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Abstract

Background: Dengue has been prevalent in Colombia with high risk of outbreaks in various locations. While
the prediction of dengue epidemics will bring significant benefits to the society, accurate forecasts have been a
challenge. Given competing health demands in Colombia, it is critical to consider the effective use of the limited
healthcare resources by identifying high risk areas for dengue fever.

Methods: The Climate Risk Factor (CRF) index was constructed based upon temperature, precipitation, and humidity.
Considering the conditions necessary for vector survival and transmission behavior, elevation and population density
were taken into account. An Early Warning Signal (EWS) model was developed by estimating the elasticity of the
climate risk factor function to detect dengue epidemics. The climate risk factor index was further estimated at the
smaller geographical unit (5 km by 5 km resolution) to identify populations at high risk.

Results: From January 2007 to December 2015, the Early Warning Signal model successfully detected 75% of the total
number of outbreaks 1 ~ 5 months ahead of time, 12.5% in the same month, and missed 12.5% of all outbreaks. The
climate risk factors showed that populations at high risk are concentrated in the Western part of Colombia where more
suitable climate conditions for vector mosquitoes and the high population level were observed compared to the East.

Conclusions: This study concludes that it is possible to detect dengue outbreaks ahead of time and identify
populations at high risk for various disease prevention activities based upon observed climate and non-climate
information. The study outcomes can be used to minimize potential societal losses by prioritizing limited healthcare
services and resources, as well as by conducting vector control activities prior to experiencing epidemics.
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Background

Dengue is complicated. There are four serotypes of
the dengue virus, and dengue infection occurs in
almost all age groups [1, 2]. Dengue is endemic in
many parts of the tropics and subtropics, and dengue
endemic countries are also exposed to the risk of
periodic outbreaks [1, 3]. In Colombia, dengue has
been prevalent over the last 20 years with different
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degrees of incidence rates and epidemics in various
geographical locations [4, 5]. Due to the complexity
of the disease, there are still large knowledge gaps
regardingthe causes of dengue epidemics [6-9]. Infec-
tion with one serotype provides life-long immunity to
that specific serotype. Therefore, subsequent introduc-
tion of the same serotype in a community would be
less likely to cause the occurrence of a dengue
epidemic if there were a small population of dengue-
susceptible individuals [7, 8, 10]. However, due to a
high degree of antigenic cross-reactivity, sequential
infection of two different serotypes can bring
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favorable or detrimental outcomes depending upon
known and unknown factors including timing of
infection [2, 11, 12]. For example, a primary infection
may help slow the spread of secondary heterologous
infection when some degrees of cross-protection are
conferred [2, 12-14]. On the other hand, many stu-
dies have shown that subsequent heterologous
infection would likely increase the probability of ex-
periencing severe dengue fever [15-18]. One of the
known mechanisms is the antibody dependent
enhancement (ADE) during the second infection me-
diated by non-protective heterotypic antibodies arising
from the primary infection [2, 11, 14, 19]. In dengue
endemic countries such as Colombia, the number of
dengue cases is periodically reported to the upper-
level health management unit (ie. provincial or
Ministry of Health) from various health facilities at
the municipality level [4, 20]. In the case of dengue
fever, like any other diseases, severe cases are de-
tected more easily than mild symptoms, which in
turn, leads to a higher volume of reported caseload
[21]. Thus, having more severe cases is also related to
the high likelihood of observing dengue epidemics
when an epidemic is determined based on official
statistics of reported cases.

While it is undeniable that all of these aspects would
affect the occurrence of dengue epidemics directly and
indirectly, it does not appear to be practical in proving
the impacts of these factors on the occurrence of dengue
epidemics due to the following reasons: (1) despite vari-
ous efforts to disentangle the complexity of the disease
[11], it is still uncertain to generalize how one serotype
reacts with another in terms of cross-protection or ADE
for all possible scenarios among four serotypes, as well
as the duration of the interactions [22, 23]; (2) even if
this uncertainty is going to be uncovered in the near fu-
ture, it would be very difficult to obtain the details of
sero-prevalence history over a long period of time for
each cohort in all specific locations. These limitations
make it difficult to understand how much of each factor
would contribute to the actual probability of a dengue
epidemic occurrence [7, 9, 24].

