Meteorological Factors to Dengue Incidence

Meteorological factors Correlation Analysis

Cross-Correlation Analysis

r p-value Lag week p-value

Relative Humidity 053 0.00 4 0.00
Maximum Temperature -045 0.00 18 0.00
Total Rainfall 031 0.00 5 0.00
Flood 029 0.00 6 0.00
Average Temperature -0.29 0.00 17 0.00
Minimum Wind Direction 0.26 0.00 10 0.00
Southern Oscillation Index 0.12 0.00 20 0.00
Minimum Temperature 0.1 0.10 13 0.00
Maximum Wind Direction 0.03 0.61 25 0.29
Average Wind Speed -0.01 0.96 - -
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both datasets (MF and LG). Similarly, the excluded rela-
tive humidity models were shown to generate higher AIC
values than GAM-MF and GAM-LG models. Table 2 and
Figure 2a show the prediction performance of the GAM-
MF and GAM-LG models when using the test subset for
model validation. Although both models were able to
capture the dengue trend pattern, some forecast points
are either overestimated or underestimated. Furthermore,
the GAM-LG appears to be the better model than GAM-
MEF since it generated a lower RMSE and MAE values.

SARIMAX

Additional file 2 Table S2c¢ shows the SARIMAX
models using observed meteorological factors (MF)
and the SARIMA model where the actual dengue in-
cidence is used. The SARIMA model of dengue inci-
dence is used as a baseline to compare the quality of
the SARIMAX models with exogenous variables (i.e.
meteorological factors). It was shown in the result
that the SARIMA model of dengue incidence (SAR-
IMA-DI) (-144.72) have the lowest AIC value as
compared to those models which included MF factors.
Among the models with exogenous variables, all-
meteorological factors (SARIMA-MF) showed to be
the best model (- 200.67) followed by Average Wind
Speed+Minimum+Maximum Wind Directions (- 201.
75), Total Rainfall (-202.86) and Flood (-202.99).
When the lagged meteorological factors are used as
exogenous variables, the all-meteorological lagged fac-
tors model (SARIMA-LG) was determined to be the
best model (-125.94). It is noteworthy to mention
that the SARIMA-LG resulted with the lowest AIC
value as compared to the AIC values of SARIMA-DI
and SARIMA-MF. Maximum, minimum temperatures,
average wind speed and maximum wind direction were me-
teorological factors found to be significant in the SARIMA-
MF model while only two variables, flood and average
temperature, were found to be statistically significant in
SARIMA-LG (Table 3) (Additional file 3: Table S3a).
Furthermore, exclusion of average, maximum temperatures
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and relative humidity did not improve the model quality
and performance (Additional file 4: Tables S4a and b).
SARIMA-DI, SARIMA-MF and SARIMA-LG models were
used to forecast the dengue incidence from the test dataset.
Figure 2b shows the dengue pattern produced by the differ-
ent models. It can be observed that the point forecasts are
considerably away from the observed values and the dengue
trend pattern is not discernable. Among the three models,
SARIMA-LG model generated lowest RMSE and MAE
values (Table 2).

Random Forest and gradient boosting
Figure 3a and Additional file 3: Table S3b shows the im-
portant variables of each RF model. For the RF meteoro-
logical factors (RF-MF) model, 5 predictors were
considered above the 10% threshold; all temperatures
(minimum, average and maximum), relative humidity
and rainfall. On the other hand, the RF time lags of me-
teorological factors (RF-LG) model showed that all tem-
peratures, relative humidity, total rainfall and southern
oscillation index are above the threshold of 11%. When
average, maximum temperatures and relative humidity
are excluded in the model development (Additional
file 4: Tables S4a and b), it did not improve the per-
formance of the model based on its RMSE and MAE.
There are instances where the removal of one pre-
dictor didn’t affect the model itself (e.g. temperatures
in LG or relative humidity in MF datasets). Thus, in-
dicating that the RF-MF and RF-LG models are still
considered to be suitable. Moreover, comparing the
model performance between the two types of datasets,
the prediction accuracy showed that the RF-LG model
produced the lower RMSE and MAE values than RF-LG
model (Table 2). Figure 2c shows that that two models
were able to capture the dengue trend pattern of 2013.
However, majority of the predictive values of RE-MF were
either overestimated or underestimated.

