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Abstract

Background: The incidence of Proteus mirabilis antimicrobial resistance, especially that mediated by
extended-spectrum β-lactamases (ESBLs), has increased. We investigated the impact of ESBL production
on the mortality of patients with P. mirabilis bacteremia in Korea.

Methods: Patients diagnosed with P. mirabilis bacteremia between November 2005 and December 2013 at
a 2000-bed tertiary care center in South Korea were included in this study. Phenotypic and molecular
analyses were performed to assess ESBL expression. Characteristics and treatment outcomes were
investigated among ESBL-producing and non-ESBL-producing P. mirabilis bacteremia groups. A multivariate
analysis of 28-day mortality rates was performed to evaluate the independent impact of ESBLs.

Results: Among 62 P. mirabilis isolates from 62 patients, 14 expressed ESBLs (CTX-M, 2; TEM, 5; both,
6; other, 1), and the 28-day mortality rate of the 62 patients was 17.74%. No clinical factor was significantly
associated with ESBL production. The 28-day mortality rate in the ESBL-producing group was significantly
higher than that in the non-ESBL-producing group (50% vs. 8.3%, p = 0.001). A multivariate analysis showed
that ESBL production (odds ratio [OR], 11.53, 95% confidence interval [CI], 2.11–63.05, p = 0.005) was
independently associated with the 28-day mortality rate in patients with P. mirabilis bacteremia.

Conclusions: ESBL production is significantly associated with mortality in patients with bacteremia caused
by P. mirabilis. Rapid detection of ESBL expression and prompt appropriate antimicrobial therapy are
required to reduce mortality caused by P. mirabilis bacteremia.
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Background
Proteus mirabilis is not a common cause of bloodstream
infections in normal hosts, accounting for 1–3% of all
episodes of bacteremia. [1–3] However, P. mirabilis is an
important causative pathogen of various community-

and healthcare-associated infections, such as wound
infections, primary bacteremia, pneumonia and urinary
tract infections, particularly among patients with anatom-
ical or functional urinary tract abnormalities or indwelling
urinary catheters [4–6].
The incidence of antimicrobial resistance of P. mirabilis

has increased, and this can negatively affect prognosis. [7]
The prevalence of multidrug-resistant (MDR) strains pro-
ducing extended-spectrum β-lactamases (ESBLs), AmpC
β-lactamases or carbapenemases has increased worldwide.
[8–13] Among MDR isolates, ESBL-producing strains are
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the most frequent. [5, 9, 14] Previous studies reported that
infections caused by MDR P. mirabilis strains are associ-
ated with higher rates of antibiotic treatment failure and
mortality. [5, 8, 14] However, the treatment outcomes of
MDR and non-MDR P. mirabilis infections are reported
to be similar in several reports. [9, 15] The impact of
MDR in P. mirabilis infections on treatment outcomes is
thus unclear.
In Korea, the clinical aspects of P. mirabilis bacteremia

have not been assessed, although microbiological data
and molecular analyses of ESBLs from P. mirabilis
strains have been reported. [16–18] Therefore, further
study of the effects of MDR on clinical outcomes is
needed. To this end, we investigated the clinical character-
istics and antimicrobial susceptibility profile of P.
mirabilis bacteremia isolates in Korea. We also evaluated
the treatment outcomes of patients with ESBL-producing
P. mirabilis bacteremia, in particular the impact of ESBL
expression on the mortality rate of patients with P. mir-
abilis bacteremia.

