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Abstract

Background: Host-level influenza virus–respiratory pathogen interactions are often reported. Although the exact
biological mechanisms involved remain unelucidated, secondary bacterial infections are known to account for a
large part of the influenza-associated burden, during seasonal and pandemic outbreaks. Those interactions probably
impact the microorganisms’ transmission dynamics and the influenza public health toll. Mathematical models have
been widely used to examine influenza epidemics and the public health impact of control measures. However,
most influenza models overlooked interaction phenomena and ignored other co-circulating pathogens.

Methods: Herein, we describe a novel agent-based model (ABM) of influenza transmission during interaction with
another respiratory pathogen. The interacting microorganism can persist in the population year round (endemic
type, e.g. respiratory bacteria) or cause short-term annual outbreaks (epidemic type, e.g. winter respiratory viruses).
The agent-based framework enables precise formalization of the pathogens’ natural histories and complex within-
host phenomena. As a case study, this ABM is applied to the well-known influenza virus–pneumococcus interaction,
for which several biological mechanisms have been proposed. Different mechanistic hypotheses of interaction are
simulated and the resulting virus-induced pneumococcal infection (PI) burden is assessed.

Results: This ABM generates realistic data for both pathogens in terms of weekly incidences of PI cases, carriage
rates, epidemic size and epidemic timing. Notably, distinct interaction hypotheses resulted in different transmission
patterns and led to wide variations of the associated PI burden. Interaction strength was also of paramount
importance: when influenza increased pneumococcus acquisition, 4–27% of the PI burden during the influenza
season was attributable to influenza depending on the interaction strength.

Conclusions: This open-source ABM provides new opportunities to investigate influenza interactions from a
theoretical point of view and could easily be extended to other pathogens. It provides a unique framework to
generate in silico data for different scenarios and thereby test mechanistic hypotheses.
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Background
Influenza is a respiratory virus that imposes a heavy bur-
den on human populations by causing millions of severe
illness cases and deaths worldwide every year [1], despite
the development of public health policies to limit its
propagation. The virus infects the human respiratory
tract where other species of bacteria or viruses cohabit.
In recent years, interest has grown in the potential role
of pathogen–pathogen interactions for host respiratory
tract infection or colonization. These interactions have
been investigated from different biological, clinical and
epidemiological perspectives [2–4]. Several pathogens
are thought to interfere with influenza viruses: respira-
tory syncytial virus [5], rhinovirus [5, 6], Streptococcus
pneumoniae [2, 7, 8], Haemophilus influenza [9],
Staphylococcus aureus [10] etc. Even though the bio-
logical mechanisms governing those interactions are not
well known, many hypotheses have been advanced. The
presence of a second pathogen has been postulated to
alter some pathogens’ natural cycles within the host or
to modify their transmission patterns [2, 7, 11, 12]. If
they indeed exist, these interactions might impact the
pathogens’ transmission dynamics in human populations
and their burden in terms of public health.
A long-studied interaction among respiratory patho-

gens is that between influenza viruses and Streptococcus
pneumoniae (pneumococcus) [2, 8, 13]. Influenza usually
infects the human upper respiratory tract but can also
spread to the lower respiratory tract, causing more se-
vere illness [14, 15]. Pneumococcus is a very common
bacterial species of the human upper respiratory tract
[16], that asymptomatically colonizes the nasopharynx of
individuals and is naturally cleared after a few weeks, de-
pending on age [17, 18]. When the bacteria invades the
surrounding tissues or the bloodstream, various bacterial
infections can occur, ranging from mild otitis media to
more severe pneumonia or meningitis [19]. A synergistic
relationship between these two pathogens has been sug-
gested [8], with influenza infections thought to increase
the risk of severe secondary pneumococcal infections
(PI) [7, 8, 20]. However, the interaction mechanisms and
consequences in terms of morbidity or mortality, and,
more generally, the public health burden, are still very
poorly known.
Mathematical modeling is a powerful tool to ex-

plore the epidemiology and spread of infectious dis-
eases [21–23]. Historically, most published models
have been based on a compartmental approach for-
malizing the transmission of a given pathogen of
interest, while neglecting all the other microorganisms
simultaneously colonizing or infecting the population.
In those models, pathogens are assumed to infect
populations in an independent manner [24–26]. In re-
cent years, the compartmental approach has proven

