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New variant identified in major
susceptibility locus to tuberculosis
on chromosomal region 8q12-q13 in
Moroccan population: a case control study
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Abstract

Background: Tuberculosis (TB) remains a global health problem. Several studies have implicated genetic host
factors in predisposing populations to TB disease. In this study, we have selected NSMAF (Neutral Sphingomyelinase
Activation Associated Factor) as a candidate gene to evaluate its level of association with TB disease in a Moroccan
population for two reasons: first, this gene is located in a major susceptibility locus on chromosomal region 8q12-
q13 in the Moroccan population, closely linked to the CYP7A1 gene, which was previously shown to be associated
with TB disease; second, NSMAF has an important role in immune system function.

Methods: We conducted a case-control study including 269 genomic DNA samples extracted from pulmonary TB
(PTB) patients and healthy controls (HC). We genotyped three selected SNPs (rs2228505, rs36067275 and
rs10505004) using TaqMan® allelic discrimination assays.

Results: Only the rs1050504 C > T genotype was observed to be significantly associated with an increased risk for
developing pulmonary TB (41.8% vs 27%, OR 1.95, 95% CI 1.16–3.27; p = 0.01). In contrast, the TT genotype was
significantly associated with resistance to PTB (4.1% vs 15.6%, OR 0.23, 95% CI 0.08–0.63; p = 0.002).

Conclusion: Our findings suggest that genetic variations in the NSMAF gene could modulate the risk of PTB
development in a Moroccan population. Further functional studies are needed to confirm these findings.
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Background
Tuberculosis (TB) is one of the oldest infectious diseases
that is still a serious health challenge in the developing
world. According to a recent report published by the
World Health Organization, TB killed 1.5 million people
in 2015 [1]. In Morocco, the Ministry of Health regis-
tered high incidence in 2015, reaching 89 new cases per
100,000 inhabitants [2].
TB is a multifactorial disease, and thus, identifying host

genes that determine its susceptibility is far from an easy
task. For this reason, candidate gene studies are receiving

increasing attention in genetic epidemiology. This method
begins with the selection of a putative candidate gene
followed by the selection of genetic polymorphisms based
on its predicted function. Hence, by focusing directly on
genetic variations within a gene of interest, this approach
offers considerable advantages in terms of detecting
disease-associated genes [3–5].
In the Moroccan population, a few studies have been

conducted in this context, with some reporting a signifi-
cant association between TB disease and genetic variants
in MIF, PTPN22, VDR, CYP7A1 and STAT4 [6–10].
Furthermore, it seems that the major susceptibility locus
for TB in the Moroccan population is located on chromo-
somal region 8q12-q13 [11].
Two genetic variants associated with TB have been iden-

tified. The first one is rs3808607 in the CYP7A1 gene, and
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the second is rs1568952, located 6 kb downstream of the
last TOX gene exon. The NSMAF gene is located [12]
between the CYP7A1 and TOX genes (Fig. 1).
The NSMAF (Neutral Sphingomyelinase Activation Asso-

ciated Factor) gene encodes for the protein NSMAF or FAN
(factor associated with neutral sphingomyelinase activation)
[14]. NSMAF is a 140 KDa WD-repeat protein composed
of 917 aa [15, 16]. This protein interacts specifically with the
cytoplasmic sphingomyelinase activation domain of the
55kD tumour necrosis factor receptor, known as Tumour
Necrosis Factor Receptor Type I (TNFRI) or p55(CD120a),
also called NSD (neutral sphingomyelinase domain). Indeed,
the FAN protein is an essential component of the activation
of TNF-α induced neutral sphingomyelinase 2 and 3 [17,
18], leading to activation of the sphingomyelin-ceramide
pathway. In fact, this biological event is initiated by the hy-
drolysis of sphingomyelin to ceramide, the lipid second
messenger implicated in cell signalling [19].
In addition, with stable expression of a dominant-