A more practical way is to focus on the basic principle
of the occurrence of a dengue epidemic. Simply put, a
dengue epidemic occurs when a large number of people
become infected within a short period of time [2, 7]. It
requires a large number of vector mosquitoes (Aedes
aegypti), as well as high transmission probability, and
frequent contact between people and the vectors (biting
rate) to sustain transmission [2, 3, 7]. In other words, a
dengue epidemic would more likely occur when vector
mosquitoes increase within a short time period in a loca-
tion where dengue viruses are currently circulating and
population density with no immunity to one of the four
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serotypes is high during the same period [8, 9, 24]. Fur-
ther, the importation of infected cases into a community
where there is no immunity to that specific serotype
would cause an epidemic as well.

Following this principle, the main concept of this
study lies in the increase of vector mosquitoes as a
primary factor of a dengue epidemic taking into ac-
count population density at different elevation levels.
As a vector-borne viral disease, there is a wide range
of factors that influence the spatial and temporal dy-
namics of mosquito populations: temperature, rainfall,
and humidity, etc. [9, 24, 25]. There have been several
efforts to understand the relationship between dengue
epidemics and climate change. Juffrie and Focks used
sea surface temperature anomalies to identify the
occurrence of dengue epidemics in Yogyakarta,
Indonesia and Bangkok, Thailand [26]. Lowe et al.
developed an epidemic early warning system for
Southeast Brazil using several climate and non-
climate datasets [27]. More recently, Huang et al.
found that El Nino-Southern Oscillation climate cy-
cles and temperature were important factors affecting
the weekly occurrence of the four dengue serotypes
in Cairns, Australia [23]. Adde et al. also identified
summer Equatorial Pacific Ocean sea surface temper-
atures and Azore high sea-level pressure as significant
indicators in predicting dengue epidemics in French
Guiana [28]. While some of the climate factors were
more commonly used due to the nature of a vector-
borne disease, their applications varied and were
geographically focused. These findings from previous
literature showed that climate factors play a signifi-
cant role in the occurrence of dengue epidemics.

This study first attempts to predict a dengue epidemic
by developing an Early Warning Signal (EWS) model
based upon the temporal relationship between the oc-
currence of dengue epidemics and climate variability
which affects mosquito populations in Colombia.
Furthermore, using climate data and topographical infor-
mation, the study identifies population at high risk for
dengue fever for efficient disease prevention activities.

Methods

Dengue Incidence Proxy (DIP) was created to observe
the trend of the dengue incidence in Colombia. The
number of dengue fever cases and population data were
obtained from SIVIGILA and Departamento Adminis-
trativo Nacional de Estadistica (DANE) which are both
official governmental programs in Colombia [4, 29]. Div-
iding the dengue fever cases reported by population can
be used as a good proxy to observe the overall trend of
dengue fever. SIVIGILA also provides a weekly report
on epidemiological events (Boletin Epidemiologico)
which discloses the proportions of municipalities that
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were not responsive for each department [30]. Thus, the
number of cases was adjusted by the proportions for
underreporting by assuming that a non-responsive
municipality would have the average number of cases
per responsive municipality of that department: the re-
ported cases by department was divided by the number
of the responsive municipalities in that department,
applied to non-responsive municipalities, and added to
the reported cases by department. DIP was estimated by
dividing the adjusted cases by population. While Boletin
Epidemiologico was available over the study period, a
more consistent pattern of the underreporting system
was observed in the reports since 2011 after the large
outbreak in 2010. Because a robust case reporting sys-
tem is critical for determining the relationships between
DIP and climate data, some departments out of 31 de-
partments were excluded if over 20% of underreporting
based on Boletin Epidemiologico occurred more than
twice since 2011. An outbreak was defined as a relative
term in this study. In other words, as long as an unusual
peak in DIP was observed in a department, it was
considered as an outbreak even if the DIP value in that
department was relatively low compared to other depart-
ments where dengue is more prevalent. An unusual peak
was marked by department if the slope of DIP over every
six months fell into the highest 10% of the observations.