very useful to assess biological hypotheses exploring
pathogen interactions and their implications in terms
of public health [27–29]. However those models be-
come very complex when trying to model precisely
the phenomena occurring at the individual level. In
contrast, the agent-based model (ABM) framework is
particularly appropriate in this context. Processes are
defined at the individual level, allowing a detailed def-
inition of each pathogen’s natural history and the
complexity of within-host phenomena. For example,
the exact interaction timeframe can be precisely set
in an ABM, whereas it is much more difficult to do
so with compartmental models.
Herein, we describe a novel individual-based simulator

of the co-circulation of influenza virus (henceforth re-
ferred to as influenza) in interaction with another re-
spiratory pathogen in a virtual population of humans,
the Simulator of Flu in Interaction (SimFI) framework.
We used this framework to explore the particular con-
text of influenza and pneumococcus co-circulation.
Based on simulated data, we assessed the potential bur-
den of PI cases attributable to influenza, under different
interaction hypotheses.

Model and methods
We developed a stochastic ABM, in which each human
individual is specifically modeled and his/her successive
infectious states recorded. The model is applied to simu-
late influenza and a second pathogen, which can be ei-
ther epidemic (causing annual outbreaks but absent
most of the year) or endemic (present in the population
throughout the year). The between-pathogen interac-
tions and their consequences can vary according to the
chosen pathogen.
We used the NetLogo multi-agent programmable

modeling environment for the implementation [30]. The
model is freely available on the following website http://
b2phi.inserm.fr/#/resources/71/NetLogo-SimFI-model.

Global overview
Individuals are characterized by several variables moni-
toring their location, age and infectious state concerning
the two pathogens. The simulation time step is the day.
On each day of the simulation individuals move in the
simulated world and come into contact with other
people. From those contacts, the transmission of one or
both pathogens is possible and will result in reevalua-
tions of the variables describing infectious status. Here
years define epidemic years, starting on October 1st and
ending on September 30th.

Simulation set-up
The model is artificially spatially explicit so that the indi-
viduals can move, in what the NetLogo software refers
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to as a “world”, which is a torus divided into patches.
Two persons are considered to be in contact if they co-
incide on the same patch at a given time. The dimension
of the patches – and thus of the world – is set in order
to have, on average, 13 contacts per person and per day
as reported by the Polymod study and its French equiva-
lent [31, 32]. The individuals move in this world each
day in a randomly chosen direction at a distance ranging
from 1 to 10 patches. The individuals are initially healthy
and uniformly distributed at random around the world,
with uniformly distributed ages. By default, birth and
death rates are fixed in order to keep the population size
constant at 100,000 individuals.

Natural histories of the pathogens
Figure 1 illustrates the natural histories of the pathogens.
At any given time, all individuals can acquire one or
both circulating pathogens. During the simulation, when
a new individual enters a new infectious state, the dur-
ation for which he/she will remain in this state is drawn
from a Gamma distribution, with a mean value set by
the user.

Influenza implementation
Natural history
Once an individual is infected with an influenza virus,
the incubation period is assumed to last an average of
2 days [33, 34], followed by a symptomatic phase lasting
an average of 4 days [26, 27, 32, 33]. During these two
stages, we assumed that the individual would be conta-
gious from day 2 post-virus infection until 2 days after
the symptoms began [27, 33, 34]. Once the symptomatic
period is over, the individual is assumed to be immune
to the current virus. Default values for the influenza
cycle can be found in Fig. 1 timeline and Table 1.

Influenza set-up
On the first day of each epidemiological year, the charac-
teristics of the coming influenza outbreak are set. The
influenza-associated infectiousness probability is drawn
from a normal probability distribution with a mean value
set by the user (3.3% per contact-day by default). A por-
tion of randomly chosen individuals is immunized
against the coming influenza virus (default at 23%) to
take into account natural or acquired immunity in the
population. The importation date of the first cases is
randomly drawn from a gamma distribution of mean 71
and standard deviation 28, and the number of imported
cases is randomly chosen between 20 and 30. Every indi-
vidual has a 20% probability of being reported when they
enter the symptomatic phase. Default values were
chosen to obtain incidence series comparable to French
surveillance data from the Sentinel Network [35].

Second pathogen implementation
Natural history
Individuals can acquire the second pathogen in a similar
way as they acquire influenza, with user-defined charac-
teristics of natural history (mean durations of the
asymptomatic and symptomatic phases, the duration of
the contagious period, the reporting probability, and the
characteristics of potential immunity). The generic time-
line of the second pathogen is represented on Fig. 1.

