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Abstract

Background: Hepatitis C virus (HCV) infections have increased during the past decade but little is known about
geographic clustering patterns.

Methods: We used a unique analytical approach, combining geographic information systems (GIS), spatial
epidemiology, and statistical modeling to identify and characterize HCV hotspots, statistically significant clusters
of census tracts with elevated HCV counts and rates. We compiled sociodemographic and HCV surveillance data
(n = 99,780 cases) for Massachusetts census tracts (n = 1464) from 2002 to 2013. We used a five-step spatial
epidemiological approach, calculating incremental spatial autocorrelations and Getis-Ord Gi* statistics to identify
clusters. We conducted logistic regression analyses to determine factors associated with the HCV hotspots.

Results: We identified nine HCV clusters, with the largest in Boston, New Bedford/Fall River, Worcester, and
Springfield (p < 0.05). In multivariable analyses, we found that HCV hotspots were independently and positively
associated with the percent of the population that was Hispanic (adjusted odds ratio [AOR]: 1.07; 95% confidence
interval [CI]: 1.04, 1.09) and the percent of households receiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74). HCV
hotspots were independently and negatively associated with the percent of the population that were high school
graduates or higher (AOR: 0.91; 95% CI: 0.89, 0.93) and the percent of the population in the “other” race/ethnicity
category (AOR: 0.88; 95% CI: 0.85, 0.91).

Conclusion: We identified locations where HCV clusters were a concern, and where enhanced HCV prevention,
treatment, and care can help combat the HCV epidemic in Massachusetts. GIS, spatial epidemiological and statistical
analyses provided a rigorous approach to identify hotspot clusters of disease, which can inform public health policy
and intervention targeting. Further studies that incorporate spatiotemporal cluster analyses, Bayesian spatial and
geostatistical models, spatially weighted regression analyses, and assessment of associations between HCV clustering
and the built environment are needed to expand upon our combined spatial epidemiological and statistical methods.
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Background
Approximately 71.1 million people are estimated to be
currently infected with the hepatitis C virus (HCV)
worldwide [1]. The number of people infected in the
U.S. alone is estimated to be more than three million, of
whom 75% were born between 1945 and 1965 [2]. Age-
adjusted HCV mortality rates have increased steadily in
recent decades [3], and notable increases in HCV cases
have been reported in many states across the U.S. [4] At
least 60% of prevalent HCV infections and nearly all in-
cident HCV infections are attributed to injection drug
use (IDU) [5–8], with an increasing burden among
young people who inject drugs (PWID) [3–6] in non-
urban, white communities [4].
Recent HCV surveillance data in Massachusetts (MA)

identified a new HCV epidemic pattern characterized by
a bimodal age distribution, with the expected peak
among 45–65 year olds and an emerging peak among
15–30 year olds [9, 10]. There was a 78% increase in
HCV cases among adolescents and young adults (15–
24 years) in MA between 2002 and 2009, and an in-
crease of 137% in the 15–29-year-old population be-
tween 2002 and 2013 [9, 10]. HCV surveillance is greatly
underfunded across the United States [11], and limited
spatial epidemiological and geostatistical analysis of sur-
veillance data has been performed to date.
Innovative analytical approaches can foster a better

understanding of disease transmission and improved
preparation for targeted responses. Studies have demon-
strated that GIS-guided approaches to disease screenings
have a higher yield than traditional screening methods
[12–15]. Information on where infections cluster may
enhance disease prevention, treatment, and care. For
example, in Connecticut, researchers used a mix of
statistical and geographic information system (GIS)
methods to identify unique spatial distributions and char-
acteristics for HCV and related infections [16]. Along the
U.S.-Mexico border, spatial epidemiological methods were
used to identify HIV clusters, and to determine that most
seroconversions were occurring in a 2.5 block radius in
the red light district of Tijuana [17]. In MA, we identified
HCV and HIV all-cause mortality hotspots from 2002 to
2012 [18]. However, GIS and spatial analyses to date have
been relatively simplistic in their approach and new, more
methodologically rigorous spatial cluster analyses are
needed to pinpoint locations (i.e., “hotspots”) with highest
needs for intervention. The objectives of our study were
to: (1) identify HCV clusters in MA using GIS and spatial
epidemiology, and (2) to characterize the HCV clusters
through statistical modeling.