negative form of FAN in human fibroblasts, caspase acti-
vation and cytochrome c release from mitochondria are
reduced, and the TNF-α-triggered apoptosis is obviously
inhibited [20]. Furthermore, FAN contributes to the in-
flammation process and is required for full expression of
the genes encoding CXCL2 and IL-6 [21]. Overexpression
of FAN in rat cardiomyocytes was shown to lead to in-
creased cell death [22]. Interestingly, NSMAF is also asso-
ciated with multiple sclerosis [23, 24], and one study
demonstrated that FAN can promote melanoma cellular
motility and tumour invasiveness in an in vivo model [25].
Taking all these findings together, there are several

lines of evidence to support the possible involvement of
NSMAF in TB development; therefore, it could be pos-
tulated as a candidate gene of susceptibility in TB dis-
ease. The aim of this work is to evaluate the impact of
selected NSMAF polymorphisms on TB susceptibility in
the Moroccan population.

Methods
Study design
We conducted a case–control study in the Moroccan
population. 10 ml of peripheral blood was collected
in ethylenediaminetetraacetic acid tubes from all par-
ticipants recruited over the course of 2 years. The
blood samples were collected from 19 health centres
comprising the Centres of TB Treatment and Respira-
tory Disease (CTRD) and the university hospitals for
PTB patients. Patients were evaluated by microbio-
logical diagnosis, physical examination and chest X-
rays; all patients were smear positive for acid-fast
bacilli and mycobacterial culture and were tuberculin
skin test positive. HC group consisted of healthy
donors with no signs, symptoms or history of previ-
ous tuberculosis. They were tuberculin skin negative
and remained in this immunological status during the
2 years after recruitment in a posterior telephonic
“check-contact”. The recruitment was done from the
Regional Centers of Blood Transfusion (RCBT) of five
different regions of Morocco (Oujda, Fez, Tangier,
Rabat, and Marrakech). All subjects were negatives
for HIV-1/2 infection (tested by Axsym Assays,
Abbott Laboratories, Chicago, IL, USA). This study
was approved by the local ethics committee (faculty
of Medicine and Pharmacy, Mohammed V University
of Rabat, as reference number 1169), and informed
written consent was obtained from all subjects. Struc-
tured questionnaires were used to collect medical his-
tory data, biological investigations and demographic
parameters (Table 1). The questionnaire analyses show
that the sex ratio (males /females) among TB patients
was almost similar to that of the HC group (2.76 vs
2.52, respectively). The mean age ± standard deviation
was 33.43 (±13.24) years, ranging from 18 to 67 years,
and 32.41 (±11.10) years, ranging from 18 to 61 years,
for patients and HC, respectively (Table 1).

Fig. 1 A representative scheme showing the localization of the NSMAF gene in the chromosome 8 (modified from [13]). At the chromosomal
region 8q12.13 from 58,907,113 to 59,119,293 bp, NSMAF gene is closely located between CYP7A1 and TOX gene
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NSMAF genotyping
DNA extraction: Total genomic DNA was extracted
from the peripheral blood of all TB patients and HC
using a QIAampDNA Blood Maxi kit (QIAamp® DNA
Blood Mini Kit, Qiagen GmbH, Hilden, Germany) and
was stored at −20 °C until use.
NSMAF selected SNPs: Three SNPs of the NSMAF

gene were selected for genotyping. The first SNP,
rs36067275 C > T, is a missense mutation causing a sub-
stitution of glutamic acid by lysine at 487. The second
SNP, rs2228505 T > C, is a missense mutation causing a
substitution of tyrosine by cysteine at position 626. The
third is located in the 3′ UTR (untranslated region)
represented by rs1050504 C > T.
Real time PCR genotyping: The three selected SNPs

were genotyped by Real time PCR technology using a
TaqMan® Genotyping Assay (Applied Biosystems, Foster
City, CA). Reactions were performed as recommended
by the manufacturer (Applied Biosystems). PCR allelic
discrimination was performed on a 7500 Fast Real-Time
PCR System (Applied Biosystems, Foster City, CA,
USA), which measured the specific allele fluorescence of
each sample. Impaired samples were genotyped twice.