Methods
Study design and patients
A retrospective cohort study was conducted at a 2000-
bed, tertiary-care medical center in Seoul, South Korea.
Microbiology laboratory databases were searched to
identify all blood cultures positive for P. mirabilis among
hospitalized patients older than 18 years from November
2005 to December 2013. Among the identified patients,
only those with stored P. mirabilis isolate samples were
included in the study, and their medical records were
reviewed. For patients with more than one episode of P.
mirabilis bacteremia, only data relevant to the first
episode were analyzed. Isolates were divided into two
groups according to ESBL production (the ESBL-
producing and non-ESBL-producing groups). Microbio-
logical and clinical factors were compared between the
two groups to evaluate the factors and outcomes associ-
ated with ESBL production in P. mirabilis bacteremia.
The study was approved by the Institutional Review
Board (IRB) of Yonsei University Health System Clinical
Trial Center. Since the study was retrospective, and
the data of the subjects were anonymized, the IRB
waived the requirement for written informed consent
from the patients.

Microbiological tests and molecular detection of ESBL
P. mirabilis was identified using either the ATB 32 GN
or VITEK 2 system (bioMérieux, Marcy-L’Étoile, France).
Antimicrobial susceptibility was determined using the
disk-diffusion method or VITEK-2 N131 card (bioMér-
ieux, Hazelwood, MO, USA). The results were interpreted
according to the Clinical and Laboratory Standards Insti-
tute (CLSI) 2014 guidelines. [19] P. mirabilis isolates were

stored in skim milk at −70 °C until further examination.
In our institution, until 2010, ESBL production was
assessed using the double-disk potentiation test. However,
from 2011, ESBL production was no longer reported, in
accordance with the revised CLSI 2011 guidelines. [20]
Thus, we retrospectively performed the double-disk po-
tentiation test to identify ESBL-production. Briefly, each
isolate was subcultured twice from the skim milk prior to
being tested. All 62 P. mirabilis isolates were inoculated
onto the plates of Muller-Hilton agar (Becton Dickinson,
Cockeysville, Md.) using ceftazidime and cefotaxime disks
with and without clavulanic acid. The interpretation was
followed by CLSI 2014 guidelines. [19] Genes encoding
ESBLs (blaTEM, blaSHV and blaCTX-M) were detected by
polymerase chain reaction amplification using previously
reported primers and reaction conditions [21–23].

Collected data and definitions
The data collected included age, sex, date of culture,
possible source of bacteremia, underlying diseases, vari-
ous predisposing factors, laboratory data at the time of
bacteremia diagnosis, severity of disease calculated by
the sequential organ failure (SOFA) score and acute
physiological and chronic health evaluation (APACHE)
II score, treatment outcomes, antimicrobial therapy regi-
men and results of antimicrobial susceptibility testing.
Bacteremia was defined as the isolation of P. mirabilis

from at least one separately obtained blood culture with
clinical symptoms and signs compatible with infection.
[24] Comorbidities were defined according to the Inter-
national Classification of Disease, 10th Revision. [25] Pre-
disposing conditions were taken into consideration only if
they occurred within 1 month before the bacteremia. Pre-
vious exposure to specific antibiotics was considered in
the analysis only if the antibiotics had been administered
for at least 3 consecutive days within 1 month before
the bacteremia.
After performing blood cultures, patients were promptly

treated with empirical antibiotics within 24 h according to
their predicted focus of infection until the susceptibility
profiles of the isolates had been determined. The appro-
priateness of the prescribed antimicrobial therapy was
evaluated retrospectively at the time of the bacteremia epi-
sode. Antimicrobial therapy was considered inappropriate
if the isolated P. mirabilis did not show susceptibility to
all administered antibiotics in vitro. Death within 28 days
after bacteremia was regarded as being associated with P.
mirabilis bacteremia unless definite clinical data suggested
another cause of death.

Statistical analysis
All statistical analyses were performed using the
SPSS software, version 21 (SPSS; IBM Corp., Armonk, NY,
USA) Continuous variables are presented as means ±
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[standard deviation (SD)] or medians [interquartile
range (IQR)], and categorical variables are presented as
numbers and percentages. To compare the two groups,
the Student’s t-test or Mann-Whitney U-test, depend-
ing on the validity of the normality assumption, was
used for continuous variables. The chi-squared test or
Fisher’s exact test was used to assess categorical vari-
ables. Multivariate analysis was performed using logistic
regression to identify factors that independently and
significantly affected outcomes. Variables with a p value
<0.05 in the univariate analysis were considered for in-
clusion in a multivariate model, and the final variables
for inclusion in the multivariate model were selected
via the backward likelihood ratio test. Survival analysis
was performed using the Kaplan-Meier method, and
comparison between the two groups was performed by
log-rank test. Values of p < 0.05 were considered to
indicate significance.