Methods
We defined a hotspot as a location with a statistically
significant cluster of census tracts with higher counts

and rates of HCV than the average count/rate for all
census tracts in MA [18].

Data and measures
We obtained a partially de-identified, limited HCV sur-
veillance dataset from the Massachusetts Department of
Public Health (MDPH) that included 99,780 records of
people with evidence of past or present infection with
HCV reported from 2002 to 2013. All laboratory test
results indicative of HCV infection are reportable to
MDPH. Most of these reports are received via electronic
laboratory reporting into the MA Virtual Epidemiologic
Network (MAVEN), MDPH’s secure, web-based, elec-
tronic surveillance system [19]. The data are comprised
of all newly reported probable and confirmed cases of
HCV during the time period and offer the most
complete window to prevalent HCV infection patterns
available. CDC case definitions were employed. A prob-
able HCV case was a case that did not meet the case def-
inition for acute HCV, was anti-HCV positive (repeat
reactive) by enzyme immunoassays (EIA), and had ala-
nine aminotransferase (ALT or SGPT) values above the
upper limit of normal, but the anti-HCV EIA result had
not been verified by an additional more specific assay or
the signal to cut-off ratio was unknown. A confirmed
HCV case was defined as a case that was laboratory con-
firmed and did not meet the case definition for acute
HCV. Reported variables include year of report, sex,
mode of transmission (IDU vs. non-IDU), race/ethnicity,
and address. Address information was missing for
15,541 records. Our final analytical dataset included
84,255 HCV cases.

Demographic and risk variables and rate computation
We obtained population denominators and sociodemo-
graphic data on the census tract level from U.S. Census
Bureau’s American Community Survey (ACS) [20]. As of
the 2010 Census, there were 1478 census tracts in MA.
Using GIS and ACS data, we calculated HCV counts and
rates of infection per 100,000 persons at the census tract
level. Independent variables were selected based on prior
research and the scientific literature. Continuous ex-
planatory variables included race/ethnicity, age, educa-
tion level, households receiving food stamps, and
housing status. We used rank order histograms to deter-
mine median or tertile cut-offs based on the skewness of
the data. We categorized continuous variables using the
median as a cut point for non-linear increases or de-
creases that were monotonic. We categorized continu-
ous variables by tertile for non-linear trends that
demonstrated a U-shape or inverted U-shape. Explana-
tory variables for total population, and household in-
come were dichotomized at the median, and the
continuous variables for households living in poverty,
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households with one worker, and households with two
or more workers were categorized by tertiles. Census
tracts with a total population of <1 were excluded from all
analyses, resulting in omission of 14 tracts (n = 1464).

Other potentially associated geographic features
Addresses for health facilities, including HIV testing
sites and syringe exchanges, were obtained from MDPH.
Addresses for pharmacies and prisons were obtained
from the MA State Board of Pharmacy and MassGIS,
respectively. Adult bookstores and gay bars were ob-
tained through publicly available webpages and Internet
directories targeting this community. All health re-
sources and other venues that could be associated with
hotspots, based on the literature and prior research,
were aggregated to the census tract level.

Spatial analyses
We used a combination of GIS, spatial epidemiological,
and statistical analyses to: (1) identify the geolocation of
statistically significant hotspot clusters of HCV cases,
and (2) determine community-level factors (i.e., social
determinants) associated with these clusters.

Data cleaning
We standardized address fields in SAS (v9.4, Cary, NC).
The process involved parsing the addresses into different
segments, unifying acronyms (e.g., changing “Str,” “Street,”
“street,” and “st” into “St”), removing superfluous charac-
ters (e.g., the “#” sign), and correcting mismatched ZIP
codes. The resultant segments were then rearranged into
three variables: street address, town, and ZIP code, which
were used for geocoding.