Second pathogen set-up
If the second pathogen is epidemic, the outbreak set-up
is similar to that of influenza, with a mean infectiousness
rate, initial immunity proportion, importation period,
and number of imported cases all to be defined by the
user. If the second pathogen is endemic, a fraction of
randomly chosen individuals (20% of the population by

Fig. 1 Natural histories of the two simulated pathogens. Clinical status (upper rectangles) and infectious status (green for non-contagious, red for
contagious) are shown for influenza (top timeline) and the second interacting pathogen (bottom timeline)
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default) acquires the pathogen, thus entering the asymp-
tomatic phase at the beginning of the simulation.

Interactions
Different interaction mechanisms influencing the
pathogens’ infection dynamics are embedded in our
model. They are based on the main biological mecha-
nisms found in the literature on influenza interactions
[2, 7, 8, 13], and summarized as macroscopic mecha-
nisms at the individual level.
The different mechanisms are implemented through

multiplicative parameters modulating the pathogens’
transmission (β) or infection (p) probabilities (Fig. 2).
The “acquisition”-interaction parameter, represented by

α, modifies an individual’s probability of actually acquir-
ing a second pathogen when a first one is already
present. The “transmission”-interaction parameter, θ,
modifies the probability of an individual simultaneously
colonized or infected by both pathogens to transmit
them to susceptible contacts. The “cross-immunity”-
interaction has only been observed in the case of two vi-
ruses co-circulating (epidemic pathogens); its parameter,
μ, modulates the probability of individuals immune to
one pathogen of being infected with the second patho-
gen. Finally the “pathogenicity”-interaction, with the π
parameter, which has only been suggested when an epi-
demic and an endemic pathogens (eg. bacteria) co-
circulate, modifies the probability of developing an

Table 1 Main model parameters and their default values

Description Default value Rationale

Population size 100,000 persons chosen for computational purposes

Influenza virus

Transmission-probability rate Ν(mean 0.03; SD∗ 0.001) per contact-day calibrated to match French influenza-like
illnesses data [35]

Reporting probability of symptomatic cases 20%

Initial percentage of immune people each year 23%

Incubation period Γ(mean 2; var 0.1) [33, 34]

Symptomatic period Γ(mean 4; var 1) [26, 27, 34, 49]

Shedding period (1 day after asymptomatic state onset;
2 days after symptomatic state onset)

[27, 33, 34]

Second pathogen (pneumococcus example default values)

Asymptomatic period duration Γ(mean 21; var 25) [18, 37]

Infection-probability rate 4.2e-5 per day calibrated to obtain an average annual
incidence of 220 PI cases per 100,000 [38]

Symptomatic case-reporting probability 100% all PI cases are assumed to be reported

Symptomatic period duration Γ(mean 12; var 16) [38]

Shedding onset in the asymptomatic phase Day 0 [17, 39, 40]

Shedding end in the symptomatic phase Day 2 due to severity, PI cases are assumed to
be isolated after 2 days of symptoms

Acquisition interaction (α12, α21) (1, 1) to be varied

Transmission interaction (θ12, θ21) (1, 1) to be varied

Endemic case: specific parameters

Carriage rate in the population (% of asymptomatic
individuals)

20% [17, 39, 40]

Immunity-period duration (immunity reinitialized at
the end of every year)

300 days no immunity assumed for pneumococcus

Pathogenicity interaction (π12) 1 to be varied

Epidemic case: specific parameters

Beginning of the 2nd pathogen epidemic U(30 – 60) days after influenza epidemic
onset

can be varied according to the chosen
pathogen

No. of cases when the 2nd pathogen epidemic starts U(20 – 30)

Initial percentage of immune people 25%

Cross-immunity interaction (μ12, μ21) (1, 1) to be varied
*SD: standard deviation.
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infection with an endemic pathogen for individuals carry-
ing both influenza and the endemic pathogen. The modu-
lated probabilities for each interaction phenomenon
(except for π which doesn’t occur during transmission)
are detailed in Fig. 2.
For all interaction mechanisms, when the interaction

parameter is >1, the risk of acquiring, transmitting or
developing an infection with a second pathogen is higher
for individuals already infected with one pathogen; when
the parameter is <1 the risk is lower; and when the
parameter = 1, the probability is unchanged and the
interaction is not activated. The acquisition, transmis-
sion and cross-immunity mechanisms can represent ei-
ther an influenza impact on the second pathogen’s
epidemiology or vice versa. Consequently, for each of
these mechanisms, two parameters are defined and can
be independently activated or not. For the pathogenicity
interaction, we assumed it to be only an effect of influ-
enza on the endemic pathogen, thus only one parameter
controls this mechanism. All interaction parameters
values are set to 1 by default (Table 1). The duration of
the cross-immunity interaction in the pathogen’s cycle
can also be specified.