Results
Prevalence of ESBL production in P. mirabilis bacteremia
From November 2005 to December 2013, a total of 85
patients with P. mirabilis bacteremia were identified: 5
in 2005/2006, 7 in 2007, 9 in 2008, 8 in 2009, 10 in
2010, 18 in 2011, 17 in 2012 and 11 patients in 2013.
Among them, 62 patients with stored bacterial strain
samples were included in the analysis. Fourteen of 62
patients harbored ESBL-producing P. mirabilis strains
(prevalence, 22.6%).

Antimicrobial susceptibility of P. mirabilis
The in vitro antimicrobial susceptibilities of the P. mir-
abilis isolates are shown in Fig. 1. Most isolates were

susceptible to meropenem (93.5%), piperacillin/tazo-
bactam (98.3%), amikacin (93.5%), ceftazidime (90.3%),
azteronam (88.3%) and cefepime (80.6%). The non-
ESBL-producing group showed higher rates of suscep-
tibility to most β-lactam antibiotics than did the
ESBL-producing group; however, there was no signifi-
cant difference in the rate of susceptibility to pipera-
cillin/tazobactam between the two groups. Also, there
were not significant differences in the rates of sus-
ceptibility to levofloxacin and trimethoprim for both
groups; in contrast, the non-ESBL-producing group
exhibited a higher rate of susceptibility to aminogly-
cosides (Table 1).

Clinical characteristics and mechanisms of ESBL
production in patients with P. mirabilis bacteremia
The baseline characteristics of the patients are shown
in Table 2. The median age was 74.5 years in the
ESBL-producing group and 71 years in the non-ESBL-
producing group. Patients in the ESBL-producing and
non-ESBL-producing groups were predominantly male
and female, respectively; however, this was not a
significant difference. Urinary tract infection was the
most frequent source of infection in the non-ESBL-
producing group, while a significantly higher fre-
quency of pneumonia, as a source of bacteremia, was
seen in the ESBL-producing group (42.9% vs. 6.3%,
p = 0.003).
Among the ESBL-producing strains, two produced

TEM only, five produced CTX-M only, and six produced
both TEM and CTX-M. One isolate showed a positive
reaction in a double-disk potentiation test but did not
express TEM-, CTX-M- or SHV-type enzymes.

Fig. 1 In vitro antimicrobial susceptibility tests for Proteus mirabilis isolates causing bacteremia
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Factors associated with ESBL production by P. mirabilis
A univariate analysis was conducted to investigate the
factors associated with bacteremia caused by ESBL-
producing P. mirabilis (Table 2). There were no signifi-
cant differences in the rates of underlying comorbidities
or most of the predisposing factors between the ESBL-
producing and non-ESBL-producing groups. However,
the rates of receiving intensive care unit (ICU) treatment
and maintaining a percutaneous endoscopic gastrostomy
(PEG) tube were significantly higher in the ESBL-
producing group than in the non-ESBL-producing group
(57.1% vs. 22.9%, p = 0.022 for ICU, 28.6% vs. 2.1%,
p = 0.008 for PEG tube). Initial clinical presentations
and severity scores did not show meaningful differences
between the two groups. However, in the multivariate
analysis, no variable that was significant in the univariate
analysis was independently associated with ESBL pro-
duction (Table 3).
ESBL extended spectrum β-lactamases, PEG percutan-

eous endoscopic gastrostomy, ICU intensive care unit,
OR odd ratio, CI confidence interval.