Geocoding
Geocoding is the process of obtaining longitude and lati-
tude coordinates for an address or the geocentroid of a
polygon (e.g., census tract) [21]. We geocoded the
cleaned HCV cases in ArcGIS 10.2.2, using an address
locator created from the U.S. Census Bureau’s 2014
Topologically Integrated Geographic Encoding and
Referencing (TIGER) Line Shapefiles. We ran addresses
that did not initially match through Google Earth’s desk-
top geocoder, which uses multiple algorithms to improve
geographic match rates. Throughout our extensive
cleaning processes, 66,023 observations were success-
fully matched in ArcMap with 16,133 more matching in
Google Earth. This resulted in a total of 82,211 matched
addresses for an overall match rate of 82.3% (82,211/
99,780). For our analytical dataset, which included
complete addresses for all HCV cases (n = 84,255), we
achieved a match rate of 97.6% (82,211/84,255). These
match rates are similar to those in other studies in the
literature [22].

Descriptive mapping and cluster analyses
We conducted GIS and spatial epidemiological analyses
to determine the burden of disease across MA. First, we
created thematic GIS maps to determine the initial
spatial distribution of HCV cases and rates. Data were
aggregated at the census tract level to protect the confi-
dentiality of people living with HCV while maintaining
the optimal spatial resolution. Next, we used Kernel
Density Estimation (KDE) to construct a smoothed sur-
face of HCV cases across MA. KDE analyses incorporate
the number and proximity of cases within defined geo-
graphic areas [23]. The final results from this method
can be interpreted as the density of HCV cases per
square mile.
We then used tests of spatial autocorrelation and hot-

spot analyses to identify the location of clusters of HCV
case counts and rates per 100,000 population. Using
ArcGIS 10.2.2 (ESRI, Redlands, CA), we first used incre-
mental spatial autocorrelation at 30 different distances
to determine the distance at which clustering was most
intense (i.e., had the highest z-score) for each specified
outcome [24]. The spatial scale (i.e., the distance) ob-
tained from these results was then entered as a param-
eter in the subsequent Getis-Ord Gi* hotspot analyses.
These analyses allowed us to identify the location of
statistically significant clusters of census tracts with
higher (or lower) values for HCV cases and infection
rates [25]. Next, we conducted spatiotemporal cluster
analysis (SaTScan v9.3) to determine temporal clustering
patterns in micro-communities across specific years
using a space-time cluster scanning statistic [26]. This
model can be run at different scanning window sizes
which limit the potential size of a discovered cluster. We
ran this model at a 25% scanning window which we
selected a priori to represent a balance of granular level
cluster detection without exposing the analysis to exces-
sive noise. Finally, we compared results across our four
geostatistical analyses to observe consistencies in con-
clusions. Our spatial analytical methods are described in
further detail elsewhere [18, 27].

Statistical analyses
After identifying HCV hotspot clusters, we calculated
descriptive statistics (Chi-squared tests and two sample
t-tests) for HCV cases with and without addresses and
for matched and unmatched addresses in the geocoding
process to determine whether there were differences in
the HCV cases by geocode status. Next, we conducted
logistic regression analyses to determine the factors
associated with HCV hotspots.
Statistical analysis was performed in two stages. First,

to obtain the unadjusted relationship we regressed hot-
spot status on each of the independent variables. Vari-
ables with an overall p-value <0.25 were retained for the
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multivariable models. For multiple logistic regression
analyses, significant collinearities (variance inflation fac-
tor > 6) were observed between “% of owner-occupied
housing units” and “% of renter-occupied housing units”;
between “% African American” and “% White; and “%
Asian” and “% other race/ethnicity”; and between “%
male” and “% female”. To alleviate the inflation in vari-
ance caused by the aforementioned collinearities, and
based on strength of association with the outcome, we
removed percentages of female, total population of
owner-occupied housing, White, and Asian from the ad-
justed model. DFBeta and residual analyses revealed no
influential points or potential outliers. A Hosmer and
Lemeshow Goodness-of-Fit test was conducted with
p = 0.46, indicating the model fit the data well. All statis-
tical analyses were performed using SAS v9.4. Statistical
significance was determined a priori at p < 0.05.