Table 1 summarized the datasets used in this study.
Considering the spatial and temporal dynamics of
mosquito populations, three climate datasets and two
non-climate datasets were selected as factors which
can explain variation in DIP. The climate raster
datasets include air temperature, precipitation, and
specific humidity [31-33]. The monthly climate data-
sets were obtained from 2006 to 2015, and all the
raster files were resampled into 0.008 by 0.008 degree
resolution by taking the nearest neighbor assignments.
It should be noted that the study presumed that it is
critical to consider how long favorable conditions for
vector mosquitoes persist [9, 23]. In other words, a
current epidemic is a result of the climate conditions
consistently observed during the past months, rather
than single temporal (monthly or daily) values at
present. For example, if warm temperature and high

Table 1 Data description
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humidity were observed only for a short time period
of each year, these conditions would less likely affect
the larval development or virus replication to cause
an epidemic [25]. Thus, after checking cross-
correlograms to define a proper period, the 12-month
moving average of the mean values of each climate
data was estimated by department (Additional file 1).

In addition to the climate factors, night light data
and elevation raster files were included [34, 35]. Night
lights data which is available by year was used to
understand population density instead of conventional
population statistics. The use of the night-lights data
provides more flexibility to estimate population den-
sity at various levels of geographical units over time
than the projected population data [36]. Prior to
applying the night-lights data, correlations between
night-lights data and population data were tested to
ensure that the night-lights data can be used as an
appropriate proxy (p=0.94). The most recent night-
lights data was for 2013 at the time of the research.
As the population level does not change dramatically
during a short period of time, the population level in
2013 was assumed to be consistent in 2014 and 2015.
High population density would have two opposite effects
in terms of transmission intensity depending upon the
level of a reproduction number: (1) dilution of infectious
individuals by having a large pool of host populations, (2)
a large number of susceptible hosts to be infected, leading
to the surge of infected cases. For the latter case, while
transmission would be more intensive in a place where
population density is high, holding other climate factors
constant, it does not have to be necessarily true in areas at
high elevations [9]. A previous study found that it is diffi-
cult for Aedes aegypti mosquitoes to survive at an eleva-
tion of 6000-8000 ft or even at lower elevations in
temperate latitudes [37]. Because many people in
Colombia live at high elevations (i.e. Bogota), the mean
value of the night lights was used to estimate population
density separately for people living under 1500 m and
those living over 1500 m by department [38].

The three climate datasets are partially correlated but
also have their own distinctive characteristics. In order
to preserve all the information contained in each of the

Type Degree resolution Resampled resolution®

Temporal resolution Period Period (12MA)°

Air temperature 0.5 by 05 0.008 by 0.008
Precipitation 1by1 0.008 by 0.008
Specific humidity 25by 25 0.008 by 0.008
Night lights 05 by 05 0.008 by 0.008
Elevation 0.5 by 05 0.008 by 0.008

Monthly Jan 2006 - Dec 2015 Jan 2007 - Dec 2015
Monthly Jan 2006 - Dec 2015 Jan 2007 - Dec 2015
Monthly Jan 2006 - Dec 2015 Jan 2007 - Dec 2015
Yearly 2006-2013 2007-2013

