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Abstract

Background: To evaluate in vitro susceptibilities of aerobic and facultative Gram-negative bacterial (GNB) isolates
from intra-abdominal infections (IAIs) to 12 selected antimicrobials in Chinese hospitals from 2012 to 2014.

Methods: Hospital acquired (HA) and community acquired (CA) IAIs were collected from 21 centers in 16 Chinese
cities. Extended spectrum beta-lactamase (ESBL) status and antimicrobial susceptibilities were determined at a
central laboratory using CLSI broth microdilution and interpretive standards.

Results: From all isolated strains the Enterobacteriaceae (81.1%) Escherichia coli accounted for 45.4% and Klebsiella
pneumoniae for 20.1%, followed by Enterobacter cloacae (5.2%), Proteus mirabilis (2.1%), Citrobacter freundii (1.8%),
Enterobacter aerogenes (1.8%), Klebsiella oxytoca (1.4%), Morganella morganii (1.2%), Serratia marcescens (0.7%),
Citrobacter koseri (0.3%), Proteus vulgaris (0.3%) and others (1.0%). Non- Enterobacteriaceae (18.9%) included
Pseudomonas aeruginosa (9.8%), Acinetobacter baumannii (6.7%), Stenotrophomonas maltophilia (0.9%), Aeromonas
hydrophila (0.4%) and others (1.1%). ESBL-screen positive Escherichia coli isolates (ESBL+) showed a decreasing
trend from 67.5% in 2012 to 58.9% in 2014 of all Escherichia coli isolates and the percentage of ESBL+ Klebsiella
pneumoniae isolates also decreased from 2012 through 2014 (40.4% to 26.6%), which was due to reduced
percentages of ESBL+ isolates in HA IAIs for both bacteria. The overall susceptibilities of all 5160 IAI isolates
were 87.53% to amikacin (AMK), 78.12% to piperacillin-tazobactam (TZP) 81.41% to imipenem (IMP) and 73.12%
to ertapenem (ETP). The susceptibility of ESBL-screen positive Escherichia coli strains was 96.77%–98.8% to IPM,
91.26%–93.16% to ETP, 89.48%–92.75% to AMK and 84.86%–89.34% to TZP, while ESBL-screen positive Klebsiella
pneumoniae strains were 70.56%–80.15% susceptible to ETP, 80.0%–87.5% to IPM, 83.82%–87.06% to AMK and 63.
53%–68.38% to TZP within the three year study. Susceptibilities to all cephalosporins and fluoroquinolones were
less than 50% beside 66.5% and 56.07% to cefoxitin (FOX) for ESBL+ Escherichia coli and Klebsiella pneumoniae
strains respectively.
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Conclusions: The total ESBL+ rates decreased in Escherichia coli and Klebsiella pneumoniae IAI isolates due to fewer
prevalence in HA infections. IPM, ETP and AMK were the most effective antimicrobials against ESBL+ Escherichia coli
and Klebsiella pneumoniae IAI isolates in 2012–2014 and a change of fluoroquinolone regimens for Chinese IAIs is
recommended.

Keywords: Carbapenems, Extended spectrum beta-lactamase, Intra-abdominal infection, Escherichia coli, Klebsiella
pneumoniae

Background
The Study for Monitoring Antimicrobial Resistance
Trends (SMART) is a global surveillance program,
which monitors annually in vitro antimicrobial suscep-
tibilities of hospital acquired (HA) and community
acquired (CA) intra-abdominal and urinary tract infec-
tions due to aerobic and facultative Gram-negative
bacilli (GNB). Intra-abdominal infections (IAIs) are the
second most common cause of sepsis in intensive care
units (ICU) [1] where they are the second most com-
mon cause of infection-related mortality [2]. IAIs are
also the second most common cause of infection re-
lated to surgical interventions and according to a mul-
ticenter observational study in 68 medical institutions
worldwide, [3] the overall mortality rate of patients
with complicated IAIs in 2012–2013 was 10.5%, [4],
with ESBL producing bacteria being a particular chal-
lenge for treatment [5]. However, initiation of appropri-
ate antimicrobial therapy can significantly reduce the
mortality rate of IAI-induced septic shock [6]. Since ap-
propriate antibiotic therapy is essential for IAIs [7, 8],
institutional and nationwide surveillance of IAI-derived
bacterial strain susceptibilities provides crucial infor-
mation for the selection of the right choice of empirical
antimicrobial treatment.
Although a significant increase of the proportion of