Results
Spatial analysis results
Through initial descriptive GIS maps, we found that re-
ported HCV infection case counts and rates were prom-
inent across many MA municipalities between 2002 and
2013 (Fig. 1a, b). Through KDE, we identified areas with
the highest densities of HCV cases per square mile. The
Greater Boston area, New Bedford, Fall River, Lawrence,
Lowell, Worcester, Springfield, Holyoke, and Fitchburg
had densities of 477 to 1070 HCV cases per square mile
(Fig. 1c). We identified nine statistically significant hot-
spot clusters for HCV case counts, with the largest
clusters in Boston, New Bedford/Fall River, Worcester,
and Springfield (p < 0.05) (Fig. 1d). We found clusters
for HCV rates per 100,000 persons in Boston, New Bed-
ford, and Springfield (Fig. 1e). Through space-time clus-
ter analyses, we detected similar geographic clusters,
with a large coldspot in the Metro West region, and hot-
spots in the Greater Boston area and the South Shore of
Massachusetts (Fig. 1f ). We ran hotspot cluster analyses
separately for HCV cases among 15–30 year olds and
45–65 year olds and no notable differences in spatial
clustering patterns were detected. In Table 1, we high-
light agreement in results across our four geostatistical
analytical methods, and rank areas of highest concern.

Statistical results
In Table 2, we present descriptive statistics for the charac-
teristics of the HCV cases we analyzed, comparing HCV
cases with and without addresses, and HCV cases with ad-
dresses that were successfully and unsuccessfully matched
through geocoding. We noted significant differences
across HCV case characteristics in both comparisons.
We present descriptive statistics for HCV hotspot

and non-hotspot census tracts in Table 3. We noted
significant differences, across race/ethnicity, gender,

and socioeconomic variables. In bivariate logistic re-
gression analyses (Table 4), total population, population
density, percent of population that was Hispanic,
percent high school graduates or higher, percent living
in poverty, median household income, and median age
were associated with HCV hotspots. In multivariable
logistic regression analyses, we found that HCV hot-
spots were independently and positively associated with
the percent of the population that was Hispanic
(adjusted odds ratio [AOR]: 1.07; 95% confidence inter-
val [CI]: 1.04, 1.09) and the percent of households re-
ceiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74).
HCV hotspots were independently and negatively asso-
ciated with the percent of the population that were high
school graduates or higher (AOR: 0.91; 95% CI: 0.89,
0.93) and the percent of the population in the “other”
race/ethnicity category (AOR: 0.88; 95% CI: 0.85, 0.91)
(Table 4).

Discussion
Our combined use of GIS, spatial epidemiological, and
statistical modeling approaches allowed us to identify
and characterize statistically significant geographic
HCV hotspot clusters. We observed agreement across
the different geostatistical methods we conducted,
which lends support to the idea that these locations in
MA present significantly greater burdens of disease.
Our HCV hotspots based on HCV counts highlighted
nine clusters, the largest of which included Boston, Fall
River, New Bedford, Worcester, and Springfield, where
the burden of disease is highest. We detected hotspots
for HCV rates per 100,000 persons in Boston, New
Bedford, and Springfield. Given that these hotspots are
based on rates, controlling for population differences
across census tracts in MA, they may represent loca-
tions with some of the greatest need for enhanced HCV
prevention and treatment interventions. It is notable
that each of these cities has a population with lower
median age than those found across MA, and that au-
thorized syringe exchange programs have not been
available in New Bedford and Springfield, despite initi-
ation of such programs elsewhere in MA in the 1990s,
and Worcester, Lawrence and a number of additional
sites in 2016.
In our multivariable analyses, we found that the per-