Use of the model
Through the NetLogo platform we created a user-
friendly interface to make our model easy to use and to
adapt to test different assumptions or hypotheses [36].

The user is asked to provide values for a list of parame-
ters (default values in Table 1). NetLogo offers different
visualization solutions, including plots and variable
monitors, while the simulation is running, or recording
of chosen variables. By default, our simulator recorded
the daily number of new symptomatic cases for influ-
enza and the other pathogen. More outputs can be
added easily.

Stochasticity, reproducibility and technical information
All random numbers and probabilities of transmission,
acquisition and infection for both pathogens were ran-
domly chosen. NetLogo uses a random number gener-
ator to provide pseudo-random numbers which are
determined by the choice of a seed at the beginning of
each new simulation.
For the simulations we used the computational and

storage services (TARS cluster) provided by the IT
Department at Institut Pasteur, Paris. Graphs and statis-
tical analyses were performed with R version 3.3.3.

Model calibration for the influenza–pneumococcus
application
Pneumococcus natural history
The pneumococcus parameters default values are given
in Table 1, and a timeline of pneumococcal natural his-
tory can be found in Additional file 1. Pneumococcus
commonly colonizes the human nasopharynx. This

Fig. 2 Calculation of a pathogen PA’s acquisition probability depending on the two in-contact individuals’ infectious statuses. The transmission
probability βA of pathogen PA can be modulated by the different interaction mechanisms, depending on the infectious status of the two
individuals in contact. αBA is the parameter for the acquisition-interaction directed from PB on PA, θBA is the transmission-interaction parameter
and μBA represents the cross-immunity parameter
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colonization state is thought to be mostly asymptomatic
and is represented in our model by the asymptomatic
period, which lasts an average of 3 weeks [18, 37], after
which the bacterium is naturally cleared. During this
asymptomatic period, an individual carries the bacteria,
is contagious, and at risk of developing a PI. Herein, we
considered only pneumococcal pneumonia as a potential
PI and retained a 12-day symptomatic period [38], dur-
ing which the individual is contagious during the first
2 days. In the model, when a subject develops a PI, it is
always reported (100% reporting probability assumed),
and we considered no immunity to the disease. The car-
riage rate in the population was set at 20% [17, 39, 40].
The probability of developing a PI was calibrated to ob-
tain an annual average of 220 PI cases per 100,000 [41].

Seasonality
PIs have a seasonal trend, with more cases during the
winter than summer [42, 43]. We integrated this par-
ticularity into the model through a simple threshold
function: from October 1st to April 30th, the prob-
ability of developing an infection was unchanged, but
from May 1st to September 30th this probability was
divided by 4, which is consistent with French surveil-
lance data on PIs.

Influenza-pneumococcus interactions
Several studies have investigated a potential interaction
between influenza virus and pneumococcus [7, 8, 20].
Their results show a unilateral effect of influenza
infection on pneumococcus colonization and infection
[7, 13, 20], involving several potential biological mecha-
nisms. First, influenza infection is thought to increase
the number of binding sites in the nasopharynx leading
to increased adherence of the bacterium [8, 13]; at the
individual level, it may result in an increased chance of
colonization by pneumococcus, modelled here through
the acquisition-mechanism. Second, viral infection may
increase pneumococcal transmission, potentially as a re-
sult of influenza-related symptoms that cause higher
shedding of the bacterium [7], this can be directly mod-
elled through the transmission-mechanism. Lastly, influ-
enza infection has been suggested to facilitate the
progression from carriage to severe disease [7, 8], an ef-
fect modelled here by the pathogenicity-mechanism,
which modulates the risk of bacterial disease in colo-
nized (i.e. asymptomatic) individuals (see the figure in
Additional file 2).