Figure 3b and Additional file 3: Table S3b shows the
important variables of each GB model. In the GB

Table 2 Performance Measures of each Statistical Modeling Technique using Meteorological Factors and its Time lags in predicting

the Dengue incidence of Metropolitan Manila in 2013

Statistical Modeling Technique Datasets Root Mean Square Error Mean Absolute Error
General Additive Modeling (GAM) Meteorological Factors (MF) 033 0.27
Lagged MF (LG) 0.22 017
Seasonal Autoregressive Integrated Moving Average (SARIMAX) Meteorological Factors (MF) 042 039
Lagged MF (LG) 031 0.27
Random Forest (RF) Meteorological Factors (MF) 0.29 023
Lagged MF (LG) 021 015
Gradient Boosting (GB) Meteorological Factors (MF) 030 0.24

Lagged MF (LG) 0.23 017
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Fig. 2 Prediction accuracy of the temporal pattern of Dengue incidence in 2013. (@) General Additive Modeling; (b) Seasonal Autoregressive
Integrated Moving Average (c) Random Forest and (d) Gradient Boosting

Table 3 Consensus of Important Meteorological Factors (MF) and its corresponding time lags (LG) across all statistical modeling

techniques
Weather Variables Meteorological Factors (MF) Lagged Meteorological Factors (LG)

GAM SARIMAX RF GB GAM SARIMAX RF GB
Flood X X
Rainfall X X X X X
Relative Humidity X X X X X X
Minimum Temperature X X X
Average Temperature X X X X X
Maximum Temperature X X X X X X
Southern Oscillation Index X X X
Wind Speed X
Minimum Wind Direction
Maximum Wind Direction X

Note: x = identified as an important meteorological factor from each model
GAM: General Additive Modeling, SARIMAX: Seasonal Autoregressive Moving Average with Exogenous Variables, RF: Random Forest, GB: Gradient Boosting
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a RANDOM FOREST (RF)
Maximum Temperature 27.70 %
Relative Humidity 18.45 %
Average Temperature 16.41 %
Total Rainfall 15.16 %
Minimum Temperature 14.81 %
Relative Humidity (LG) 32.47 %
Total Rainfall (LG) 26.86 %
Minimum Temperature (LG) 24.52 %
Average Temperature (LG) 23.11%
Maximum Temperature (LG) 22.05 %
Southern Oscillation Index (LG) 17.97 %

Percentage (%) Increase Mean Square Error

b GRADIENT BOOSTING (GB)
Maximum Temperature 28.32 %
Relative Humidity 20.45%
Total Rainfall 11.63 %
Average Temperature 11.61 %
Maximum Temperature (LG) 22.32 %
Average Temperature (LG) 19.24 %
Relative Humidity (LG) 14.36 %
Total Rainfall (LG) 12.57 %

Percentage (%) Relative Influence

Fig. 3 Variable importance of (a) Random Forest and (b) Gradient
Boosting models. Meteorological factors (blue) and its corresponding
delayed or lagged meteorological effects (LG; green). Relative
contribution of Gradient Boosting models adds up to 100%

meteorological factors model (GB-MF), four factors were
only considered above the 10% threshold; relative hu-
midity, rainfall, average and maximum temperature. On
the other hand, the GB lagged meteorological (GB-LG)
model determined 5 lagged meteorological factors above
the 11% threshold; relative humidity, rainfall, southern
oscillation index, average and maximum temperatures.
GB-MF and GB-LG are still considered the suitable
models even though maximum, average temperatures
and relative humidity are excluded in the model devel-
opment (Additional file 4: Tables S4a and b). Further-
more, the prediction accuracy of the GB-LG model
generated lower RMSE and MAE values than the GB-
MF model (Table 2). All models were able to capture the
dengue trend pattern of 2013 however majority of the
predictive values were either overestimated or underesti-
mated (Fig. 2d).