ESBL-positive Enterobacteriaceae hospital infections in
Germany over the period 2007–2012 [9] and in Japan
from 2000 to 2010 have been reported [10, 11] the situ-
ation in China is not clear. A limited number of ESBL-
screen positive Escherichia coli and Klebsiella pneumoniae
IAI isolates from 2012 and 2013 have been documented,
but there is a wide diversity in ESBL-related molecular
characteristics [12].
The present study mainly focused on ESBL-screen

positive rates of IAI isolates and concomitantly on
resistance rates of IAIs, in particularly those caused by
Enterobacteriaceae against, 3rd and 4th generation ceph-
alosporins, a cephamycin, 2nd generation fluoroquino-
lones, carbapenems, an aminoglycoside, as well as a
combination of drugs containing penicillins with β-lacta-
mase inhibitors. The data was collected from 21 centers
in 16 Chinese cities between 2012 and 2014 in order to
provide guidance for antimicrobial therapy of IAIs.

Methods
Collection and identification of isolates
The Human Research Ethics Committee of Peking
Union Medical College Hospital approved this study and
waived the need for consent (Ethics Approval Number:
S-K238).
GNB strains were collected from consecutive IAI pa-

tients between 2012 and 2014 in 21 centers located in 16
Chinese cities. Only gram-negative aerobic and facultative
anaerobic bacteria from abdominal infection sites such as
the appendix, peritoneum, colon, bile, pelvis and pancreas
were included and the strains needed to be pathogenic
bacteria associated with clinical infections while gram-
positive and anaerobic bacteria were excluded. The speci-
mens were mainly obtained through surgical procedures,
but puncture specimens such as intraperitoneal puncture
fluid were also included and different gram-negative bac-
teria that were combined in one sample were also ac-
cepted. Exclusion criteria were isolates from drainage
liquid or drainage bottles, as well as isolates from feces or
perianal abscess environmental samples (not a patient
source) or cultures for infection control purposes. All iso-
lates were sent to the central clinical microbiology labora-
tory of Peking Union Medical College Hospital for initial
bacteria identification and re-identification using MALDI-
TOF MS (Vitek MS, BioMérieux, France). All organisms
were considered clinically significant by local hospital cri-
teria. Isolates collected within 48 h of hospitalization were
categorized as CA IAIs, and those collected after 48 h
were categorized as HA IAIs [13].

Antimicrobial susceptibility test method
All isolate susceptibility tests and identification confir-
mations were carried out by the Clinical and Labora-
tory Standards Institute (CLSI) recommended broth
microdilution method. Minimum inhibitory concentra-
tions (MICs) interpretive criteria followed the 2014 M100-
S24 guidelines of the CLSI. M100-S23 criteria were used to
maintain the intermediate category for analysis [14]. Sus-
ceptibility to antimicrobial agents interpretations were
based on clinical CLSI breakpoints, while the reference
strains Escherichia coli ATCC 25922, Pseudomonas aerugi-
nosa ATCC 27853 and Klebsiella pneumoniae ATCC
700603 were used as quality controls. Twelve antimicrobial
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agents were used for susceptibility tests in the present
study, namely ceftriaxone (CRO), ceftazidime (CAZ),
cefotaxime (CTX), cefepime (FEP), cefoxitin (FOX),
ertapenem (ETP), imipenem (IPM), ampicillin-sulbactam
(SAM), piperacillin-tazobactam (TZP), ciprofloxacin
(CIP), levofloxacin (LVX) and amikacin (AMK).

Extended-spectrum β-lactamase (ESBL) detection
Phenotypic identification of ESBL-screen positivity in
Escherichia coli and Klebsiella pneumoniae (ESBL+) were
carried out by CLSI recommended methods [15]. If cefo-
taxime or ceftazidime MICs were ≥2 μg/mL, the MICs of
cefotaxime + clavulanic acid (4 μg/mL) or ceftazidime +
clavulanic acid (4 μg/mL) were comparatively determined
and ESBL production was defined as a ≥ 8-fold decrease in
MICs for cefotaxime or ceftazidime tested in combination
with clavulanic acid, compared to their MICs without cla-
vulanic acid.