Statistical analysis
Allele and genotype frequencies between PTB patient
and HC were determined by direct counting and were
compared afterward using the χ2-test. Patients and con-
trols were tested for conformity to Hardy–Weinberg
equilibrium. All statistical analyses were performed using
EPI INFOTM, version 7.1.0.6 (Centers for Disease Con-
trol and Prevention, Atlanta, GA; 08 September 2012).
We considered the results with corresponding p-values
below 0.05 to be statistically significant. Moreover, the
odds ratio (OR) with a 95% confidence interval (CI) was
calculated to evaluate the risk of association between
genotypes or alleles and TB disease.

To estimate the haplotype frequencies, the program
CubEX was used [26]. This program is also able to provide
the normalized linkage disequilibrium (LD) parameter (D’)
and the LD correlation coefficient between two loci (r2).

Results
All genotype frequencies of patients and HC were
consistent with respect to Hardy-Weinberg equilibrium.
There were no significant differences between patients

and HC in the distribution of genotypes and allele fre-
quencies for either rs36067275 C/T or rs2228505 T/C
SNPs (Table 2). Nevertheless, despite the significant dif-
ference not being reached for allele distribution between
the groups for rs2228505 T/C SNP, the mutant allele C
was more frequent in patients than in controls (14.06%
in patients versus 9.32% in controls, p = 0.1, OR = 1.59,
95% CI = 0.9–2.79) (Table 3). However, a statistical ana-
lysis of genotype distribution for the rs1050504 poly-
morphism yielded an interesting result. A significant and
positive association was found between the CT genotype
and an increased risk of PTB development (41.8% vs
27%, OR 1.95, 95% CI 1.16–3.27; p = 0.01). Conversely,
the TT genotype frequency was statistically more

Table 1 Demographic and clinical characteristics of tuberculosis patients and healthy controls

Variables TB patients N = 128 Healthy controls N = 141

Age (Mean age ± SD) 33,43 ± 13.24 32.41 ± 11.10

Gender [n (%)]

Men 94 73.4% 101 71.6%

Women 34 26.6% 40 28.4%

Clinical feature

Hemoptysis 55/128 43%

Expectoration 117/128 91%

Fever 112/128 87%

Cough 125/128 98%

weight loss 122/128 95%

Abnormality shown by chest X-ray examination 128/128 100%

Table 2 Genotypes and alleles frequencies for the rs36067275
polymorphism in pulmonary tuberculosis patients and healthy
controls

Patients vs Controls

rs36067275 [C/T] PTB N = 112 (%) HC N = 116 (%) p-value OR (95% CI)

Genotypes (N)

CC 112(100) 116(100) > 0,05

CT 0 0

TT 0 0

Alleles (2 N)

C 224 (100) 232 (100) > 0,05

T 0 0

CI confidence interval, OR odds ratio
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frequent in HC than in patients (15.6% vs 4.1%, OR 0.23,
95% CI 0.08–0.63; p = 0.002, respectively) (Table 4).
✓ Stratification by sex and age
We also carried out the genetic analysis by sex and

age stratification and evaluated the risk for TB devel-
opment in subjects carrying each relevant genotype.
We observed a significant difference in high frequency
of the rs1050504 CT genotype in males, but not fe-
males, for PTB disease (42.2% vs 25.7%, OR 2.1, 95%
CI 1.14–3.88; p = 0.01) (Table 5). In contrast, our data
show that the TT genotype was more frequent in HC
males than in PTB males (4.5% vs 18.8%, OR 0.2, 95%
CI 0.06–0.62; p = 0.002) (Table 5). Additionally, when
taking into consideration the age factor, statistical ana-
lysis revealed that the numbers of patients between
ages 30 and 49 carrying the rs1050504 TT genotype
were significantly fewer than their homologous sub-
jects in the HC group (3.3% vs 6.8%, OR 0.22, 95% CI
0.06–0.82; p = 0.002) (Table 6).
However, after stratification by sex and age, no evi-

dence of genetic associations between rs2228505 and
PTB disease was found.
✓ Haplotype analysis
We did a haplotype analysis for two SNPs: rs1050504

