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Abstract

Background: Vaccination against seasonal influenza strains is recommended for “high risk” patient groups such as
infants, elderly and those with respiratory or circulatory diseases. However, efficacy of the trivalent influenza vaccine
(TIV) is poor in many cases and in the event of an influenza pandemic, mono-valent vaccines have been rapidly
developed and deployed. One of the main issues with use of vaccine in pandemic situations is the lack of a
suitable quantity of vaccine early enough during the pandemic to exert a major influence on the transmission of
virus and disease outcome. One approach is to use a dose-sparing regimen which inevitably involves enhancing
the efficacy using adjuvants.

Methods: In this study we compare the use of a novel microcrystalline tyrosine (MCT) adjuvant, which is currently
used in a niche area of allergy immunotherapy, for its ability to enhance the efficacy of a seasonal TIV preparation.
The efficacy of the MCT adjuvant formulation was compared to alum adjuvanted TIV and to TIV administered
without adjuvant using a ferret challenge model to determine vaccine efficacy.

Results: The MCT was found to possess high protein-binding capacity. In the two groups where TIV was
formulated with adjuvant, the immune response was found to be higher (as determined by HAI titre) than vaccine
administered without adjuvant and especially so after challenge with a live influenza virus. Vaccinated animals
exhibited lower viral loads (as determined using RT-PCR) than control animals where no vaccine was administered.

Conclusions: The attributes of each adjuvant in stimulating single-dose protection against a poorly immunogenic

vaccine was demonstrated. The properties of MCT that lead to the reported effectiveness warrants further
exploration in this and other vaccine targets - particularly where appropriate immunogenic, biodegradable and

stable alternative adjuvants are sought.
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Background

Influenza A virus infections (IAV) in humans have been
described for well over 100 years and certainly long be-
fore the major pandemic that occurred in 1918 with the
HINT1 strain of virus [1]. Influenza viruses comprise an
RNA genome which is formed of 8 different segments,
thus providing ample opportunity for segments to be
easily transferred between different virus strains [2]. This
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transfer or reassortment brings about the phenomenon
of antigenic shift where influenza viruses undergo a
major change in their antigenic structure as a conse-
quence of segment-swapping and are able to transmit
freely within an essentially immunologically naive popu-
lation. More limited changes in the influenza virus anti-
genic structures occur as a result of antigenic drift; this
occurs as a consequence of minor amino acid substitu-
tions which result from transcription and translation er-
rors of the RNA genome [3]. The mutation rate was
determined for the recent HIN1 2009 pandemic virus
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across two influenza seasons and was found to be 10~
per nucleotide site per year [4].

The first of these factors (antigenic shift) is the key
property of the virus which is considered during pan-
demic preparedness, however at least two of these other
four ‘signature’ factors should be further investigated,
these are, the higher observed transmissibility and the
higher mortality in younger populations [3]. This was
exactly the scenario with the recent pandemic caused by
the “new” HIN1 virus in 2009 where infection with pan-
demic influenza virus resulted in a range of symptoms in
different people which varied from mild, sub-clinical in-
fection to severe viral pneumonia requiring hospitalisa-
tion and specialist intensive care [5]. The increased
transmissibility is almost certainly a result of the emer-
gence of an effectively “new” virus by antigenic shift
which is then able to infect a naive population; younger
members of the population being more likely to be im-
munologically naive having never been exposed to simi-
lar viruses, whereas older subjects may be more
protected due to immunological memory [6].

Because of these constant evolutionary changes, lead-
ing to antigenically novel strains and subtypes emerging
within the human population, seasonal vaccines against
IAV viruses have to be updated on an annual basis. A re-
cent study on the effectiveness of influenza vaccination
indicated that effectiveness of the vaccine ranged from
36% to 58% with greater effectiveness against HIN1
strains than H3N2 viruses [7]. Indeed, recent data indi-
cate that during the winter of 2014—15 in the Northern
Hemisphere, the H3N2 circulating virus strains were sig-
nificantly different from the vaccine strain and resulted
in much lower or zero effectiveness against these strains
[8]. One approach to the improvement of efficacy of in-
fluenza vaccines has been the evaluation of adjuvants to
promote both improved immunogenicity as well as dose
sparing in pandemic situations.