Treatment outcomes of P. mirabilis bacteremia
Treatment outcomes are also summarized in Table 2.
Inappropriate antibiotics were prescribed more fre-
quently on the day of bacteremia diagnosis in the ESBL-
producing group (42.9% vs. 18.8%, p = 0.082), but the
difference was not statistically significant. During the
study period, 36 of 62 patients died, yielding an overall
crude mortality rate of 58.6%. Among these 36 patients,
11 died within 28 days of the P. mirabilis bacteremia
episode, yielding a 28-day mortality rate of 17.74%. The
ESBL-producing group showed a higher 28-day mortal-
ity rate than that of the non-ESBL-producing group

(50% vs. 8.3%, p = 0.001); this was also confirmed by a
survival curve analysis (p = 0.001) (Fig. 2).

Factors associated with 28-day mortality in patients with
P. mirabilis bacteremia
Univariate and multivariate analyses of 51 survivors and
11 non-survivors were performed to identify the factors
associated with 28-day mortality. As shown in Table 4,
ESBL production by P. mirabilis, previous antibiotic use,
and a higher baseline APACHE II score or SOFA score
were significantly associated with 28-day mortality in
patients with P. mirabilis bacteremia in the univariate
analyses. In the multivariate analysis (Table 5), ESBL
production (odds ratio [OR], 11.53; 95% confidence
interval [CI], 2.11–63.05, p = 0.005) and a high SOFA
score (OR 1.32, 95% CI 1.03–1.70, p = 0.029) were inde-
pendently associated with 28-day mortality in patients
with P. mirabilis bacteremia.

Discussions
Infections caused by Enterobacteriaceae expressing ESBLs
are a healthcare concern worldwide; however, studies of
ESBL production have focused on Klebsiella pneumoniae
and Escherichia coli. [26–31] P. mirabilis is an important
emerging pathogen, particularly in healthcare settings, due
to its potential for horizontal transmission and drug resist-
ance. [32] Reports on the antimicrobial resistance of P.
mirabilis have increased in recent years. [32–35].
Four previous clinical studies on bacteremia caused

by MDR P. mirabilis strains have addressed the risk
factors for acquisition of antimicrobial resistance and
the impact of MDR on mortality. [5, 8, 14, 15] Two
of these studies focused on ESBL-producing strains
[8, 15], while the other two evaluated MDR strains

Table 1 In vitro antimicrobial susceptibility of ESBL producing and ESBL non-producing P. mirabilis isolates

Antimicrobial agent No. (%) of susceptible isolate p value

non-ESBL-producing group N = 48 ESBL producing groupN = 14

Ampicillin 26 (54.2) 1 (7.1) 0.002

Ampicillin/sulbactam 37 (77.1) 4 (28.6) 0.003

Piperacillin/tazobactam 47 (97.9) 12 (100) 0.617

Aztreonam 45 (95.7) 8 (61.5) 0.004

Cefoxitin 42 (87.5) 5 (41.7) 0.002

Cefotaxim 43 (89.6) 3 (23.1) <0.001

Ceftazidime 46 (95.8) 10 (71.4) 0.02

Cefepime 46 (95.8) 4 (28.6) <0.001

Meropenem 44 (91.7) 14 (100) 0.297

Levofloxacin 36 (75.0) 6 (46.2) 0.088

Amikacin 47 (97.9) 11 (78.6) 0.033

Gentamicin 34 (70.8) 3 (21.4) 0.001

Trimethoprim /sulfamethoxazole 29 (60.4) 4 (30.8) 0.057+

ESBL, extended spectrum β-lactamases
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Table 2 Baseline characteristics and clinical outcomes of patients with P. mirabilis bacteremia