NA NA NA

Climate datasets were resampled by using the nearest option in ArcGIS
P12-month moving average
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climate datasets, the Climate Risk Factor (CRF) index
was created. The advantage of using a composite index
is that it prevents multicollinearity when running regres-
sions against independent variables with some level of
the correlations among the variables. The three climate
variables and population density under 1500 m were
used by department. The precipitation variable, which
has a negative relationship with DIP, was reversed, so all
variables go towards the same underlying concept (the
increase in DIP). The variables were first standardized
individually by subtracting the mean and dividing by the
standard deviation. The standardized values were then
averaged across the variables [36, 39]. The final values
were converted into a range from zero (low risk) to one
(high risk) and multiplied by 100 for an easier interpret-
ation. It should be noted that the temperature and
specific humidity data used in this study are measures at
the surface level. More precisely, air temperature is at
2 m above the ground surface, and specific humidity is
measured near surface at sea level with pressure level
1000 millibars. Thus, it would be desirable to adjust the
CRF index by the risk proportion at low and high eleva-
tion. The proportion at risk was estimated by dividing
the sum of the night lights observed under 1500 m ele-
vation by the sum of the total night lights in each de-
partment. The final CRF index was the product of the
raw CRF index and the proportion at risk.

There were two dominant patterns observed during
past dengue epidemics in Colombia: (1) rapid increase of
the CRF index, (2) relatively steady increase of the CRF
index at different levels of the CRF and DIP values. In
other words, the slope of the CRF index curve at various
levels of the CRF index and DIP values appeared to be
critical in predicting the occurrence of dengue epi-
demics. In order to assess this combined relationship,
the elasticity of the CRF index curve was estimated. This
is defined as the percentage change in DIP in response
to a 1 % change in the CRF index [40, 41]. The station-
arity of the dataset was tested to ensure that there were
no trend and periodic seasonal effects. The augmented
Dickey-Fuller (ADF) unit-root test was used to test
whether the dataset is stationary by department [42, 43].
DIP is non-negative integer values, and count models
were used to fit DIP as a function of the CRF index
(Additional file 1: Supplementary 2). The DIP dataset
consists of two parts: (1) model dataset, (2) validation
dataset. The model was constructed based on monthly
DIP and the CRF index by department from January
2007 to December 2015. The validation dataset which
was separated from the model dataset was established
from January 2016 to April 2016 and used to validate
the model performance. Overdispersion—where the vari-
ance is greater than the mean—was tested using the Z-
score test at the 5% significant level [44—46]. In addition,
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the Akaike Information Criterion (AIC) fit test was used
to compare the model fits between Poisson and negative
binomial models. Being a non-linear model, the elasticity
of the CRF function can be given as [46]:

OE(y;, |xi) x x

Elasticity = (EJ)];c’il)'y = exp(«] /:u’k)ﬁ,(;

where exp (xlﬁ) is the expected DIP values, f is the
coefficient of CRF, x is the explanatory, and y is the
response.

As shown above, the main interest of the study lay in
estimating elasticities, and count models were used as
an intermediary step in calculating elasticities. Given the
geographical variations of dengue outbreaks, it is critical
to estimate the elasticities separately by department with
varying coefficient values of CRF. In this context, the
current model was preferred to non-linear mixed models
with a fixed coefficient and random effects since the use
of coefficients and the measure of marginal effects and
elasticities were more straightforward, reducing any
possibility of potential overspecification (i.e. multiple
adjustments) [46, 47]. Because the model was run separ-
ately for each department allowing variation in the CRF
index by department, there is no concern about creating
the effect of spatial autocorrelation. The elasticities were
derived for every six months from January 2007 to
December 2015. Early Warning Signal (EWS) was mod-
eled such that dengue epidemics in Colombia can likely
occur when the elasticity of the CRF index is maximized
given the instantaneous slopes of DIP and the CRF index
over time are positive minimizing the squared residuals.

Maximize:

Elasticity, E

Subject to:
1) By = S7(DIP,~DIP)
D VH (Y
and
t+5 Yoy
(2) By — ZL GRECRE)

S (T-T)

where DIP™ and CRF are the means of DIP and CRF,
T is time (month). The elasticities were then
categorized into three percentiles: low level warning
(0-50%), medium level warning (50-75%), and high
level warning (75-100%). As expressed by Adde et al,,
the hit rate (HR) and false alarm rate (FAR) were
defined as below [28]:
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B (Detections | Outbreak)
~ (Detections + Misses | Outbreak)

HR (or sensitivity)

(False signals | No outbreak)
(No signals + False signals | No outbreak)

FAR (or 1-specificity) =

In addition, a sensitivity analysis was conducted with
various moving average scenarios to make sure that the
12-month moving average is the most suitable period for
the performance of the EWS model.