Simulations
By varying the values of the different interaction pa-
rameters modulating pneumococcal-acquisition (αij),
−transmission (θij), −cross-immunity (μij), and
-pathogenicity (πij), many interaction scenarios can be

simulated. We modified independently the parameters
corresponding to the influenza-pneumococcus interaction
for our simulations: when one interaction mechanism is
activated, the corresponding parameter is set to a non-1
value, while the other interaction parameters are fixed to
1. For each of the three parameters considered here (α12,
θ12, and π12), the following values were independently
tested: 2, 5, 10, 15, 25, 50, 75, 100, corresponding to a total
of 24 scenarios. A baseline scenario with no interaction
was also simulated. For each scenario, 1000 independent
epidemiological years were simulated from the model.

Evaluation of PI burden
The ABM structure operates at the individual level, offer-
ing the possibility to monitor each person’s history for
both pathogens. The exact PI-case count caused by the in-
fluenza interaction can then be derived, and the influenza-
related burden of PI computed. As the acquisition- and
the transmission-interaction mechanisms operate during
pneumococcal carriage, some PIs are directly caused by
the interaction between the virus and the bacterium, while
others are secondary cases that are an indirect conse-
quence of the interaction. For example, someone who ac-
quired pneumococcus as a result of the interaction and
then developed a PI is a direct PI case, but if this person
transmits pneumococcus to someone else and this second
individual then develops a PI, it is an indirect PI case. Be-
cause the pathogenicity mechanism operates during the
transformation from carrier to infected individual, it only
leads to direct cases per our definition.
The influenza-induced burden of PIs for one scenario

was calculated as the difference between the mean total
number of PIs for the considered scenario (over the
1000 iterations) and the mean total number of PIs for
the baseline scenario in which no influenza–pneumococ-
cus interaction mechanism was activated. The burden
was assessed for three different periods of the simulated
epidemiological year: during influenza season only, post-
influenza season only, and during the entire year (there-
fore including the two previously cited periods). The in-
fluenza season is defined as weeks with >150 new
influenza cases reported, the post-influenza season is the
period starting immediately after the end of the influ-
enza season, as we defined it, and lasting until the end
of the simulated year (September 30th).

Results
In the following, all average numbers of cases are re-
ported per 100,000 inhabitants.

Model outputs
Simulation of influenza
Influenza dynamics are well-reproduced by the model,
as displayed in Fig. 3 and the figure in Additional file 3.
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The mean duration of each outbreak and the average
maximum numbers of influenza cases per year are all
consistent with reported incidence data in France, ex-
trapolated from the Sentinel Network [35]. Variations
among the different years in terms of timing and size of
the epidemics are visible, due to the stochasticity of the
model. On average, over 1000 iterations, we found 5260
([3760–6760] 95% confidence interval) annual influenza
cases.

Simulation of an endemic pathogen (pneumococcus)
Weekly incidence series for PIs are presented in Fig. 3a–d.
We reproduced several hundred PIs per year (mean 242

cases). The majority of PIs occurred in the winter (mean
203 from October to April), which is in accordance with
the pneumococcal pneumonia incidence in France [44].
As observed in Fig. 3a–d and Additional file 3, the PI-
incidence series differed markedly depending on which
interaction mechanism was activated. In particular,
pneumococcus prevalence (Fig. 3e) strongly shadowed the
influenza outbreak for the acquisition and transmission
mechanisms.

Simulation of another epidemic pathogen
Figure 3f–h and Additional file 3 illustrate the two succes-
sive epidemic series occurring during successive simulated

Fig. 3 Weekly incidence of simulated cases per 100,000 for influenza and the two possible co-circulating pathogens. 50 iterations of the model
(grey and red lines) are presented, along with the average incidence over those iterations (black line for PI or second epidemic pathogen, dashed
red line for influenza). (a–d) For influenza (red), the following parameter values were used for the simulations: transmission probability 3.3% per
contact-day; 23% of the population initially immunized; 20% case-reporting probability; no interaction mechanism activated between influenza
and the second pathogen. For PI cases (black and grey), the following parameter values were used: carriage rate 20%; pathogenicity rate 4.2e-5
per day; no immunity; 100% case-reporting probability; no interaction mechanism activated (a), acquisition-interaction strength 50 (b), transmission-
interaction strength 50 (c), and pathogenicity-interaction strength 50 (d). (e) Pneumococcal carriage prevalence rate for the baseline scenario, the
acquisition-interaction strength 50, the transmission-interaction strength 50, and the pathogenicity-interaction strength 50. (f–h) For influenza (red) and
a second epidemic pathogen (black and grey) cases, the following parameter values were used for the latter: transmission probability 2.8% per
contact-day; 25% of the population initially immunized; 20% case-reporting probability; no interaction mechanism activated (f), acquisition-interaction
strength 25 (g), and cross-immunity–interaction strength 0.8 (h)
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years for different interaction mechanisms from influenza
on a second epidemic pathogen. Each mechanism specif-
ically altered the resulting shape and timing of the second
pathogen’s outbreak. Strong over-induced acquisition
(Fig. 3g) generated dramatically higher numbers of in-
fections for the second epidemic pathogen (interaction-
parameter strength 50). For strong cross-immunity inter-
action (interaction-parameter strength 0.8), the second
epidemic was delayed several weeks (Fig. 3h), and the total
number of cases was much lower than for the baseline
scenario (Fig. 3f).