Comparison and evaluation of model performance across
all statistical modeling techniques

Among the statistical modeling techniques, RF showed
the lowest RMSE and MAE values across all types of
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datasets (Table 2). Moreover, it was also shown that LG
datasets provided the lowest values across the different
statistical modeling techniques. The RF-LG model
showed to be the best model as evidence from the per-
formance measures and the pattern of the predictive
values against the observed values. Table 3 shows the
variable importance of the four statistical modeling tech-
nique from each type of dataset. It is clear that no factor
is commonly found in all techniques except for relative
humidity and maximum temperature. The two factors
are determined important by GAM, RF and GB in both
datasets (MF and LG). Furthermore, rainfall and average
temperature appears to be also mutually important too
in the LG datasets.

Discussion

Comparison of the statistical modeling techniques and
datasets

Overall, the two machine learning methods (MLMs),
Random Forest and Gradient Boosting outperformed the
two conventional statistical modeling techniques in pre-
dicting the temporal dengue incidence of Metro Manila
in 2013. The findings of our study are consistent with
other literature in showing the exceptional performance
of these methods over classical methods [45, 69, 70].
MLMs have several advantages as compared to conven-
tional statistical techniques. One such case is the
robustness towards outliers. Parametric statistics such as
means, standard deviation and correlations are highly
sensitive to outliers. Thus, conventional statistical proce-
dures that are based on these parametric statistics may
severely influence the final model especially on the pre-
dicted responses. The reason why tree-based ensemble
methods are robust to outliers because of its fundamen-
tal process of splitting and partitioning the dataset. The
split can occur based on the proportion of samples
within a certain range. Therefore, it is known that out-
liers would not affect the splitting rule at each node of
the tree model. GB was the only method to handle and
accommodate missing values. Moreover, imputation of
missing values was needed for RF in order to implement
model development. This goes the same with SARIMA
however, during the imputation process using Kalman
filter approach, extrapolation of categorical meteoro-
logical factors (e.g. Flood) were not possible. GAM, on
the other hand, may only use complete datasets, thus
the removal of observations with incomplete entries was
needed. Thus, only selected MLMs may have the
capability to accommodate missing values.

Among all statistical methods used in our study, Random
Forest has shown to be the best method in predicting the
temporal dengue incidence of Metropolitan Manila. This is
consistent with other studies where they find this method
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as robust and accurate [71-73]. Although there are studies
which shows GB to be superior from RE, the use of these
methods may generate mixed results [74] when applied to
different types of dataset. It is highly recommended that ap-
plying these methods should compare both results in order
to select the best model for prediction as demonstrated by
this study. The observed lower RMSE and MAE values in
RF can be explained towards how both algorithmic models
tackles the bias-variance dilemma [75]. Generally, GB’s al-
gorithm is tasked to reduce bias by producing shallow trees
while RF reduces variance by generating fully grown deci-
sion trees. Moreover, the GB process uses each tree model
as its basis to correct errors in its stage-wise approach, thus,
producing a higher variance as compared to RF.

Our study has clearly demonstrated that the use of de-
layed effects or time lags is suitable towards the prediction
of dengue incidence. These time lags account for the
potential delays in the time which weather affects both the
mosquito vector and virus. Since our analysis explored the
influence of meteorological factors towards the disease oc-
currence, the observed time lags may potentially explain
the dengue temporal variability in Metropolitan Manila.
Time lags are appropriate in model development for
dengue due to the nature of its disease dynamics where it
starts with mosquito development, mosquito acquisition
and amplification of the virus, seeking host behavior of
mosquitoes and virus incubation in humans leading to
disease outbreak [76, 77]. The impact of time lag effect on
dengue incidence has been investigated by numerous
studies [16, 37, 78, 79] (with varying lags observed for each
meteorological factor. With this, it is clearly appropriate
and applicable the use of time lags in predicting dengue in-
cidence especially when using meteorological factors.