cent of population that was Hispanic and the percent of
households receiving food stamps were independently
and positively associated with HCV hotspots, while the
percent of the population that was another race/ethni-
city and the percent of the population that had a high
school education or higher were negatively associated
with HCV hotspots. These associations help us to
understand the underlying sociodemographic factors
that are associated with HCV clusters. The associations
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Fig. 1 (See legend on next page.)
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we observed with racial/ethnic groups differ from
recent findings that highlight an emerging HCV epi-
demic among non-urban, white youth and younger
populations [4]. However, the associations we observed
between high school education, belonging to the
“other” racial/ethnic groups, and HCV hotspots echo
the significant health disparities that exist among differ-
ent racial/ethnic minorities, educational attainment,
and income levels for HCV [28]. Since the surveillance
data upon which our analyses depend cover the time-
frame from 2002 to 2013, it may not be possible to
discern more recent patterns in disease transmission.
Confirmed and probable cases of HCV infection in-
clude individuals that have past exposure, but not
current infection. Analysis of more recent surveillance
data may begin to uncover different patterns, including
the emerging epidemic among young, suburban, white
communities.
Our findings may have implications for future disease

transmission risks and for the future success of HCV
treatment among PWID, for which there are many
sound recommendations [29]. PWID have experienced a

number of barriers along the HCV care cascade, which
includes diagnosis of disease, linkage to care, treatment,
retention, and cure. Targeting of future treatment or
cure as prevention (CasP) approaches [30, 31] could
benefit from spatial epidemiological analyses that iden-
tify and characterize HCV hotspot clusters. Antiviral
treatment uptake among PWID has been limited by bar-
riers at patient, provider, and structural levels [32]. With
the advent of direct acting antiviral (DAA) therapy,
many payers, including most state Medicaid programs,
continue to require abstinence from illicit drug use and
often restrict treatment by fibrosis stage [33]. These pol-
icies systematically exclude many PWID who have not
yet suffered from decades of infection and present
barriers to performing real-life CasP interventions in lo-
cations and populations with the highest risk of HCV
transmission. In MA, as of August 2016, all versions of
Medicaid and most private insurers approve DAAs at
fibrosis stage F0 or higher and without strict sobriety
criteria, facilitating PWID treatment. However, multiple
barriers remain for PWID along the cascade, resulting in
a very small fraction likely to reach cure [31].

(See figure on previous page.)
Fig. 1 a HCV cases aggregated at the census tract level in Massachusetts, 2002–2013. b HCV rates per 100,000 in Massachusetts census tracts,
2002–2013. c Density of HCV cases per square mile in Massachusetts, 2002–2013. d HCV clusters in Massachusetts based on reported HCV counts
aggregated at the census tract level (n = 1464). Census tracts with elevated numbers of HCV cases (red) represent hotspots (p < 0.05); census
tracts with low numbers of HCV cases (blue) represent coldspots (p < 0.05); census tracts with average numbers of HCV cases are represented in
yellow. e HCV clusters in Massachusetts based on rates per 100,000 population at the census tract level. Census tracts with elevated HCV rates
(red) represent hotspots (p < 0.05); census tracts with low HCV rates (blue) represent coldspots (p < 0.05); census tracts with average HCV rates
are represented in yellow; f Space-time clusters of HCV in Massachusetts, 2002–2013

Table 1 Comparison of geostatistical findings highlighting locations with high and low reported HCV infections, Massachusetts,
2002–2013

Location Kernel density analysis Getis-Ord GI* hotspot
test (count)

Getis-Ord GI* hotspot
test (rate)

Poisson space-time
cluster test

Greater Boston area Higher caseload per square mile Statistically significant
hot spot

Statistically significant
hot spot

Statistically significant
hot spot

South shore of
Massachusetts

Higher caseload per square mile Statistically significant
hot spot

Statistically significant
hot spot

Statistically significant
hot spot

Springfield Higher caseload per square mile Statistically significant
hot spot

Statistically significant
hot spot

No significant cluster

Worcester Higher caseload per square mile Statistically significant
hot spot

No significant cluster No significant cluster

Pittsfield Higher caseload per square mile Statistically significant
hot spot

No significant cluster No significant cluster

Cape Cod Higher caseload per square mile Statistically significant
hot spot

No significant cluster No significant cluster

North shore of
Massachusetts

Higher caseload per square mile No significant cluster No significant cluster No significant cluster