Factors non-ESBL-producing group
N = 48

ESBL producing group
N = 14

p value

Age, y, median(IQR) 71.0 (60.5–79) 74.5 (61.0–80.25) 0.706

Age ≥ 65 years, n(%) 30 (60.0) 9 (64.3) 0.903

Male, n(%) 18 (37.5) 9 (64.3) 0.075

BMI, kg/m2,median(IQR) 22.37 (20.51–25.54) 21.21 (18.80–23.46) 0.247

Infection source

Urinary tract infection, n(%) 28 (58.3) 4 (28.6) 0.05

Pneumonia, n(%) 3 (6.3) 6 (42.9) 0.003

Skin and soft tissue infection, n(%) 1 (2.1) 1 (7.1) 0.403

Biliary infection, n(%) 9 (18.8) 0 (0) 0.105

Catheter related infection, n(%) 2 (4.2) 1 (7.1) 0.543

Others, n(%) 5 (10.5) 2 (14.3) 0.61

Comorbidities

HTN, n(%) 31 (64.6) 7 (50) 0.324

DM, n(%) 19 (39.6) 5 (35.7) 0.794

Cardiovascular disease, n(%) 4 (8.3) 4 (28.6) 0.069

Chronic kidney disease, n(%) 6 (12.5) 1 (7.1) 1.000

Chronic liver disease, n(%) 3 (6.3) 3 (21.4) 0.122

Solid tumor, n(%) 25 (52.1) 7 (50) 0.891

Hematologic malignancy, n(%) 2 (4.2) 0 (0) 1.000

Solid organ transplantation, n(%) 3 (6.3) 0 (0) 1.000

Charlson score, median(IQR) 2.0 (1.0–2.75) 2.0 (1.0–3.25) 0.151

Predisposing factors

Neutropenia, n(%) 2 (4.2) 0 (0) 1.000

Chemotherapy, n(%) 5 (10.4) 3 (21.4) 0.365

Nursing home residence, n(%) 7 (14.6) 0 (0) 0.334

Hemodialysis, n(%) 7 (14.6) 4 (28.6) 0.249

ICU care, n(%) 11 (22.9) 8 (57.1) 0.022

Maintaining foley catheter, n(%) 11 (22.9) 6 (42.9) 0.141

Maintaining PEG tube, n(%) 1 (2.1) 4 (28.6) 0.008

Previous antibiotic use 13 (27.1) 7 (50) 0.12

Cephalosporins, n(%) 6 (12.5) 2 (14.3) 1.000

Carbapenems, n(%) 2 (4.2) 2 (4.2) 0.217

Fluorquinolones, n(%) 2 (4.2) 1 (7.1) 0.543

BLBLIs, n(%) 4 (8.4) 1 (7.1) 1.000

Clinical presentation

Shock, n(%) 17 (35.4) 6 (42.9) 0.612

Acute kidney injury, n(%) 15 (31.3) 2 (14.3) 0.313

APACHE II score, median(IQR) 12.0 (8.0–16.75) 13.5 (10.75–19.25) 0.115

SOFA score, median(IQR) 3.0 (1.0–5.75) 4.0 (1.0–6.5) 0.85

Outcomes

Inappropriate antimicrobial therapy, n(%) 9 (18.8) 6 (42.9) 0.082

Overall mortality, n(%) 25 (52.1) 11 (78.6) 0.077

28-day mortality, n(%) 4 (8.3) 7 (50) 0.001

ESBL extended spectrum β-lactamases, IQR interquartile range, BMI body mass index, HTN hypertension, DM diabetes mellitus, ICU intensive care unit,
PEG percutaneous endoscopic gastrostomy, BLBLIs beta-lactam/beta-lactamase inhibitors, APACHE II score Acute Physiology and Chronic Health
Evaluation II score, SOFA score the Sequential Organ Failure Assessment score
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defined as non-susceptible to at least one agent in
three or more classes of antimicrobials. [5, 14] The
risk factors for acquiring resistant P. mirabilis strains
were receiving nursing home care [5, 8, 14], previous
antibiotic treatment [5, 14, 15], hemodialysis [15], re-
current hospitalization [5, 14], urinary catheterization
[5, 8] and having a peptic ulcer or peripheral vascular
disease [14]. Only one of the four studies reported no
differences in recurrence or mortality rates between
MDR and non-MDR strains [15]; the others reported
significantly higher mortality rates in patients with
MDR P. mirabilis bacteremia. [5, 8, 14] In this study,
no clinical factor was significantly associated with
ESBL production and the 28-day mortality rate in the
ESBL-producing group was significantly higher than
that in the non-ESBL-producing group.
The prevalence of ESBLs in P. mirabilis varies among

studies from 0.7% to 57% [15, 36–42]; however, many
studies reported that the prevalence has increased over
time. [36, 38–40] Previous studies from 2005 to 2011 in