and rs3808607. rs3808607 is located in the promoter

region of the CYP7A1 gene and has been associated with
TB in the same population [8].
In healthy individuals, all nine possible diplotype com-

binations were found. However, only eight diplotypes
were found in PTB patients. Interestingly, data analysis
found that the CT /AA diplotype was significantly more
frequent in PTB patients in comparison to healthy con-
trols and appeared to be associated with an increased
risk for the development of pulmonary TB (12% vs. 1%,
OR 13.5, 95% CI 1.72–105.9; p = 0.0006) (Table 7).
When we analysed the four possible haplotypes, no

significant difference was observed between PTB
patients and healthy controls (Table 8).
Moreover, the analysis of linkage disequilibrium (LD)

revealed that the polymorphisms rs3808607 and
rs1050504 were in low LD. The correlation (r2) be-
tween these two SNPs in patients and controls was
weak (0.05 vs 0.08). In addition, the D’ data also
showed evidence of a low LD between these SNPs. In
patients, rs3808607 and rs1050504 are coinherited
roughly 34% of the time. Therefore, the two SNPs are
in weak LD in patients (D’ = 0.34) more than the in
control group, where these two polymorphisms are
coinherited approximately 58% of the time (D’ = 0.58).

Discussion
In Morocco, despite efforts that have been deployed, in-
cluding the setup of a national tuberculosis programme,
there is still a long way to go in the fight against TB.
Tuberculosis is a multifactorial disease wherein several

parameters in the form of host genetic factors could affect
disease outcome. In this regard, numerous studies have re-
ported the crucial role played by the host genetic factors
in term of the development of TB disease [27–30].
In the present study, we report for the first time a

strong association between the rs1050504 NSMAF poly-
morphism and PTB disease in the Moroccan population.
Our data show that the CT genotype is a susceptibility
marker for TB and that the mutant TT genotype for
rs1050504 plays a protective role against TB. Scarce data
has been reported concerning the involvement of this
variant on the outcome of TB disease. However, if we
take in consideration the particular localization of
rs1050504 SNP in 3’UTR (untranslated region) of the
NSMAF gene, we could generate a hypothesis to explore
our finding. In fact, it has been reported in several works
that SNPs located in untranslated regions of genes may
interfere with mRNA stability and translation, including
causing a change in recognition sites for microRNAs
(miRNA), RNA-binding proteins, and the polyadenyla-
tion machinery [31, 32]. Therefore, 3’UTR variants may
result in observed differences in gene expression [32].
In this context, a recent genome-wide association study

(GWAS) has reported that the rs1050504-C wild-type

Table 3 Genotypes and alleles frequencies for the rs2228505
polymorphism in pulmonary tuberculosis patients and healthy
controls

Patients vs Controls

rs2228505 [T/C] PTB N = 128 (%) HC N = 118 (%) p-value OR (95% CI)

Genotypes (N)

TT 95 (74,2) 96 (81,4) 0,17 0,65 (0,35–1,21)

CT 30 (23,4) 22 (18,6) 0,35 1,33 (0,72–2,47)

CC 3 (2,4) 0 0,09 ND

Alleles (2 N)

T 220 (85,9) 214 (90,7) 0,1 0,62 (0,35–1,1)

C 36 (14,1) 22 (9,3) 1,59 (0,9–2,79)

Table 4 Genotypes and alleles frequencies of the rs1050504
polymorphism in pulmonary tuberculosis patients and healthy
controls

Patients vs Controls

rs1050504 [C/T] PTB N = 122 (%) HC N = 141 (%) p-value OR (95% CI)

Genotypes (N)

CC 66 (54.1) 81 (57.4) 0.58 0.87 (0.53–1.42)

CT 51 (41.8) 38 (27) 0.01* 1.95 (1.16–3.27)

TT 5 (4.1) 22 (15.6) 0.002* 0.23 (0.08–0.63)

Alleles (2 N)

C 183 (75) 200 (70.9) 0.29 1.23 (0.83–1.81)

T 61 (25) 82 (29.1)

*Significant p-values appear in bold
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Table 5 Distribution by sex of allele and genotype frequencies of the rs1050504 and rs2228505 polymorphisms between pulmonary
tuberculosis patients and healthy controls