Statistical analysis
All of the statistical analyses were performed using the
IBM SPSS Statistics for Windows (Version 19.0. Armonk,
NY: IBM Corp). The susceptibility of all Gram-negative
isolates combined was calculated using breakpoints appro-
priate for each species and assuming 0% susceptible for
species with no breakpoints for any given drug. The 95%
confidence intervals were calculated using the adjusted
Wald method; linear trends in susceptibility and ESBL
rates were assessed for statistical significance using the
Cochran-Armitage test; P values <0.05 were considered to
be statistically significant.

Results
Basic information on IAI isolates collected from 2012 to
2014
From the included 5160 GNB strains (1917 strains were
collected in 2012, 1665 strains in 2013, and 1578 strains
in 2014), the majority (79.8–83.8%) belonged to Entero-
bacteriaceae including Escherichia coli (45.4% of all
GNBs), Klebsiella pneumoniae (20.1% of all GNBs),
followed by Enterobacter cloacae (5.2%), Proteus mir-
abilis (2.1%), Citrobacter freundii (1.8%), Enterobacter
aerogenes (1.8%), Klebsiella oxytoca (1.4%), Morganella
morganii (1.2%), Serratia marcescens (0.7%), Citrobacter
koseri (0.3%), Proteus vulgaris (0.3%) and others 1.0%.
Non-Enterobacteriaceae were isolated from 16.2–20.2%
of all GNB caused IAIs and included Pseudomonas
aeruginosa (9.8%), Acinetobacter baumannii (6.7%), Ste-
notrophomonas maltophilia (0.9%), Aeromonas hydro-
phila (0.4%) and others (1.1%) (Additional file 1: Table
S1). Overall susceptibilities of the 5160 IAIs to the 12
antimicrobial agents tested in the study are shown in
Table 1. Highest overall susceptibilities of the 5610
GNB isolates from IAIs between 2012 and 2014 were

found to amikacin (87.53%), imipenem (81.41%), piper-
acillin tazobactam (78.12%) and ertapenem (73.12%).
Susceptibilities to all tested cephalosporins, fluoroqui-
nolones and ampicillin sulbactam were between 22.24%
and 58.75%.
The relative percentages of ESBL-screen positive

Escherichia coli and Klebsiella pneumoniae strains from
IAI isolates showed a decreasing trend from 2012 to
2014 for Klebsiella pneumoniae (P = 0.021) and for
Escherichia coli (67.5% to 58.9%), though not significant
for the later one (Table 2).
Of all ESBL-screen positive bacterial strains isolated

from IAIs (1900), Escherichia coli ESBL+ strains were
the most frequently isolated (74.9–79.5% of all ESBL+
IAIs), followed by Klebsiella pneumoniae (16.8–23.2%
of all ESBL+ IAIs) and Proteus mirabilis (1.3–3.1% of
all ESBL+ IAIs) with the least frequent isolated ESBL+
strain being Klebsiella oxytoca with only 0.6–1.4% of
all ESBL producing strains isolated from IAIs between
2012 and 2014. The overall percentages of ESBL pro-
duction in the Escherichia coli, Klebsiella pneumoniae,
Proteus mirabilis and Klebsiella oxytoca IAI strains
was 36.8% with fairly constant rates for Escherichia
coli, Proteus mirabilis and Klebsiella oxytoca, but a
significant decrease of ESBL producing HA Klebsiella
pneumoniae strains during this period (from 43.6%
and 42.0% in 2012 and 2013 to 24.4% in 2014), which
also reflected in a significant overall ESBL+ reduction
in Escherichia coli, Klebsiella pneumoniae, Proteus
mirabilis and Klebsiella oxytoca IAI isolates from
40.0% in 2012 to 37.6% in 2013 and to 32.1% in 2014
(P = 0.0038) and the overall ESBL+ production
changes of Klebsiella pneumoniae within the 3 year
observation period (P = 0.0215) (Table 2).