Merrimack Valley Higher caseload per square mile No significant cluster No significant cluster No significant cluster

Metro West No discernable difference from
state average

Statistically significant
cold spot

Statistically significant
cold spot

Statistically significant
cold spot
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There are several limitations in the current study.
First, HCV surveillance systems may not capture all
HCV cases. While MDPH’s MAVEN surveillance and
electronic laboratory reporting system has led to im-
proved efficiency and timeliness in capturing HCV
data [19], disease surveillance data only include infor-
mation on individuals who have been tested and re-
ported to health authorities. People who are not
tested or are not engaged in care are not represented
in these data. Race/ethnicity data are missing or in-
complete for many HCV cases, making it difficult to
discern representation in the HCV surveillance data
by race/ethnicity. Second, the MAVEN system cap-
tures address at time of report, typically many years
after initial HCV infection, and residence rather than
place of infection. As a result, spatial results may rep-
resent risk for HCV transmission 10–20 years earlier.
However, in the absence of large cohort studies that
follow PWID over time, starting at a young age and
allowing for calculation of HCV incidence rates and a
better understanding of the geographic location where

transmission occurred, such case reporting systems
offer the best option currently available on a state-
wide level. Third, our dataset includes people who are
positive for anti-HCV antibody through EIA. It is
possible that some HCV cases tested positive for anti-
body but negative for HCV ribonucleic acid, which
would over-estimate HCV cases of prevalent infection.
Spontaneous viral clearance occurs in approximately
25% of people initially diagnosed with HCV [34].
However, it is unlikely that there are differential
spatial distributions for reported HCV cases that ul-
timately clear the virus compared to cases that do
not. Fourth, in our statistical models, we assessed as-
sociations at the census tract level, rather than the in-
dividual level. HCV surveillance (outcomes) and ACS
data (explanatory variables) for the entire state are in-
cluded in our analyses, and represent the best data
available on the micro (i.e., neighborhood) level, and
have been used in previous small area analyses with
similar outcomes [35]. Finally, differences in charac-
teristics of HCV cases with and without addresses

Table 2 Descriptive statistics of HCV cases by address availability and geocoding match status

Address Geocoding

Missing Present p-value Unmatched Matched p-value

Count 14,980 (15.01%) 84,800 (84.99%) 2589 (3.05%) 82,211 (96.95%)

Mean Age 43.5 42.1 <0.001 42.3028 42.09298 0.462

Gender % <0.001 0.004

Male 56.69 61.26 64.39 61.16

Female 29.93 37.29 34.26 37.38

Other/Unknown 13.38 1.46 1.35 1.46

Exposure % <0.001 <0.001

PWID 8.72 24.88 27.54 24.79

Non-PWID 1.59 5.62 4.56 5.65

Unknown 89.69 69.51 67.9 69.56

Year % <0.001 <0.001

2002 13.62 8.17 9.08 8.14

2003 7.92 7.83 8.88 7.8

2004 7.32 9.32 16.92 9.08

2005 6.04 7.56 14.99 7.33

2006 7.52 7.95 7.69 7.96

2007 9.95 9.04 7.26 9.09

2008 9.13 8.71 7.38 8.75

2009 9.81 7.99 5.45 8.07

2010 8.5 7.73 4.98 7.82

2011 8.22 8.48 6.26 8.55

2012 6.96 8.84 5.79 8.93

2013 5.01 8.38 5.33 8.47

All p-values are the result of chi-squared tests with the exception of Mean age which is a result of a two sample t-test
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and for matched and unmatched addresses following
geocoding can help to illustrate which groups and
characteristics may be underrepresented and can in-
form training needs for completion of future HCV
case report forms, which can further enhance the pre-
cision of HCV surveillance data as well as spatial and
statistical analyses.