PTB patients Controls TB male vs healthy male TB female vs healthy female

M (%) F (%) M (%) F (%) p-value OR (95% CI) p-value OR (95% CI)

rs1050504 [C/T]

Genotypes n = 90 n = 32 n = 101 n = 40

CC 48 (53,3) 18 (56,3) 56 (55.5) 25 (62.5) 0,76 0,91 (0,51–1,62) 0,59 0,77 (0,29–1,98)

CT 38 (42,2) 13 (40,6) 26 (25.7) 12 (30) 0,01* 2,1 (1,14–3,88) 0,34 1,59 (0,6–4,24)

TT 4 (4,5) 1 (3,1) 19 (18.8) 3 (7.5) 0,002* 0,2 (0,06–0,62) 0,42 0,39 (0,03–4,02)

Alleles

C 134(74,4) 49 (76,6) 138 (68,3) 62 (77,5) 0,16 1,37(0,87–2,14) 0,89 0,94 (0,43–2,07)

T 46 (25,6) 15 (23,4) 64 (31,7) 18 (22,5)

rs2228505 [T/C]

Genotypes n = 94 n = 34 n = 78 n = 40

TT 64 (68,1) 31 (91,2) 62 (79,5) 34 (85) 0,09 0,55 (0,27–1,1) 0,41 1,82 (0,41–7,9)

CT 27 (28,7) 3 (8,8) 16 (20,5) 6 (15) 0,21 1,56 (0,76–3,17) 0,41 0,54 (0,12–2,38)

CC 3 (3,2) 0 0 0 0,11 ND ND ND

Alleles

T 155(82,4) 65 (95,6) 140 (89,7) 74 (92,5) 0,53 0,53 (0,28–1,01) 0,43 1,75 (0,42–7,3)

C 33 (17,6) 3 (4,4) 16 (10,3) 6 (7,5)

ND not determined; *Significant p-values appear in bold

Table 6 Distrubition by age of allele and genotype frequencies of the rs1050504 and rs2228505 polymorphisms between pulmonary
tuberculosis patients and healthy controls

≤ 29 years 30–49 years ≥ 50 years

PTB (%) Controls (%) p-Value OR (95% CI) PTB (%) Controls (%) p-Value OR (95% CI) PTB (%) Controls (%) p-Value OR (95%CI)

rs1050504[C/T]

Genotypes n = 60 n = 44 n = 49 n = 81 n = 13 n = 16

CC 31
(51,7)

29
(65,9)

0,14 0,55
(0,24–1,27)

28
(57,1)

43
(53,1)

0,65 1,17
(0,57–2,4)

8
(61,5)

9
(56,2)

0,91 1,08
(2,23–4,94)

CT 27
(45)

12
(27,3)

0,06 2,18
(0,94–5,03)

18
(36,8)

20
(24,7)

0,14 1,77
(0,82–3,82)

5
(38,5)

6
(37,5)

0,82 1,19
(0,25–5,49)

TT 2
(3,3)

3
(6,8)

0,41 0,47
(0,07–2,94)

3
(6,1)

18
(22,2)

0,01* 0,22
(0,06–0,82)

0 1
(6,3)

0,37 ND

Alleles

C 89
(74,2)

70
(79,5)

0,36 0,73
(0,38–1,42)

74
(75,5)

106
(65,4)

0,08 1,62
(0,92–2,85)

19
(79,2)

24
(75)

0,71 1,26
(0,35–4,5)

T 31
(25,8)

18
(20,5)

24
(24,5)

56
(34,6)

5
(20,8)

8
(25)

rs2228505[T/C]

Genotypes n = 64 n = 40 n = 52 n = 62 n = 12 n = 15

TT 47
(73,5)

31
(77,5)

0,64 0,80
(0,31–2,02)

38
(73,1)

52
(83,9)

0,15 0,52
(0,20–1,30)

10
(83,3)

12
(80)

0,82 1,25
(0,17–9,01)

CT 15
(23,4)

9
(22,5)