Korea reported incidences of ESBL-producing P. mir-
abilis of 6.5–12.6%, but no information regarding the
change in incidence over time was provided. [16, 18, 43]
In this study, the prevalence of ESBL production among
P. mirabilis bacteremia isolates was 22.6% over an 8-year
period, which is higher than that reported by previous
studies in Korea.
Most ESBLs are CTX-M-, TEM- and SHV-type β-

lactamases. [31, 44] Recently, CTX-M-type β-lactamases
have become the predominant type in many areas. [37, 38,
41, 45, 46] The distribution of ESBL type varies geographic-
ally; TEM-type enzymes are the most common ESBLs in
some areas. [8, 40, 47, 48] According to one Korean
study of ESBL-producing P. mirabilis isolates in 2005,
most ESBL producers possessed the blaTEM gene,
followed by blaCTX-M. [16] In this study, of the 14 isolates
from the ESBL-producing group, 78.5% (11/14) produced
CTX-M, 50% (7/14) produced TEM, and 49% (6/14)
produced both CTX-M and TEM; CTX-M type and
TEM-type enzymes were also predominant in this study.
The P. mirabilis isolates showed a high rate of suscep-

tibility to meropenem. Only 4 of 62 strains were not
susceptible to meropenem, all of which were in the non-
ESBL-producing group. Among them, one strain isolated
in 2012 showed intermediate susceptibility to merope-
nem minimum inhibitory concentration (MIC) 2 mg/L
but was susceptible to piperacillin/tazobactam and other
third- and fourth-generation cephalosporins. The other
three strains (two strains with meropenem disk zone di-
ameters of 21 mm and one strain with meropenem MIC

Table 3 Multivariate analysis for associated factors of
bacteremia caused by ESBL producing P. mirabilis

Factors OR 95% CI p value

Age 1.03 0.97–1.09 0.294

Female sex 0.51 0.11–2.29 0.375

Having pneumonia as source of infection 3.26 0.45–23.52 0.241

Maintaining PEG 9.96 0.64–153.98 0.101

Previous ICU care 3.15 0.69–14.29 0.137

Fig. 2 Kaplan-Meier survival estimates among patients with P. mirabilis bacteremia. ESBL, extended spectrum β-lactam
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Table 4 Factors associated with 28-day mortality in patients with P. mirabilis bacteremia