Given that the CRF index is statistically significant to
explain variance of DIP for the departments where sig-
nificant underreporting was not observed, the CRF index
was further estimated at the smaller geographical level
(5 km by 5 km resolution) for the entire country and
used to identify high risk areas.

Results

During the period from January 2007 to December 2015,
two major outbreaks were observed in many parts of
Colombia. Figure 1 presents the overall trends of the
three climate factors, as well as the DIP from 2007 to
2015 in Valle del Cauca, one of the departments where
dengue fever is highly prevalent (see Additional file 1:
Supplementary 3 for other departments). Looking at the
bottom right panel in Fig. 1, there were two major out-
breaks in 2010 and 2013 in the department. Comparing
the trend of DIP with the climate factors, DIP appears to
be positively correlated with temperature and humidity,
but has a negative relationship with precipitation.
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13 of 31 departments in Colombia were chosen after
checking the robustness of the case reporting system.
The ADF test showed that we reject the null hypothesis,
which means that the dataset is stationary. As shown in
Table 2, the CRF index is highly significant for all
departments except Guaviare and Magdalena, thus 11
departments were selected for further analysis.

The CRF index and DIP were plotted over time to
show the overall trend in Fig. 2 (see Additional file 1:
Supplementary 4 for other departments). It is clear that
the epidemic that occurred in 2010 was picked up by the
steep increase of the CRF index. In 2013, another epi-
demic was observed. While there was no rapid change
in terms of the CRF index during a short period in 2013,
the CRF index reached its high level following the steady
increase of the index since 2012. These provide an im-
portant point where an occurrence of future dengue epi-
demic can be related not only to the rapid increase of
the CRF index, but also to the various levels of the CRF
index and DIP. These combined relationships can be
further explained by the elasticity of the CRF index
which was used to develop an Early Warning Signal
(EWS) model. In Fig. 3, the EWS based on the elasticity
of the function was demonstrated for Valle del Cauca. In
the department, the peak DIP was observed in March
2010, and the EWS signaled the high level warning sign
two months before the peak (January 2010). Similarly,
the second peak occurred in May 2013, and the EWS
level went up from low to medium in January 2013 and
remained at the same level until the end of the peak. It
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Table 2 Regression outputs of the CRF index on DIP
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Department Number Selected model P-value for Z-score Constant (a) CRF (B) AlC® AIC (comparison)
test (overdispersion)

Antioquia 108 Poisson 047 -2.89 x 031 o 384 4.26
Arauca 108 NB? 0.00 2.00 xxx 0.06 e 846 3037
Boyaca 108 NB 0.05 -0.59 0.51 Frx 4.26 4.19
Cauca 108 Poisson 0.19 -045 * 0.08 e 353 358
Cundinamarca 108 NB 0.03 -535 052 xxx 255 2.26
Guaviare 108 NB 0.02 3.23 Frx -0.01 7.69 16.72
Huila 108 NB 0.00 049 0.05 e 787 14.33
Magdalena 108 NB 0.00 092 0.02 544 7.05
Norte de Santander 108 NB 0.00 1.61 *** 005 ** 7.68 10.54
Quindio 108 NB 0.02 -3.01 Frx 0.11 xex 741 21.83
Risaralda 108 Poisson 0.11 -0.62 * 0.07 R 456 469
Santander 108 NB 0.00 1.07 * 0.06 ** 7.2 9.89
Valle del Cauca 108 NB 0.00 -2.75 002 ¥ 6.20 8.68