0,91 1,05
(0,41–2,7)

13
(25)

10
(16,1)

0,23 1,73
(0,68–4,36)

2
(16,7)

3
(20)

0,82 0,8
(0,11–5,77)

CC 2 (3,1) 0 0,25 ND 1 (1,9) 0 0,27 ND 0 0 ND ND

Alleles

T 109
(85,2)

71
(88,7)

0,46 0,72
(0,31–1,69)

89
(85,6)

114
(92)

0,12 0,52
(0,22–1,21)

22
(91,7)

27
(90)

0,83 1,22
(0,18–7,97)

C 19
(14,8)

9
(11,3)

15
(14,4)

10
(8)

2
(8,3)

3
(10)

*Significant p-values appear in bold
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allele is located in a putative miRNA binding site for miR-
154-3p [33], reported to act as a tumour suppressor in
several types of malignancies [34, 35]. In a mutant allele,
this miRNA binding site becomes another binding site,
the role of which has not yet been explored [33]. This
finding is of particular interest, especially when we know
that FAN, the protein encoded by NSMAF, is implicated
in apoptotic signalling [20, 22, 36]. Apoptosis is consid-
ered a particular innate defence against Mtb, and it is as-
sociated with diminished pathogen viability in infected
macrophages [37, 38]. As a result, virulent Mtb strains
have developed a capacity to disrupt this mechanism by
various means, such as through expression of the anti-
apoptotic Bcl-2 (B-cell lymphoma/leukaemia 2) family,
which can block the release of cytochrome c from
mitochondria [39].
Taken together, we can hypothesize that the presence

of the CT genotype could create conditions leading to
downregulation of FAN. Conversely, the rs1050504TT
SNP could decrease the ability of miRNA to down-
regulate FAN, theoretically leading to increased FAN
production. In turn, increased FAN could enhance
apoptotic signalling to protect against PTB and/or
likely affect other roles FAN plays in anti-TB immune

response, such as Actin reorganization in macrophages
[40] and navigational capacity of leucocytes chemotac-
tic response [41], or its documented role in TNF-α in-
duced neutrophil migration in mouse peritonitis
models [21].
However, we cannot exclude the possibility that the as-

sociation between the rs1050504 SNP and PTB may be
secondary to the presence of one or more different vari-
ants in close linkage disequilibrium with the NSMAF
gene or other genes. In particular, this candidate gene is
located within the chromosomal region 8q12-q13, char-
acterized by a high LOD score of susceptibility to PTB
in the Moroccan population [11]. In addition, more re-
cently, other SNPs located in genes that are closely
linked to the NSMAF gene, TOX (rs2726600 and
rs1568952) and CYP7A1 (rs3808607), have been associ-
ated with PTB [8, 42].
After stratification analysis, our data show that the as-

sociation is maintained only in males but not in females.
Males with the rs1050504 CT genotype are more suscep-
tible to PTB, in contrast to those with the TT, which
seems to be protective against PTB. These data reinforce
the sexual inequality with respect to predisposition to
TB; worldwide epidemiological data report that the ma-
jority of TB patients are male [43, 44]. This sex discrim-
ination could be due to the sex hormones [43–45]. A
previous finding reported that testosterone is immuno-
suppressive and impairs macrophage activation [46],
while oestrogens are pro-inflammatory mediators able to
induce the production of TNF-α and stimulate secretion
of INF-γ [47, 48].
Interestingly, in our study, the patients between ages

30 and 49 with the TT genotype appeared to be at de-
creased risk of developing PTB (OR 0.22; p = 0.002).
Theoretically, the NSMAF gene interacts with other
genes encoding for cytokines or their receptors that play
an essential role in defence against TB. This polygenic
aspect of susceptibility to TB might in part explain our
finding. When taking into account that genetic variants

Table 7 Distribution of the rs3808607 and rs1050504 diplotype frequencies in pulmonary tuberculosis patients and healthy controls

Diplotypes PTB Patients (n = 68) (%) Controls (n = 90) (%) p-value OR (95% CI)

CC/AA 19 (28) 24 (27) 0.43 1.05 (0.56–1.95)