Factors Survivors N = 51 (%) Nonsurvivors N = 11 (%) p value

Age, y, median(IQR) 71.0 (63.0–79.0) 73.0 (54.0–84.0) 0.797

Age ≥ 65 years, n(%) 32 (62.7) 7 (63.6) 1.000

Sex, male, n(%) 21 (41.2) 6 (54.6) 0.51

BMI, kg/m2, median(IQR) 22.35 (10.07–25.52) 21.78 (19.15–23.29) 0.366

ESBL producing pathogen, yes, n(%) 7 (13.7) 7 (63.6) 0.001

Infection source

Urinary tract infection, n(%) 28 (54.9) 4 (36.4) 0.264

Pneumonia, n(%) 6 (11.8) 3 (27.3) 0.191

Skin and soft tissue infection, n(%) 2 (3.9) 0 (0) 1.000

Biliary infection, n(%) 8 (15.7) 1 (9.1) 1.000

Catheter related infection, n(%) 2 (3.9) 1 (9.1) 0.449

Comorbities

HTN, n(%) 33 (64.7) 5 (45.5) 0.311

DM, n(%) 21 (41.2) 3 (27.3) 0.505

Cardiovascular disease, n(%) 5 (9.8) 3 (27.3) 0.142

Chronic kidney disease, n(%) 7 (13.7) 0 (0) 0.334

Chronic liver disease, n(%) 3 (5.9) 3 (27.3) 0.063

Rheumatologic disease, n(%) 2 (3.9) 0 (0) 1.000

Solid tumor, n(%) 26 (51.0) 6 (54.5) 0.83

Hematologic malignancy, n(%) 1 (2.0) 1 (9.1) 0.326

Solid organ transplantation, n(%) 2 (3.9) 1 (9.1) 0.449

Charlson score, median(IQR) 2.0 (1.0–2.0) 2.0 (1.0–4.0) 0.239

Predisposing factors

Neutropenia, n(%) 2 (4.0) 0 (0) 1.000

Chemotherapy, n(%) 7 (13.7) 1 (9.1) 1.000

Nursing home residence, n(%) 7 (13.7) 0 (0) 0.334

Hemodialysis, n(%) 8 (15.7) 3 (27.3) 0.394

Maintaining foley catheter, n(%) 11 (21.6) 6 (54.5) 0.056

Maintaining PEG tube, n(%) 4 (7.8) 1 (9.1) 1.000

ICU care, n(%) 13 (25.5) 6 (54.5) 0.077

Previous antibiotic use, n(%) 13 (25.5) 7 (63.6) 0.029

Cephalosporins, n(%) 6 (11.8) 2 (18.2) 0.623

Carbapenems, n(%) 3 (5.9) 1 (9.1) 0.552

Fluorquinolones, n(%) 1 (2.0) 2 (18.2) 0.079

BLBLI, n(%) 3 (5.9) 2 (18.2) 0.212

Clinical presentation

Shock, n(%) 19 (37.3) 4 (36.4) 1.000

Acute kidney injury, n(%) 14 (27.5) 3 (27.3) 1.000

APACHE II score, median(IQR) 11.0 (8.0–16.0) 17.0 (11.0–19.0) 0.027

SOFA score, median(IQR) 2.0 (1.0–5.0) 5.0 (4.0–8.0) 0.033

Inappropriate antimicrobial therapy, n(%) 10 (19.6) 5 (45.5) 0.115

IQR interquartile range, BMI body mass index, ESBL extended spectrum β-lactamases, HTN hypertension, DM diabetes mellitus, PEG percutaneous endoscopic
gastrostomy, ICU intensive care unit, BLBLIs beta-lactam/beta-lactamase inhibitors, APACHE II score Acute Physiology and Chronic Health Evaluation II score, SOFA
score the Sequential Organ Failure Assessment score
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of 4 mg/L) were isolated between 2008 and 2009 and
were deemed susceptible prior to the retrospective ad-
justment according to the modified CLSI guidelines. [19]
The carbapenem-resistant isolate (one strain with mero-
penem MIC of 4 mg/L) showed decreased susceptibility
to ampicillin, ampicillin/sulbactam, aminoglycosides,
quinolones and trimethoprim/sulfamethoxazole but was
susceptible to piperacillin/tazobactam and other third-
and fourth-generation cephalosporins.
Almost all P. mirabilis isolates were susceptible to pi-

peracillin/tazobactam, irrespective of ESBL production.
Piperacillin/tazobactam is less effective than meropenem
against bacteremia caused by ESBL-producing Entero-
bacteriaceae [49–51]. Therefore, piperacillin/tazobactam
can be used empirically prior to determination of the
susceptibility profile of potential or predicted ESBL-
producing P. mirabilis isolates.
In this study, the ESBL-producing group showed a