It should be known that our study is inherent with certain
limitations. First, the study specifies only one location in the
Philippines which is Metropolitan Manila. The application
of the results may only be good for this area but may change
to some extent when applied to other regions in the
Philippines. Different regions may possess diverse types of
landscapes (i.e. urban or rural) or experience atypical ENSO
effects that can feature different annual climatological cycles
as well as meteorological profiles. Thus, leading to other me-
teorological factors or teleconnections besides ENSO to be
important as compared to the results of this study. Another
that needs to be considered is the multifacet nature of den-
gue disease dynamics where the study limited itself to a se-
lected ecological factor. Other factors such as biological (e.g.
mosquito surveillance and serological surveys) and socio-
logical (human movement, health services) aspects may be
added in the future along with meteorological variables. It is
noteworthy to mention that the Philippines had started to
use the approved dengue vaccine (Dengvaxia®) [80] in high
dengue endemic areas such as Metropolitan Manila. It is ex-
pected that dengue morbidity will lower as compared to
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previous years, thus, affecting the prediction nature of the
models used in the study. It is essential that such event
should be included in future endeavors of dengue risk
modeling. Nonetheless, the results of the study pro-
vide valuable insights when employing different mod-
eling approaches. This may serve as a guide especially
for those who are embarking to model factors that
are linked with dengue disease using recent modeling
techniques such as MLMs.

Important meteorological factors in predicting dengue
incidence

The impact of meteorological factors towards dengue
incidence has been widely studied. The most common
meteorological factors associated with dengue incidence
are rain, temperature and relative humidity [81-84]. Fol-
lowing the factors deemed important by the best model,
RF-LG, rainfall, relative humidity, temperature, and SOI
were selected. These findings are consistent with previous
results [28, 33] except for relative humidity. In our study,
we find that a positive correlation of rainfall to dengue in-
cidence. Moreover, the annual increasing trend of dengue
cases in the Philippines, especially in the study area, hap-
pens during the rainy season (June — October) of the
Philippines. The presence of water bodies plays a big role
in the abundance and development of the dengue vector
mosquito. Aedes aegypti mosquitoes are holometabolous
insects wherein it relies on water bodies to complete its
general life cycle of about two weeks under ideal condi-
tions [85]. Hence, the presence of rainfall provides breed-
ing habitats and opportunities for these mosquito vectors
to proliferate or become abundant in the environment
[86]. However, there is still a debate on whether this factor
is considered as the sole basis of explaining the weekly oc-
currence of dengue. In Singapore, for example, rainfall
was determined not highly influential towards the tem-
poral pattern of dengue cases [87]. The likely impact of
rainfall may be restricted due to the fact that majority of
the breeding sites of Ae aegpyti are found indoors. This
may possibly be one of the reasons why dengue is
incessant in Metropolitan Manila especially during the
non-rainy months throughout the year.

With the Philippines being a tropical country, Metropo-
litan Manila’s temperature annual do not vary as much. The
study area has an average annual temperature of 27.91 °C
with an average minimum temperature of 22.51 °C and an
average maximum temperature of 33.60 °C during 2009—
2013. Our correlation analysis found a positive association
in minimum temperature while a negative association in
average and maximum temperature. Thus pertaining that
high dengue occurrence may occur in temperatures between
23 °C -28 °C in Metropolitan Manila. The role of
temperature has been considered to be the driving factor for
mosquito development, thus leading to its abundance.
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Several studies [88-91] have conducted experiments
to ascertain the optimal temperature for the develop-
ment and survival of the vector. Because of such, this
had led to the basis that these mosquitoes can
spatially expand their habitat under climate-based sce-
narios. Additionally, temperature regulation in breed-
ing containers was determined to be a factor towards
the developmental rate of the dengue mosquito [92].
Changes in temperature not only affect the biology and
ecology of the mosquito but also the dengue virus. There
is compelling evidence that changes in temperature is
associated in the replication, maturation and infective
periods of the virus in mosquitoes [37, 93].