Future research
There are a number of unique spatial analytical tools and
approaches that are available to explore HCV, and other
infection clustering patterns, in MA and the US. Limited

spatial epidemiological and geostatistical analysis of sur-
veillance data has been performed to date, and the spatial
uncertainty of such analyses is unknown. Future research
should incorporate spatiotemporal cluster analyses, add-
itional spatial modeling approaches, including Bayesian
spatial and geostatistical models, and spatially weighted
regression analyses, to enhance spatial precision and build
upon our approaches. In addition, nuanced analyses that
compare clustering patterns across different population
subgroups and the role of the built environment are
needed to determine differences by age cohort, risk behav-
iors, environment, and race/ethnicity over time.

Table 3 Descriptive statistics of Massachusetts census tracts, 2002–2013 (n = 1464)

Characteristic Census tracts in HCV hotspot (n = 302)
Mean (95% CI)

Census tracts outside HCV hotspot (n = 1162)
Mean (95% CI)

Demographic Variables

Malea, % 48.32 (47.99, 48.48) 48.23 (47.99, 48.48)

Total population, no. per census tract 3837 (3663, 4010) 4577 (4481, 4673)

Median age, years 34.94 (34.20, 35.68) 39.71 (39.32, 40.09)

High School graduate or higherb, % 81.59 (80.03, 83.15) 89.18 (88.61, 89.75)

Whitea, c, % 70.57 (68.14, 73.00) 82.99 (81.83, 84.14)

African Americana, c, % 10.44 (8.88, 11.99) 6.25 (5.49, 7.01)

Hispanica, d,, % 16.80 (14.74, 18.86) 8.33 (7.50, 9.16)

Asiana, c, % 7.60 (6.51, 8.69) 4.49 (4.14, 4.84)

Other Race or Ethnicitya, e, % 7.56 (6.43, 8.69) 4.35 (3.79, 4.91)

Socioeconomic Variables

Median household income, $ 53,066 (50,543, 55,590) 71,725 (70,006, 73,444)

Households receiving food stampsa, g, %, 13.86 (12.36, 15.37) 8.07 (7.48, 8.66)

Households living at poverty statusa, g, (%) 10.16 (9.17, 11.15) 12.40 (11.73, 13.08)

Households with 1 workera, g, (%) 27.85 (26.95, 28.75) 29.26 (28.71, 29.80)

Households with ≥2workersa,g, (%) 59.53 (58.22, 60.83) 58.07 (57.33, 58.82)

Owner-occupied housing units, % 42.78 (40.22, 45.34) 67.46 (66.10, 68.82)

Renter-occupied housing units, % 57.22 (54.66, 59.78) 32.54 (31.18, 33.90)

Structural Variables

Pharmacies, no. 1.14 (0.93, 1.35) 1.50 (1.38, 1.62)

Gay bars, no. 0.04 (0.02, 0.07) 0.02 (0.00, 0.05)

Adult bookstores, no. 0.02 (0.01, 0.04) 0.02 (0.01, 0.03)

Syringe exchanges, no. 0.007 (0.00, 0.02) 0.00 (0.00, 0.00)

HIV testing sites, no. 0.36 (0.22, 0.49) 0.10 (0.07, 0.14)

Prisons, no. 0.02 (0.00, 0.03) 0.03 (0.02, 0.05)

HCV casesf, no. 72.31 (65.87, 78.74) 51.96 (49.33, 54.90)

HCV rate per 100,000 individualsf, no. 2424 (1544, 3303) 1220 (1154, 1286)

n sample size, % percent, $ United States dollar, HCV hepatitis C virus, HIV human immunodeficiency virus, CI confidence interval, IQR interquartile range
aPercent of total population within census tract
bPopulation 25 years of age or older
cNon-Hispanic
dOf any race
eIncludes Native Hawaiian/Pacific Islander, American Indian/Alaskan Native, and other races/ethnicities not specified
fReported HCV cases to the Massachusetts Department of Public Health from 2002 to 2013
gLast 12 months
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Conclusions
Combined geospatial and statistical analyses can help
identify regions of risk and regions of disease, and
inform public health policy decisions. Through our

analytical approach, we identified and characterized
clusters in MA where enhanced HCV screening, preven-
tion, treatment, and care could help to combat the HCV
epidemic.