significantly higher 28-day mortality rate than that of
the non-ESBL-producing group. The prognosis of
bacteremia caused by Enterobacteriaceae is associated
with several factors, such as the clinical severity at
the time of antimicrobial treatment, underlying dis-
eases and the appropriateness of antibiotics. [52] The
higher rate of inappropriate initial antimicrobial treat-
ment in patients with ESBL-producing P. mirabilis
could explain the increased mortality rate. [5, 26, 53,
54] However, in this study, clinical severity, under-
lying diseases and the rate of receiving inappropriate
initial antibiotics did not differ between the ESBL-
producing and non-ESBL-producing groups. Although
the analyses were not limited to P. mirabilis infection,
worse clinical outcomes from infections caused by
ESBL-producing pathogens susceptible to the antibi-
otics used have been reported. [52, 55, 56] Kim et al.
reported that the favorable treatment response rate
was significantly lower in the ESBL group than in the
non-ESBL group among 68 patients with bacteremia
caused by E. coli or K. pneumoniae treated with
extended-spectrum cephalosporins, to which the in-
fecting organisms were susceptible in vitro. [52] The
mean interval from the time of bacteremia to the ad-
ministration of presumptively appropriate antimicro-
bial agents was not different between the two groups.
[52] Although the research did not make use of the
revised cephalosporin breakpoints, the authors concluded

that ESBL production itself resulted in a worse prognosis
of bacteremia. [52] Use of certain extended-spectrum
cephalosporins for infections caused by ESBL-producing
pathogens can result in treatment failure. In particular, a
favorable response to treatment with a third-generation
cephalosporin other than ceftazidime has been reported in
some cases of infection with ESBL-producing strains. [27]
Moreover, the molecular type of ESBL can also affect the
treatment outcomes. [27, 57, 58] Finally, an inoculum
effect, i.e., a significant increase in the MIC with an
increasing number of organisms, has been suggested to
explain the worse prognosis associated with infections
caused by ESBL-producing pathogens treated with antibi-
otics other than carbapenems [55].
Infections with ESBL-producing strains can be treated

early with appropriate antibiotics before the availability
of antimicrobial susceptibility profiles in the presence of
clinical risk factors predictive of infection with ESBL-
producing strains. However, no clinical factor was
significantly associated with ESBL production in this
study. Therefore, rapid detection of ESBL expression is
essential for early appropriate treatment. Microbiologic
identification using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry and rapid
susceptibility testing facilitates faster detection of
pathogens and prompt prescription of appropriate
antibiotics, which may lead to improved clinical out-
comes [59–61].
This study was subject to several limitations. First, the

type of CTX-M and TEM β-lactamases was not identi-
fied, and ESBL-producing strains were not subjected to
pulsed-field gel electrophoresis assay. Therefore, the
ESBL types and role of horizontal spread of their en-
coding genes could not be assessed. Next, stored P.
mirabilis isolate samples were available for only 64 of
85 patients infected with P. mirabilis bacteremia dur-
ing the study period. Therefore, we were unable to
evaluate the incidence of ESBL-producing isolates
over time. Other limitations include the retrospective
nature and small sample size of the study. Neverthe-
less, our findings suggest that ESBL production exerts
a negative influence on the mortality rate of patients
with P. mirabilis bacteremia.

Conclusions
In conclusion, our results suggest that ESBL production
is significantly associated with the 28-day mortality
rate, in that patients with bacteremia caused by ESBL-
producing P. mirabilis have higher 28-day mortality
rates. Because no clinical factor was found to be pre-
dictive of ESBL production by P. mirabilis bacteremia
isolates, early detection of ESBL expression and prompt
appropriate antimicrobial therapy are essential for im-
proving the prognosis.

Table 5 Multivariate analysis of risk factors for 28-day mortality

Factors OR 95% CI p value

ESBL producing 11.53 2.11–63.05 0.005

Previous antibiotics use 5.09 0.94–27.54 0.059

SOFA score 1.32 1.03–1.69 0.029

ESBL extended spectrum β-lactamases, SOFA score the Sequential Organ Failure
Assessment score, OR odd ratio, CI confidence interval
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