Table 1 Susceptibilities of all 5160 included strains derived from
Chinese IAIs from 2012 to 2014 to 12 tested antibiotics

Percent Susceptibilities

2012 2013 2014 Sum

Amikacin 87.20 89.16 86.22 87.53

Piperacillin Tazobactam 76.77 81.85 75.75 78.12

Ampicillin Sulbactam 18.70 24.72 23.30 22.24

Imipenem 80.66 84.26 79.30 81.41

Ertapenem 73.18 75.71 70.48 73.12

Cefoxitin 50.00 55.52 52.38 52.64

Ceftazidime 54.80 61.77 59.69 58.75

Cefepime 43.67 51.92 51.05 48.88

Ceftriaxone 31.25 36.74 38.66 35.55

Cefotaxime 30.98 36.49 37.46 34.98

Levofloxacin 49.63 53.90 55.62 53.05

Ciprofloxacin 45.52 48.20 50.35 48.02
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We next investigated the source of GNB strains iso-
lated from IAIs (gall bladder, peritoneal fluid, abscess,
appendix, liver and pancreas). The most frequently in-
fected organ was the gall bladder (1072), followed by
peritoneal fluid (812) and abscesses (650). The least in-
fected organ was the pancreas (85). Escherichia coli in-
fections occurred more frequently than Klebsiella
pneumoniae infections in all organs beside the liver, in
which the number of Klebsiella pneumoniae isolates
(148) was higher than the Escherichia coli (88) isolates.
In addition, over the three years, the highest percent-
ages of ESBL-screen positive Escherichia coli and
Klebsiella pneumoniae occurred in pancreatic isolates.
In accordance with the general ESBL+ percentage
decrease in Escherichia coli, isolates from the main 6
organs collected in 2014 contained less ESBL + −producing
Escherichia coli strains than in 2012, which occurred
for Klebsiella pneumoniae only in gall bladder, ab-
scess, liver and appendix infections (Additional file 2:
Figure S1).

In vitro susceptibility of ESBL-screen positive Escherichia
coli and Klebsiella pneumoniae strains isolated from IAIs
during 2012–2014
Susceptibilities of ESBL-screen positive Escherichia coli
strains were 96.66%- 98.08% to IPM, 91.26%–93.16% to

ETP, 89.48%–92.75% to AMK and 84.86%- 89.34% to
TZP, whereas susceptibilities to FOX was 61.60%–
70.58% and varied for CAZ, LVX, CIP, FEP, SAM, CRO
and CTX between 0% and 37.53%. ESBL-screen positive
Klebsiella pneumoniae strains were 70.59%–80.15% sus-
ceptible to ETP, 80.0%–87.5% to IPM and 83.82%–
87.06% to AMK as well as 53.79%–60.29% to FOX and
also varied between 0% and 52.21% for CAZ, LVX, CIP,
FEP, SAM,CRO and CTX within the three years of our
study. The susceptibility of non-ESBL-screen positive
Escherichia coli and non-ESBL-screen positive Klebsi-
ella pneumoniae strains were (94.27%–98.55%) and
(90.52%–97.65%) to IPM, (94.98%–98.55% and 90.09%–
96.71%) to ETP, (97.82%-98.55%) and (92.67%-99.53%)
to AMK, (91.04%–97.09%) and (89.22%–97.65%) to
TZP, (82.44%–85.4%) and (79.74%–82.99%) to FOX,
(56.0%- 63.27%) and (87.5%–92.27%) to LVX, (89.25%–
95.27%) and 90.95%–96.24%) to CAZ, (96.06%–98.55%)
and (91.38%–96.71%) to FEP, (88.53%–92.36%) and
(90.09%–91.75%) to CRO, as well as (88.17%–94.18%)
and (90.52%–93.18%) to CTX, whereas susceptibilities
to SAM were only (39.43%–47.64%) and (68.53%–
72.3%), respectively (Fig. 1).
Next, we investigated local differences of susceptibil-

ities to 12 antibiotics (Fig. 2) and the susceptibility rates
against Escherichia coli and Klebsiella pneumoniae were

Table 2 ESBL-screen positive strain percentages of HA and CA derived from IAIs (n/n, %)

Organism 2012
N (%)

2013
N (%)

2014
N (%)

Total
N (%)

P-value

ESBL+ strains in IAIs Total 767/1917 (40.0) 626/1665 (37.6)a 507/1578 (32.1)a 1900/5160 (36.8)a 0.0038

CA 166/465 (35.7) 121/375 (32.3) 204/598 (34.1) 491/1438 (34.1) 0.7651

HA 601/1452 (41.4) 503/1277 (39.4) 295/959 (30.8) 1399/3688 (37.9) 0.0011

E. coli ESBL+ Of all E. coli Total 599/887 (67.5) 469/772 (60.8)a 403/684 (58.9)a 1471/2343 (62.8)a 0.1978

CA 138/234 (59.0) 99/192 (51.6) 162/269 (60.2) 399/695 (57.4) 0.5920

HA 461/653 (70.6) 368/575(64.0) 236/406 (58.1) 1065/1634 (65.2) 0.1528

Of all ESBL+ IAI isolates 599/767 (78.1) 469/626 (74.9) 403/507 (79.5) 1471/1900 (77.4) 0.7905