Seasonal influenza vaccines are widely produced
and used and are formulated as a trivalent (A/H1INI1,
A/H3N2 and B), formalin-inactivated and split virus
preparation, typically containing 15 pg of each
haemagglutinin (HA) protein in a standard adult
dose. Although widely used, the trivalent influenza
vaccine (TIV) is known to have relatively poor and
variable effectiveness [9]. In the naive ferret model,
non-adjuvanted TIV shows poor efficacy against intra-
nasal challenge with homologous virus. Ferret vaccine
efficacy studies have typically used the standard adult
human dose in each ferret, either as two or more
doses [10, 11], or formulated with adjuvant [12, 13].

For almost a century, salts of aluminium (hydroxide
and phosphate) were the only approved adjuvants in
humans [14]. An often described limitation of alumin-
ium adjuvants relates to the non-biodegradable nature
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and the stimulation of so-called T-helper type 2
(Th2) as opposed to Thl immune responses, which
affect the type and quality of antibody responses pro-
duced [15]. Therefore the goals of new adjuvants in
combination with an influenza target vaccine, are (i)
to facilitate recognition of the antigen, thereby facili-
tating the use of smaller doses (dose sparing) of anti-
gen (ii) to be biodegradable and biocompatible, (iii) to
be without toxic or inflammatory side effects, (iv) to
trigger protective Thl-like immune responses as well
as antigen-neutralising antibodies, thereby increasing
the proportion of subjects that become protectively
immunised and (v) increase seroconversion rates in
populations with reduced responsiveness (i.e. infants
and the elderly).

Aluminium hydroxide has been used as a depot candi-
date in many formulations to date including influenza vac-
cine candidates [16, 17], however, it could be limited as an
influenza candidate for which annual vaccination may
favour the use of a depot adjuvant with biodegradable
properties ensuring clearance prior to revaccination, in
addition to adjuvant candidates which stimulate more ef-
fective Thl T-cell responses [18]. Allergy Therapeutics
(AT) has pioneered the concept of a slow-release licensed
depot adjuvant formulation for allergy vaccines with a
proven safety and efficacy profile [19, 20]. Whereas other
manufacturers still use mainly aluminium hydroxide
(alum), AT uses Micro-Crystalline Tyrosine (MCT), a nat-
ural amino acid formulation, in its vaccine formulations.
MCT exhibits a high adsorptive power for proteins at neu-
tral pH, it enhances the induction of IgG antibodies with
no unusual propensity to stimulate IgE, has a half-life of
48 h at the site of injection while delivering a sustained
release of antigens for prolonged immune exposure and,
unlike alum, it is fully metabolised within the body
[19, 21, 22]. Its mechanistic pathways as an adjuvant are
currently sought and an ongoing study has recently
highlighted induction of specific T cell responses. Mea-
surements investigating specific T cell responses, DC acti-
vation and expression markers in challenge models are
ongoing (Prof. Thomas M. Kuendig, University of Zurich,
personal communication, June 2016). Moreover, MCT of-
fers a compatible mode of adsorption with 2nd generation
immunomodulators (i.e. TLR agonists). As such, has been
combined successfully with Monophosphoryl Lipid A
(MPL) which offers a novel ultra-short-course allergy im-
munotherapy as a named patient product [23], of which,
has recently completed a successful phase II dose ranging
trial in Europe [24], while different iterations (allergy indi-
cations) of the platform are in current clinical develop-
ment both in the EU and US. MPL is a TLR-4 agonist able
to modulate Thl immune reactivity, its physicochemical
and biological compatibility with MCT has been described
previously [19-22].
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The aims of this study were to compare the efficacy of
TIV with alum (Alhydrogel) to TIV with MCT in pro-
tecting ferrets against a low-dose challenge with a clinic-
ally relevant human HIN1 virus. The low-dose challenge
model has been shown to be more sensitive in dem-
onstrating antiviral activity, while at the same time
producing a larger amount of virus shedding and
more representative disease kinetics when compared
to the traditional high (10° pfu) dose ferret challenge
model [25].