Influenza-related PI burden
In our simulations, the average influenza season lasted
11.6 weeks, and the post-influenza period lasted
26.6 weeks.

Baseline scenario
As expected, an average annual number of 242 PIs
(mean 4.6 per week) was estimated when no between-
pathogen interaction was considered [see the table in
Additional file 4]. In accordance with pneumococcal sea-
sonality, higher average numbers of cases occurred dur-
ing the influenza season: 6.2 cases per week (72 cases in
11.6 weeks). In contrast, a mean of 2.8 cases per week,
corresponding to 75 cases in 26.6 weeks, were obtained
after the influenza season.

Influenza-induced over-acquisition
The burden of influenza-attributable PIs increased
slightly with the acquisition parameter: above the thresh-
old value of 15 it remained stable, representing on aver-
age 34 PIs out of 276 annual cases (around 12% of the
total number of PIs) for the whole year, even for very
high interaction-parameter values (Fig. 4a). During the
influenza period, the influenza-induced PI burden also
showed a threshold interaction-parameter value of 15,
with an average burden of 26% of all PIs during this
period (Fig. 4b – upper panel and Additional file 4).
During the weeks following the influenza season, the
interaction effect was prolonged with persistently about
9% of all that period’s PIs which can be attributed to in-
fluenza for any parameter value (Fig. 4b – lower panel
and Additional file 4). However, most of those PIs re-
sulted from indirect/secondary cases and only 2% came
from cases directly attributable to the interaction.

Influenza-induced over-transmission
The burden of influenza-attributable PI cases increased
with the transmission-related parameter, regardless of
the time period (whole year, influenza season or post-
influenza season), reaching an influenza-induced burden
of 68% for the highest parameter value during the influ-
enza season (Fig. 4c – upper panel). The same held true

for the relative numbers of directly attributable cases.
Interestingly, when the interaction parameter increased,
more direct than indirect cases occurred.

Influenza-induced increased pathogenicity
The burden of influenza-attributable PI cases for the
pathogenicity interaction was lower than the one for the
acquisition interaction for parameter values up to 15,
and lower than the PI burden for the transmission inter-
action for parameter values up to 100 (Fig. 4a). However
the burden associated with the pathogenicity mechanism
regularly increased with the interaction strength, the
more striking increase being during the influenza season
when it reached 65% of all PI cases for the strongest
interaction link [see Additional file 4].

Timing of the interaction mechanisms
The effects of the different interaction mechanisms on
the PI burden do not immediately follow the introduc-
tion of influenza, this lag was investigated by calculating
the mean weekly burden for each interaction scenario.
The results are exposed in the figure in Additional file 5.
On one hand, a significant burden impact of the
pathogenicity-interaction is generally observed 2 to
5 weeks after the first cases of influenza are introduced
in the population. On the other hand, consequences of
the acquisition- and transmission-interaction mecha-
nisms are observed after a longer delay, and have longer-
lasting effects on the influenza-induced burden than the
pathogenicity mechanism, due to their impact on
colonization.

Discussion
We developed a novel simulator of influenza virus in
interaction with a second pathogen. The SimFI frame-
work successfully reproduces the co-circulation of influ-
enza and other pathogens, either epidemic or endemic.
We obtained realistic simulated datasets in terms of
weekly incidence, epidemic size and timeframe, and car-
riage rate. The effects of the different influenza–
pneumococcus-interaction mechanisms implemented
were assessed. For the endemic pathogen, the effects of
the acquisition and transmission mechanisms on the dy-
namics were similar and could not be discriminated
visually on the incidence series; the pathogenicity mech-
anism also had similar dynamics but the incidence series
more closely paralleled the influenza epidemics than for
the former two.
We used the SimFI framework to evaluate the