CT/AA 8 (12) 1 (1) 0.0006* 13.5 (1.72–105.9)

TT/AA 0 1 (1) 0.25 Undefined

CC/AC 16 (24) 28 (31) 0.13 0.7 (0.37–1.31)

CT/AC 13 (20) 18 (20) 0.5 1 (0.5–1.99)

TT/AC 1 (1) 1 (1) 0.5 1 (0.06–16.2)

CC/CC 5 (7) 11(12) 0.12 0.55 (0.2–1.46)

CT/CC 5 (7) 5 (6) 0.39 1.17 (0.38–3.64)

TT/CC 1 (1) 1 (1) 0.5 1 (0.06–16.2)

*Significant p-values appear in bold

Table 8 Distribution of the rs3808607 and rs1050504 haplotype
frequencies and LD statistics in pulmonary tuberculosis patients
and healthy controls

Haplotype Haplotype frequencies % p-value

PTB CTRL

A-C 53 51 0.38 1.08 (0.62–1.89)

A-T 9 4 0.08 2.37 (0.7–7.97)

C-C 25 32 0.13 0.7 (0.38–1.31)

C-T 13 13 0.5 1 (0.43–2.28)

LD statistics PTB CTRL

D’ 0.34 0.58

r2 0.05 0.08
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affecting genes encoding for cytokines or their receptors
could be influenced by age and sex, as reported with the
AA genotype variant of +874 A/T, affecting the IFN-g
gene was associated with active PTB in men (OR 2.42)
aged 30–49 years [49].
Analysis of the LD measures revealed that two SNPs

(rs3808607 and rs1050504) are in LD. Nevertheless, the
values of D’ and r2 indicated that this LD is low. More-
over, our results showed that when the AA rs3806607
genotype and CT rs1050504 genotype are coinherited,
the susceptibility to develop TB is strongly significant
(OR 13.5; p = 0.0006). These data confirm our previous
finding wherein the AA rs3808607 genotype of the
CYP7A1 gene is more frequent in PTB patients com-
pared to HC (OR 1.93; p = 0.02) [8]. However, the lack
of association between rs2228505 and rs36067275 SNPs
and PTB in our study, at both the allelic and genotypic
levels, could be explained by the absence of the effect of
these genetic variants occurring at their positions.
In our study, we report for the first time the allele fre-

quencies of these three SNPs in the Moroccan popula-
tion, which could be used for others studies in the
context of their potential involvement in other diseases.
Indeed, data analysis of the rs1050504 SNP revealed that
the T mutant allele frequency observed in the Moroccan
population (0.29) is close to that reported in Han
Chinese (0.32) and Caucasian (0.34) populations and
higher than the frequencies observed in Japanese (0.2)
and Sub-Saharan African populations (Yoruba) (0.08).
When we analysed the data for the rs2228505-C mutant

allele, the allele frequency was 0.09 in Moroccan popula-
tion, which is similar to that observed in the Sub-Saharan
African population (Yoruba) (0.1), but it is much lower
than that observed in the Han Chinese and Japanese (0.22,
0.33, respectively) and higher than that in the Caucasian
population (CEU) (0.01). Therefore, it will be very inter-
esting to evaluate the impact of the polymorphism of this
variant in Chinese and Caucasian TB populations.
Concerning the result of the rs36067275 C > T SNP,

we found that the T mutant allele is absent in the
Moroccan population as observed in Caucasian (CEU),
Han Chinese (HCB) and Japanese (JPT) populations.
However, in the Sub-Saharan African population
(Yoruba), this allele is present at 0.02 frequency [50].

Conclusion
In summary, our results suggest that the rs1050504
NSMAF SNP may have an impact on the susceptibility or
resistance to PTB in the Moroccan population. We are,
however, fully aware that the limitation of the current
study is its small size. Hence, further studies using larger
samples in ethnically diverse populations are needed to
better understand the involvement of NSMAF in protec-
tion against TB. In addition, functional studies are highly

recommended in order to evaluate the involvement of the
NSMAF gene or its product in TB development.
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