Methods

Virus and vaccines

Influenza A/California/04/09 virus (H1IN1) was propa-
gated in MDCK cells. Viral genomic RNA from the virus
stock was fully sequenced and showed no differences
from the published A/California/04/09 sequence. The
vaccine used was Inactivated Influenza Vaccine (Split
Virion) BP from Sanofi Pasteur, containing antigens
from the viruses recommended for the 2014—15 season.
Each 0.5 ml dose contained 45 ug HA protein, 15 pg
each from the HIN1, H3N2 and B virus components.
The HIN1 component was from the A/California/07/
09-derived vaccine strain NYMC X-179A, which is anti-
genically indistinguishable from the challenge strain.
The other components were H3N2 (A/Texas/50/12-like)
and B/Massachusetts/2/12.

Adjuvants

Alhydrogel (2% w/v suspension of aluminium hydroxide;
Invivogen, USA) was mixed with vaccine in the ratio 43 pl
Alhydrogel per 1 ml vaccine plus 1 ml buffered saline,
pH 6, containing 0.5% w/v phenol. Micro-crystalline tyro-
sine (MCT) was manufactured at Allergy Therapeutics
Ltd, Worthing, UK, as a 4% w/v suspension in buffered sa-
line, pH 6, containing 0.5% w/v phenol and was mixed
1.05:1 by volume with vaccine (2% target concentration).
For both adjuvants, the suspension was mixed at room
temperature for 1 h prior to vaccination.

Sample preparation; MCT adsorption capacity
300 ul of 100 pg/ml HIN1 antigen (Influenza A HIN1
(A/Puerto Rico/8/1934), Haemagglutinin from SinoBio-
logicals Inc. was mixed with 700 ul of 2%w/v tyrosine
blank (MCT) for 1 h at room temperature, to give a tar-
get HIN1 concentration of 30 pg/mL, followed by cen-
trifugation of the sample for 4 min at 3 x g. An identical
process was followed to produce the two controls, one
control (control A) comprised antigen +DPBS and a sec-
ond control (Control B) contained MCT alone. Both
control groups are representative of Group A and Group
B vaccines used in this study.

The protein concentration present in the supernatant
from the sample and both controls were determined
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using Bradford reagent [26], with the exception that the
standard curve was prepared in DPBS to remove any
possibility of interference from different buffers.

ELISA analysis confirmed >95% adsorption of the anti-
gen by MCT (Fig. 1).

ELISA analysis

The supernatant from the sample and controls prepared
as described in MCT adsorption capacity, were diluted
1:10,000, according to the manufacturer’s instructions
(Sino biological Inc.). The supernatant from the MCT
control (control B) was loaded undiluted. Sample and
controls were analysed as per the manufacturer’s
instructions.

In summary, polystyrene microplates were pre-coated
with a mouse monoclonal antibody against HIN1, the
plate was washed. A standard curve of HIN1 protein
was prepared covering the range 46-3000 pg/ml and the
samples loaded on to the ELISA plate. The plate was in-
cubated for 2 h at room temperature then washed. The
detection antibody was added and the plate incubated
for a further 1 h at room temperature. The plate was
washed and substrate solution added. The plate was in-
cubated for a further 20 min and stop solution was
added and the UV absorbance was analysed using a plate
reader (Envision, Perkin-Elmer) at 450 nm. The concen-
trations of samples was analysed with comparison to the
results obtained for the standard curve.