influenza-attributable PI burden in a series of simula-
tions, characterized by different interaction hypotheses.
We found that for the acquisition-interaction mechan-
ism, the burden rapidly reached a maximum around
26% of PIs during the influenza period, when the
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interaction strength increased (threshold reached for
interaction strengths >10). The transmission- and
pathogenicity-interaction mechanisms behaved differ-
ently. The PI burden increased with the transmission-
interaction–parameter value for the three considered pe-
riods (entire year, influenza season, and post-influenza
season), with respective values in the ranges 1–52%, 3–
72%, and 2–46% of total PIs. Same was observed for the
pathogenicity mechanism, with respective average PI
burdens in the ranges of 1–56%, 1–79%, and 0–24%.

Herein, we tested a wide range of strengths for the
influenza-virus–pneumococcus interaction (applied to
pneumococcal pneumonia) with interaction-parameter
values ranging from 2 to 100, in accordance with the es-
timations of previous modeling studies for different
types of pneumococcal infections [28, 45]. Based on
French pneumococcal meningitis cases over 2001–2004,
Opatowski et al. [28] found transmissibility increased by
a factor of 8.7 for co-infected individuals and pathogen-
icity by 92. Based on two distinct US pneumonia

Fig. 4 Computed influenza-induced PI burden. Average percentages and 95% confidence intervals of influenza-attributable PIs over the 1000 iterations
of the model (y-axis), according to the acquisition-, transmission- or pathogenicity-interaction mechanism, and for the range of interaction-strength
values tested (x-axis). Global burden of PIs over the entire simulated year (a), direct and indirect number of PIs for the (b) acquisition-interaction
mechanism or (c) transmission-interaction mechanism
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datasets, Shrestha et al. [45] found that influenza infec-
tion increased susceptibility to pneumococcal pneumo-
nia by factors 85 and 115. We note that, due to
differences in model structures, the susceptibility-
interaction parameter mentioned in their study corre-
sponds to a combination of the acquisition- and
pathogenicity-interaction parameters from our model.
The values used for our simulations were intentionally
chosen to include the values estimated in those earlier
studies. It is important to note that some parameter
values, particularly the high acquisition- and
transmission-interaction values (Fig. 3e), resulted in
strong seasonality of pneumococcal carriage. That
phenomenon is not reported in literature, which sug-
gests that these scenarios might not be realistic.
An advantage of the SimFI framework is the possibility

to exactly count the number of infections with each
pathogen, as well as the exact number of cases attribut-
able to the between-pathogen interaction. The authors
of several studies attempted to estimate the PI burden.
Classically, burden estimations have been based on re-
gression models, including influenza as a covariate, and
comparison to a baseline deduced by removing influ-
enza. For example, Walter et al. [46] estimated the
influenza-induced burden of invasive pneumococcal
pneumonia in the United States, and found that 11%–
14% of those pneumonia cases could be attributed to in-
fluenza during the influenza season, and 5%–6% over
the year. Those estimations are in accordance with some
of the parameter values used in our model: an over-
acquisition strength around 5, an over-transmission
strength between 2 and 5, or an increased pathogenicity
strength between 5 and 10 are all compatible with
Walter’s results. In the study by Nicoli et al. [47] on
United Kingdom surveillance data, 7.5% of invasive
pneumococcal diseases were estimated to be attributable
to influenza over the year, consistent with several of our
scenarios: acquisition increased by 5–10, transmission
increased by 5, or pathogenicity increased by 10–15.
However, the estimation from real incidence data of the
number of excess infection cases caused by between-
pathogens interactions is difficult, because there is no
direct information on infection history of co-circulating
pathogens. Furthermore, no consensus has yet been
reached on the method to use to estimate the associated
burden, complicating the comparison between the differ-
ent studies’ results on this topic.
Herein, we aimed to formalize the simplest model in-

corporating the main features of influenza interactions
with another pathogen. Our model is therefore a simpli-
fication of reality. A sensitivity analysis was carried out
on several key parameters: pneumococcus carriage rate,
mixing patterns in the simulated world, and size of the
influenza epidemic. The movement patterns of the