K. pneumoniae ESBL+ Of all K. pneumoniae Total 136/337 (40.4) 145/381 (38.1) 85/319 (26.6)a 366/1037 (35.3)a 0.0215

CA 27/87 (31.0) 21/85 (24.7) 33/112 (29.5) 81/284 (28.5) 0.7703

HA 109/250 (43.6) 124/295 (42.0) 49/201 (24.4) 282/746 (37.8) 0.0060

Of all ESBL+ IAI isolates 136/767 (17.7) 145/626 (23.2) 85/507 (16.8) 366/1900 (19.3) 0.0448

P. mirabilis ESBL+ Of all P. mirabilis Total 24/48 (50.0) 8/32 (25.0) 12/29 (41.4) 44/109 (40.4) 0.3265

CA 0/11 (0.0) 1/10 (10.0) 3/9 (33.3) 4/30 (13.3) 0.1680

HA 24/37 (64.9) 7/22 (31.8) 9/20 (45.0) 40/79 (50.6) 0.3411

Of all ESBL+ IAI isolates 24/767 (3.1) 8/626 (1.3) 12/507 (2.4) 44/1900 (2.3) 0.1715

K. oxytoca ESBL+ Of all K. oxytoca Total 8/21 (38.1) 4/18 (22.2) 7/31 (22.6) 19/70 (27.1)a 0.6073

CA 1/3 (33.3) 0/5 (0) 6/19 (31.6) 7/27 (25.9) 0.4672

HA 7/18 (38.9) 4/12 (33.3) 1/12 (8.3) 12/42 (28.6) 0.3426

Of all ESBL+ IAI isolates 8/767 (1.0) 4/626 (0.6) 7/507 (1.4) 19/1900 (1.0) 0.4608

Note: Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Hospital Acquired (HA), Community Acquired (CA)
aindicates that few strains were not categorized into HA and CA IAIs
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essentially higher in participating centers located in the
south and northeast compared to the southwest and
central China. In addition, the susceptibility rates to
IPM ETP AMK and TZP of Klebsiella pneumoniae were
lowest in the centers from the east of China, indicating
the development of multi-resistant strains in this region.

There was no significant difference in antimicrobial
susceptibility among the Escherichia coli and Klebsiella
pneumoniae IAIs producing ESBL strains between HA
and CA infections. However there was a tendency that
susceptibility of Klebsiella pneumoniae ESBL+ infections
was lower in CA than in HA IAIs (Table 3).

Fig. 1 In vitro antimicrobial susceptibilities of ESBL+ or non-ESBL-screen positive Escherichia coli strains and ESBL+ or non-ESBL-screen positive
Klebsiella pneumoniae strains causing IAIs between 2012 and 2014

Fig. 2 Antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae IAI isolates from the northeastern, northern, central, eastern,
southwestern and southern regions of China to the indicated antimicrobials
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Discussion
The majority of IAI isolates collected in the participating
centers consisted of Escherichia coli and Klebsiella pneu-
moniae which is similar with data from the 2002 to 2009
SMART study [16]. However, in contrast to the 2002–
2009 SMART study data, which revealed an increase
particularly of ESBL-screen positive Escherichia coli
strains from 20.8% in 2002 up to 64.9% in 2009, in the
present study ESBL+ rates in Escherichia coli strains de-
creased from 67.5% in 2012 to 58.9% in 2014, which was
reflected also in gall bladder, abscess, liver, peritoneal
fluid, appendix and pancreas derived isolates sampled in
2014. In the present study the percentages of ESBL+
Klebsiella pneumoniae strains notably dropped from
40.4% in 2012 to 26.6% in 2014 (P = 0.0215) (Table 2),
which was also seen in the decreased ESBL+ percentages
of isolates from the gall bladder, abscess, liver and ap-
pendix. However, the percentages of ESBL+ Escherichia
coli (66.7%) and Klebsiella pneumoniae (55.6%) strains
isolated from pancreas remained high in 2014. Most of
the infections occurred in the gall bladder and the
peritoneum, which is in accordance with previous litera-
ture, but the number of isolates from the appendix was
unusually low in our study [4, 17]. In contrast to other
organs, the number of Klebsiella pneumoniae liver infec-
tions exceeded those caused by Escherichia coli, which
has also been reported in previous studies, and might be
explained by cryptogenic infections with a new hypervir-
ulent K1 Klebsiella pneumoniae ST23 strain, which
developed in Asia and spread to Australia, European
countries and the USA [18–20], while a recent report by
Qu et al. (2015) et al. noted that K1 ST23 were the pre-
dominant Klebsiella pneumoniae liver abscess causing