“Negative Binomial
PAkiake Information Criterion

AICs for non-selected count models were presented for comparison. The AIC fit test was consistent with the Z-score test in terms of choosing a better model fit
except Boyaca and Cundinamarca. Since the AIC differences were trivial for the two departments, the Bayesian Information Criterion (BIC) was further assessed,

and NB was preferred over Poisson
* Significance at the 10% level, ** at the 5% level, *** at the 1% level

should be noted that there was no major outbreak ob-
served throughout 2015 despite the continuous increase
of the CRF index. Instead, Zika, another viral disease
caused by Aedes aegypti emerged in 2015 and continued
to increase in 2016. Overall, all 11 departments experi-
enced dengue epidemics in 2010, and nine of them had
additional minor outbreaks since 2011. Among the total
of 24 observed outbreaks, EWS successfully detected 18
(75%) 1 ~ 5 months ahead of time and, three (12.5%) in
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See Additional file 1: Supplementary 4 for other departments

the same month, and missed three (12.5%) (Additional file
1: Supplementary 6).

The EWS model predictability was examined with the
validation data in 2016 which was separated from the
model. It is interesting to see that the EWS already sig-
naled the high level warning sign at the end of 2015,
which accurately predicted another outbreak in two
months (February 2016) that is out of the study period.
Figure 4 further demonstrates the EWS model perfor-
mance with the validation data for all 11 departments. 6
of 11 departments experienced outbreaks between
January 2016 and April 2016. The EWS model success-
fully predicted these outbreaks 1 ~ 5 months ahead of
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.

time for all departments except Boyaca (HR = 83.3%). In
addition, the EWS model did not send out any false
alarms for the other 5 departments where no outbreak
occurred during the out-of-sample period (FAR = 0%).
In other words, sensitivity (HR), specificity, positive
predictive value, and negative predictive value of the
validation data were as follows: 83.3%, 100%, 100%, and
83.3%.

The sensitivity analysis was performed with different
moving average scenarios (12 months, 6 months, current
value). As shown in Table 3, the hit rate was the highest
with the 12-month moving average scenario, meaning
that the current model produced the most accurate pre-
diction compared to the 6-month and no-moving-
average scenarios. The false alarm rate increased as the

moving average period was shortened. This is mainly
because the index becomes too sensitive and changes
quickly due to the short duration of the moving averages
of the climate datasets. As a result, it does not distin-
guish between minor fluctuations and major outbreaks
(Fig. 5). This sensitive behavior of the CRF index with
the shorter term scenarios proves our presumption that
a current dengue epidemic is a result of the consistent
long-term patterns of the climate conditions.

Given that the CRF index explains variation in DIP rea-
sonably well, the CRF index was estimated at 5 km by
5 km resolution, and the most recent time of the index
(December 2015) was presented in Fig. 6 (see Additional
file 1: Supplementary 5 for more details). As expected,
populations at high risk are concentrated in the Western

Table 3 Sensitivity analysis with additional moving average scenarios

Scenario HR (sensitivity) FAR Specificity Positive Predictive Value Negative Predictive Value
12 month MA 87.5% 3.1% 96.9% 91.3% 95.4%
6 month MA 75.0% 4.7% 95.3% 85.7% 91.0%
Current value (no MA) 83.3% 6.3% 93.8% 83.3% 93.8%
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part of the country due to more suitable climate condi-
tions for vector mosquitoes and the high population level
compared to the East. Using the geo-coordinates of the
high risk areas at 5 km by 5 km resolution, it is possible to
identify the locations for people at high risk more accur-
ately for efficient disease prevention activities.

Discussion

This study confirms that dengue fever transmission is
strongly related to climate factors as well as population
density at different topographical conditions. One of the
advantages of the CRF index is to prevent multicolli-
nearity by combining all relevant climate indicators
which may have some degrees of correlations with each
other but have distinctive characteristics at the same
time. During the study period from January 2007 to
December 2015, the nationwide dengue epidemic oc-
curred in 2010 was well explained by the rapid changes
of the CRF index. Even if the CRF index increased stead-
ily, the study found that it was still possible to detect an
epidemic by adopting the elasticity of the function which
takes into account not only the slopes but also the vari-
ous levels of CRF and DIP.