What is noteworthy in our findings is the importance
of relative humidity. In our correlation analysis, it was
ranked with the highest association among all meteoro-
logical variables. Furthermore, relative humidity appears
to be an important meteorological factor in most of the
statistical techniques employed in the study. Although
there is a direct dependence of relative humidity towards
temperature and rainfall, our study demonstrated that
the omission of such affect the model quality and per-
formance of the different models. Thus, indicating its
non-dependency towards rainfall or temperature. Rela-
tive humidity was neither emphasized nor highlighted by
previous Philippine studies [28, 33]. There is a great deal
of emphasis of this meteorological factor linking the
biology and population dynamics of Ae. aegypti. Relative
humidity had been claimed to be a consistent and sub-
stantial factor that provides a suitable condition for the
development and survival of the mosquito vector [94].
In Thailand, relative humidity is deemed to be a deter-
minant in the egg development and adult population
size of the mosquito vector [95]. It was also observed in
Texas that there was an increase in the hatching rate of
Ae. aegypti eggs whenever there is an increase in relative
humidity [96]. Moreover, relative humidity is highlighted
to be a crucial factor in affecting the life patterns of the
mosquito dengue vectors such as mating, oviposition,
and seeking host pattern [97] which are necessary for
increasing dengue transmission.

Another notable observation in the results is that no
single factor was found to be important across all models.
However, relative humidity and maximum temperature
appear to be the common important factors found in the
models of GAM, RF and GB in both datasets.
Additionally, it appears that conventional modeling tech-
niques (e.g. SARIMAX) tend to obtain different statistical
significant factors when a different dataset is applied. Un-
like MLMs, the important factors identified were nearly
the same in MF and LG datasets. It is the intention of the
study to capture common meteorological factor/s when
different statistical modeling techniques are applied. This
pertains that the factor is really robust amidst on how it is
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used in model development. Therefore, our study may
only infer the importance of the two meteorological
factors because of its frequent occurrence across
modeling techniques. Moreover, our study would also
like to emphasize that it does not challenge nor in-
validate the importance of other meteorological fac-
tors such as rainfall or flood. We acknowledge these
meteorological factors to be highly important due to
its link in dengue disease dynamics. The importance
of relative humidity was indeed a remarkable outcome
in the study, thus broadening our current perspective
and understanding on its influence in dengue disease
dynamics of Metropolitan Manila. Lastly, our study is
a clear demonstration of how different modeling ap-
proaches may tend to yield diverse meteorological
factors as important predictors. Thus, it is imperative
to be mindful on what kind of datasets to use (e.g.
lag factors) or the application of a modeling approach
in order to present a meaningful interpretation. It is
recommended to future researchers to apply the same
approach employed by the study in order to gain
valuable insights not only in its methodological aspect
but to other potential effects of meteorological factors
to dengue occurrence.

Conclusion
Our study has revealed that Tree-based Machine Learning
methods (RF and GB) performed well in predicting the
temporal pattern of dengue Incidence of Metropolitan
Manila as compared to conventional statistical modeling
techniques (GAM and SARIMAX). Our study also
highlighted that the use of delayed effects or time lags
(LG) of each meteorological factor are more appropriate
in predicting dengue incidence. With this, our approach
may serve as a basis towards choosing an appropriate
modeling technique to be used in adopting an early out-
break warning system. It is further recommended that
other factors such as temporal vector abundance and virus
epidemiology should be included in order to broaden the
scope of understanding and perspective of dengue disease.
Relative humidity was deemed by our study to be also
an important variable in the RF-LG model along with
rainfall and temperature. This meteorological factor was
not only found from the best model but from other
models as well either on the top two or three most
important variable. Such finding is noteworthy because
it provides a broader perspective and understanding on
how meteorological variables tend to influence the
temporal pattern of disease occurrence in Metropolitan
Manila. This is worth investigating for future endeavors
since no study has ever been conducted yet in exploring
this meteorological factor to dengue disease in the
Philippines.
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