strains in east China [21]. ESBL-producing Escherichia coli
and Klebsiella pneumoniae are supposed to be susceptible
to cefoxitin, but a high proportion of these isolates tested
cefoxitin-resistant (Table 3) and a likely explanation is that
they have acquired AmpC beta-lactamases and porin loss,
which has been described in a previous study about cefox-
itin resistant Klebsiella pneumoniae strains in China,
which expressed DHA-1 ß-lactamase combined with
porin OmpK36 deficiency [22].
The percentages of Escherichia coli and Klebsiella

pneumoniae ESBL+ strains was higher in HA than in
CA IAI isolates, which is in accordance with a previous
Chinese SMART study by Yang et al. (2013). However,
in the latter study Escherichia coli ESBL+ rates in CA in-
fections constantly rose from 19.1% in 2002–2003 to
61.6% in 2010–2011, whereas in our study the Escheri-
chia coli ESBL+ rates in CA IAIs were relative constant
at around 60%, with a reduction to 51.6% only in 2013.
In contrast, the Escherichia coli ESBL+ rates in HA IAIs
showed a decreasing trend from 70.6% in 2012 to 58.1%
in 2014 in our study, but were relative stable in the years
2006–2011 (66.7%–70.0%) [23].
A more dramatic change was visible for Klebsiella pneu-

moniae ESBL+ rates in HA IAIs dropping from 43.6% in
2012 and 42.0% in 2013, which is similar to the Chinese
HA values (39.4%) reported for Klebsiella pneumoniae
IAIs in 2010–2011 [23], to 24.4% in 2014 (P = 0.006), but
in CA IAIs the Klebsiella pneumoniae ESBL+ rates were
relatively constant (between 24.7% and 31.0%), which is
somewhat higher than the 22.2% reported for CA Klebsi-
ella pneumoniae IAIs in 2010–2011 [23]. Taken together,
the total ESBL+ rates in Klebsiella pneumoniae and
Escherichia coli isolates from IAIs in our study dropped
between 2012 and 2014, which was due to less ESBL+
rates in HA IAIs and rather constant percentages of CA
ESBL+ Klebsiella pneumoniae and Escherichia coli IAI
isolates (Table 2). The decrease of ESBL+ GNBs might be
explained by new restrictions for the clinical application of
antimicrobial agents, which has been introduced by the
Chinese ministry of health in 2012 [24]. The overall sus-
ceptibilities of ESBL positive Escherichia coli strains was
96.77%–98.8% to IPM, 91.26%–93.16% to ETP, 89.48%–
92.75% to AMK and 84.86%–89.34% to TZP, while ESBL-
screen positive Klebsiella pneumoniae strains were 70.56%
-80.15% susceptible to ETP, 80.0%–87.5% to IPM,
83.82%–87.06% to AMK and 63.53%–68.38% to TZP
within the three year study. However, it is noteworthy that
reduced susceptibilities of Klebsiella pneumonia strains to
the carbapenems IPM and ETP derived from centers
located in east China indicated a local carbapenem-
resistance, which has also been described in other coun-
tries [25, 26]. Because the eastern part of China is the
most developed region with the highest incomes, anti-
microbial overuse [27, 28] might be an explanation for the

Table 3 The susceptibilities of ESBL-screen positive Escherichia
coli and Klebsiella pneumoniae strains isolated from HA and CA
IAIs