In 2015, some inconsistent patterns between CRF and
DIP were observed for some departments (Additional
file 1: Supplementary 7). This inconsistency may be re-
lated to the unexpected emergence of Zika, which
started being reported in 2015. As shown in Fig. 2, the
number of Zika cases has continuously increased since
2015. However, it is still premature to make any firm
statements regarding the impact of Zika on dengue fever
due to uncertainty of the diseases. Given that reported
cases are mainly based on clinical symptoms, there may
have been a chance of misdiagnosis between the two dis-
eases. In addition, due to the surge of an unfamiliar dis-
ease (Zika) imposing more difficulties on resource
allocation at the local health facility level, it would be
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difficult to keep a consistent pattern in the case-
reporting system from municipality-level heath facilities.
Excluding 2015, a number of false alarms where EWS
sends out the medium or high level signals but DIP re-
mains low were only observed twice in Cauca (April and
December 2014) during the study period.

Some areas of uncertainty deserve attention. While
the CRF index performed well for 11 of 13 departments,
the index was not statistically significant in Magdalena
and Guaviare. This may have been caused partly by the
inconsistent patterns of reported cases over time. Be-
cause the EWS was estimated based upon the most re-
cent observed climate datasets, the EWS in this study is
limited to issuing alerts with short-time intervals
(I ~ 5 months ahead). Given that, at present there are
1 ~ 2 month delays until the climate data become avail-
able, EWS with the short intervals (i.e. less than two
months) may not, for now, be practical in operational
modes. However, this limitation can be improved based
upon the availability of the climate datasets in real-time
in the future, and the 1 ~ 5 month intervals would pro-
vide enough room for public health officials to prepare
for selected vector control activities and healthcare in-
terventions (i.e. increase the number of beds at high risk
areas) in the dengue-endemic setting [9, 26]. It should
be noted that the study did not attempt to produce any
longer-term predictions due to chaos and uncertainty in
climate forecasts in the long run. Considering that long-
term climate forecasts could be variable depending
upon assumptions (i.e. future CO, omission level), the
method proposed in this study could minimize potential
bias which may be caused by uncertainty in input data-
sets. The climate datasets have coarse resolutions.
While the datasets were resampled using the nearest op-
tion in this study, the model outcomes can be further
improved with finer scale resolutions. It is worth noting
that the cycling of El Nifio and La Nifia, called EI Nifio
Southern Oscillation (ENSO), may have indirect im-
pacts on the occurrence of dengue epidemics in South
America by changing the patterns of climate variables
such as temperature, precipitation, and humidity [28].
While any unusual changes of the climate variables af-
fected by such events were captured by using the 12-
month moving averages, further investigation would be
needed to identify accurate impacts of El Nifio on cli-
mate factors including its timing.

Nonetheless, our model provided accurate forecasts for
the validation period for 5 of 6 departments that
experienced outbreaks in 2016. In addition, this study
identified populations at high risk for dengue at 5 km by
5 km resolution. The study findings can be used to
accelerate introduction of dengue prevention activities
and prioritize alternative health interventions among com-
peting health demands in Colombia.
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Conclusions

The CRF index summarized multiple climate and non-
climate risk factors into a single indicator which helps
decision makers to understand easily [36]. While some
of the climate factors were more commonly used in the
existing literature due to the nature of a vector-borne
disease, the applications of the climate data in these
studies appeared to vary. The proposed EWS model in
this study used the concept of elasticity to understand
how DIP changes to varying levels of the CRF index and
successfully detected dengue outbreaks in Colombia. In
addition, the CRF index was further estimated at 5 km
by 5 km resolution. The areas where the CRF index

values have been continuously high over time can be
prioritized for appropriate healthcare interventions.
Furthermore, this can guide decision makers to find
relevant locations where future surveillance studies can
be conducted.
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