individuals did not affect the influenza-induced PI bur-
den, however both the carriage rate of pneumococcus in
the population and the size of the influenza epidemic
had an impact on the PI burden (results available in
Additional file 6). More complex features could be in-
cluded, for example by incorporating an age structure
that would allow modeling of acquired immunity for one
or both pathogens. That inclusion would be particularly
relevant for the influenza–pneumococcus interaction
model, given that pneumococcal carriage varies mark-
edly with respect to the age of individuals [17], and that
influenza disease and PI severity have also been sug-
gested to be age-related [16, 48]. Furthermore, the simu-
lator could be extended to test other interaction
hypotheses in addition to the ones we implemented: for
example, if we were to allow individuals to die from ill-
ness, we could integrate an interaction for disease sever-
ity. The SimFI model parameters would also be easy to
adapt to test interactions for an agent other than influ-
enza, and then implement completely different inter-
action mechanisms.
The model we propose could also be used and ex-

tended to simulate and predict the effects of public
health measures targeting one or two pathogens. That
extension would allow the assessment of such measures
by taking a broader view, including co-circulating patho-
gens. The impact of vaccinating against influenza on PIs
could for example be assessed, or the effect of more
complex scenarios when two or more control measures
are implemented simultaneously (e.g. simultaneous vac-
cinations against influenza and pneumococcus).

Conclusions
In conclusion, a novel individual-based simulator of in-
fluenza in interaction with another pathogen, including
several ready-to-use interaction mechanisms, was de-
scribed. As an application, we used this SimFI frame-
work to assess what the influenza-associated PI burden
could be for different hypothetical interactions. This
open-access model will provide new opportunities to test
hypotheses concerning pathogen (especially influenza)
interactions, generate in silico data for different scenar-
ios, and assess the statistical methods generally used to
study interactions.

Additional files

Additional file 1: Natural histories of influenza and pneumococcus.
Clinical status (upper rectangles) and infectious status (green for non-
contagious, red for contagious) are shown for influenza (top timeline)
and pneumococcus (bottom timeline). (JPEG 72 kb)

Additional file 2: Calculation of pneumococcus’ acquisition probability
depending on the two in-contact individuals’ infectious statuses. The
transmission probability βSp of pneumococcus (Streptococcus pneumoniae)
can be modulated by the different interaction mechanisms, depending on
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the infectious status of the two individuals in contact. α12 is the parameter
for the acquisition-interaction directed from influenza on pneumococcus,
and θ12 is the transmission-interaction parameter. (PNG 67 kb)

Additional file 3: Weekly incidence of simulated cases per 100,000 for
the three possible pathogens. (A–D) For influenza (red), the following
parameter values were used for the simulations: transmission probability
3.3% per contact-day; 23% of the population initially immunized; 20%
case-reporting probability; no interaction mechanism activated between
influenza and the second pathogen. For PI cases (black), the following
parameter values were used: carriage rate 22% per contact-day;
pathogenicity probability 0.0042% per day; no immunity; 100% case-
reporting probability; no interaction mechanism activated (A), acquisition-
interaction strength 50 (B), transmission-interaction strength 50 (C), and
pathogenicity-interaction strength 50 (D). (E) Pneumococcal carriage
prevalence for the baseline scenario (orange), the acquisition-
interaction strength 50 (green), the transmission-interaction strength
50 (blue), and the pathogenicity-interaction strength 50 (purple); (F–H) For
influenza (red) and a second epidemic pathogen (black) cases, the following
parameter values were used for the latter: transmission probability 2.8% per
contact-day; 25% of the population initially immunized; 20% case-reporting
probability; no interaction mechanism activated (F), acquisition-interaction
strength 25 (G), and cross-immunity–interaction strength 0.8 (H). The
represented data were chosen for five among the 1000 simulated
years for each scenario for their explicit representation of each
interaction-mechanism effect on infection dynamics. (PNG 424 kb)

Additional file 4: Burden of influenza-related pneumococcal infections
for all simulated scenarios. Eight different values of interaction parameters
were tested for each interaction mechanism (acquisition, transmission,
and pathogenicity). Values in the table represent the influenza-induced
excess numbers of pneumococcal infections and the associated
percentages, presented with their 95% confidence intervals, per
100,000. Values are aggregated over the three different periods
considered: whole epidemiological year, influenza season, and post-
influenza season. (XLSX 16 kb)

Additional file 5: Weekly influenza-induced PI burden after the
introduction of influenza in the population. The average weekly burdens for
different scenarios are represented if they are statistically significant (non-0
values). The x-axis represents the number of weeks after the introduction of
influenza in the population. (PNG 213 kb)

Additional file 6: Sensitivity analysis of pneumococcus carriage rate,
movement patterns in the population, and influenza size. (PDF 181 kb)
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