Escherichia coli,
ESBL+

Klebsiella pneumoniae,
ESBL+

HA% CA% HA% CA%

Amikacin 91.46 89.47 86.17 80.25

Piperacillin Tazobactam 85.73 88.72 67.37 66.67

Ampicillin Sulbactam 4.70 5.76 3.19 2.47

Imipenem 97.84 96.74 84.40 80.25

Ertapenem 92.02 91.98 77.66 71.61

Cefoxitin 65.63 67.42 59.58 45.68

Ceftazidime 33.80 37.09 36.17 25.93

Cefepime 4.60 4.76 8.51 4.94

Ceftriaxone 0.75 0.75 1.77 0.00

Cefotaxime 0.47 0.00 1.06 1.23

Levofloxacin 19.91 22.56 50.00 49.38

Ciprofloxacin 17.09 18.04 36.17 33.33
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carbapenem susceptibility difference in this area, which
has been described also for the eastern Zhejiang Province
before [29]. In general a previous study noted that Chinese
individuals were harboring the highest number and abun-
dance of antibiotic resistance genes in their gut microbiota
compared to Danish and Spanish individuals [30], but we
did not include investigations of molecular mechanisms of
resistances.
All tested cephalosporins and fluoroquinolones were

<70% effective for Escherichia coli and <60% for Klebsiella
pneumoniae isolates that produced ESBLs. This finding is
in agreement with previous literature that suggested that
carbapenems are the best choice as empirical mono ther-
apies, especially for complicated IAIs [31], but that cepha-
losporins, fluoroquinolones and SAM are not ideal
choices for empirical treatment of IAIs in China [16]. For
non-ESBL-screen positive Escherichia coli strains, cefoxi-
tin, levofloxacin, ciprofloxacin and ampicillin-sulbactam,
and for non-ESBL-screen positive Klebsiella pneumoniae
strains, cefoxitin and ampicillin-sulbactam were the least
effective antibiotics (Fig. 1).
Taken together, the relatively high susceptibility percent-

ages seen for imipenem and, to a slightly lesser degree,
ertapenem, against Escherichia coli —whether ESBL-
positive or -negative—are important considerations in
China, where ESBL+ rates around 60% are seen, and many
other drugs from the beta-lactam class and fluoroquino-
lones are no longer viable options for therapy and should
be avoided unless susceptibilities to this antimicrobial
agents have been confirmed. Against Klebsiella pneumo-
niae, the carbapenem activity is somewhat lower, presum-
ably because of presence of more carbapenemases (such
as KPC-2-type) in Klebsiella pneumoniae [32, 33], as well
as other mechanisms that include porin loss combined
with AmpC or ESBL enzymes; however, even the reduced
activity of carbapenems to Klebsiella pneumoniae is dra-
matically higher than all other drugs evaluated in SMART
except for amikacin and piperacillin-tazobactam. Consid-
ering the relatively high ESBL rates in China, and the low
susceptibility to fluoroquinolones that are usually seen in
conjunction with ESBL-positive isolates, carbapenems are
among the few antimicrobial agents in China retaining
sufficient in vitro activity to be considered for empiric
therapy. On the other hand, it is very important to retain
the activity of carbapenems, so step-down therapy to other
agents should always be considered once the susceptibility
of a specific pathogen is known.
A limitation of the study was that genotypic or mo-

lecular data of the strains were not included, since the
SMART project does not involve these kind of analyzes.

Conclusions
From 2012 to 2014, a total of 5160 IAI isolates were ob-
tained, of which 81.1% were caused by Enterobacteriaceae

and 18.9% by non-Enterobacteriaceae, with Escherichia
coli (45.4%) being the most common followed by
Klebsiella pneumoniae (20.1%). The most common
non-Enterobacteriaceae were Pseudomonas aeruginosa
(9.8%) and Acinetobacter baumannii (6.7%). The per-
centages of ESBL-screen positive Escherichia coli and
Klebsiella pneumoniae strains in IAI GNB isolates
showed a decreasing trend from 2012 to 2014, which
can be explained by less ESBL+ percentages in strains
from HA IAIs.
Susceptibility of ESBL-screen positive Escherichia coli

strains was >80% to imipenem, ertapenem, amikacin and
piperacillin-tazobactam, while ESBL-screen positive
Klebsiella pneumoniae strains were >70% susceptible
only to imipenem, ertapenem and amikacin.
In contrast to gall bladder, abscess, peritoneal fluid,

appendix and pancreas, the percentage of Klebsiella
pneumoniae causing liver infections was higher than
that caused by Escherichia coli. It is noteworthy that
Klebsiella pneumoniae and Escherichia coli isolates
from pancreatic infections exhibited consistently high
ESBL+ rates.
The apparent trend of declining percentages of ESBL-

screen positive Escherichia coli and Klebsiella pneumo-
niae strains needs to be closely monitored.
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