Table 4 Factors associated with HCV hotspots in Massachusetts, 2002–2013

Characteristic Unadjusted model OR (95% CI) Adjusted model† AOR (95% CI)

Malea < 48.25% Referent

≥ 48.25% 0.88 (0.68, 1.14) –

Femalea < 51.75% Referent

≥ 51.75% 1.13 (0.88, 1.46) –

Total population, No. per census tract < 4248 Referent Referent

≥ 4248 0.50 (0.38, 0.64) 1.08 (0.80, 1.47)

Median age, years 0.90 (0.89, 0.92) 1.02 (0.99, 1.06)

High School graduate or higherb, % 0.95 (0.94, 0.96) 0.91 (0.89, 0.93)

Whitea, c, % 0.98 (0.97, 0.98) –

African Americana,c, % 1.02 (1.01, 1.03) 1.01 (1.00, 1.02)

Hispanica,d,, % 1.03 (1.02, 1.04) 1.07 (1.04, 1.09)

Asiana, c, % 1.05 (1.04, 1.07) –

Other Race or Ethnicitya, e, % 1.03 (1.02, 1.04) 0.88 (0.85, 0.91)

Median annual household income, $ < $65,571 Referent Referent

≥ $65,571 0.32 (0.24, 0.42) 0.91 (0.60, 1.39)

Households receiving food stampsf, % < 4.85% Referent Referent

≥ 4.85% 3.01 (2.29, 3.95) 1.83 (1.22, 2.74)

Households living in povertyf < 5.6% Referent Referent

≥ 5.6% to <11.8% 1.01 (0.73, 1.37) 1.19 (0.81, 1.73)

≥ 11.8% 0.73 (0.53, 1.00) 1.38 (0.91, 2.08)

Households with one workerf < 24.6% Referent Referent

≥ 24.6% to <31.0% 0.77 (0.56, 1.04) 1.28 (0.84, 1.95)

≥ 31.0% 0.71 (0.51, 0.97) 1.37 (0.79, 2.36)

Households with two or more workersf < 55.6% Referent Referent

≥ 55.6% to <64.7% 1.01 (0.73, 1.39) 0.80 (0.51, 1.27)

≥ 64.7% 1.27 (0.94, 1.73) 1.06 (0.60, 1.90)

Renter-occupied housing units, % 1.04 (1.03, 1.05) 1.00 (0.99, 1.01)

Pharmacies, no. 0.91 (0.85, 0.97) 0.96 (0.90, 1.04)

Gay bars, no. 1.07 (0.85, 1.35) –

Adult bookstores, no. 1.06 (0.50, 2.26) –

Syringe exchanges, no. 3.87 (0.54, 27.56) 1.61 (0.18, 14.59)

HIV testing sites, no. 1.37 (1.19, 1.57) 0.97 (0.81, 1.160)

Prisons, no. 0.67 (0.31, 1.44) –

n sample size, % percent, $ United States dollar, HCV hepatitis C virus, HIV human immunodeficiency virus, SD standard deviation, IQR interquartile range, OR odds
ratio, AOR adjusted odds ratio, CI confidence interval. Italicized text represents statistically significant results (p < 0.05)
†Adjusted for: number of pharmacies, number of syringe exchanges, number of HIV testing sites, percent of the total population that was a high school graduate
or higher, total population, median household income, percent of renter-occupied housing units, percent of households received food stamps, percent of total
population that was Hispanic, percent of total population that was African American, percent of total population that was another race/ethnicity, percent of
households living at poverty status, percent of households with one worker, and percent of households with two or more workers
aPercent of total population within census tract
bPopulation 25 years of age or older
cNon-Hispanic
dOf any race
eIncludes Native Hawaiian/Pacific Islander, American Indian/Alaskan Native, and other races/ethnicities not specified
fLast 12 months
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