Ferret study

Eighteen ferrets (Mustela putorius furo) were obtained
from Highgate Farm, with starting weights between
0.78-1.79 kg. The experimental animal work de-
scribed here was scrutinized and approved by the
Animal Welfare and Ethical Review Body of Public
Health England (Porton), as required by the UK
Home Office Animals (Scientific Procedures) Act,
1986. The premises in which the work was conducted
are approved under Home Office Certificate of Desig-
nation PCD70/1707. A serum sample from each ani-
mal was screened for absence of antibodies to
influenza A virus by HAI prior to commencement of
the study. Animals received an intra-muscular vaccin-
ation of 1 ml total volume, divided equally between
the two hind legs. Twenty-one days later, sedated fer-
rets were challenged by intra-nasal instillation of
0.2 ml virus, containing 100 PFU A/California/04/09,
divided between the two nares. Nasal wash liquids
were collected daily thereafter, using 2 ml PBS per
ferret. The cell content of the nasal wash fluid was
determined by haemocytometry. Animals were eutha-
nised 5 or 10 days post-challenge for viral and histo-
logical tissue analysis.
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Serum antibodies

Influenza HINI1-specific antibodies were titrated by
haemagglutination inhibition (HAI), and neutralizing
antibodies were titrated by microneutralization (MN) as
described elsewhere [27].

Virus load

Infectious virus in nasal wash fluid was determined by
plaque assay on MDCK cells. Respiratory tract tissues
were collected into RNAlater solution (Sigma-Aldrich,
UK) for RNA extraction. Quantification of the extracted
viral M gene RNA was performed using real-time qRT-
PCR, employing a synthetic T7 transcript of the A/Cali-
fornia/04/09 M gene as a standard of known copy-
number [25].

Statistical methods

Non-parametric tests (Mann-Whitney U-test) and 1-way
ANOVA were performed using Minitab 16 software.
Tests were considered statistically significant where
p < 0.05.

Results

Antibody responses to vaccination

Ferrets were divided into 4 groups for vaccination as fol-
lows: (A) TIV unmodified (z = 3); (B) TIV formulated
with MCT (n = 6); (C) TIV formulated with Alhydrogel
(n = 6); and (D) mock-vaccinated with PBS (n = 3). At
19 days post-vaccination serum samples were collected
for determination of influenza H1N1-specific antibodies
by HAI and MN tests (Fig. 2). Group mean HALI titres
for groups B and C were higher than those for groups A
and D on day 19, although this trend was not statistically
significant. In the ferret model an HAI titre of >20 is
widely considered to be sero-positive, as in the case of
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human sera [28, 29]. No ferrets in groups A or D
showed sero-conversion, whereas 4 of 6 ferrets in group
B and 3 of 6 ferrets in group C were sero-positive fol-
lowing vaccination alone. Similarly, MN titres were
higher for groups B and C (Fig. 2b), although this was
not significant by 1-way ANOVA (p = 0.085). HAI titres
correlated well with the MN titres for individual ferrets
(R* = 0.93). Group C showed a significantly higher mean
MN titre than group B (Mann-Whitney test, p = 0.03).

All animals were challenged with HIN1 virus via the
intranasal route 21 days post-vaccination and terminal
sera were collected from 3 ferrets per group on days 5
(all groups) and 10 (groups B and C only) post-
challenge. HAI tests on the terminal sera showed a mod-
est increase in group mean titres at day 26 (5 days post-
infection) compared to day 19, but a much greater in-
crease at day 31 (10 days post-infection) (Fig. 2a).
Groups B and C showed significantly higher mean titres
than groups A and D on day 26 (1-way ANOVA,
p = 0.002); there was no significant difference in HAI
titre between groups B and C on either day.

Protection against influenza infection

Ferrets were monitored for signs of disease following
intra-nasal challenge. All challenge groups showed
weight loss in the 5 days following infection, with the
greatest loss in unvaccinated group D (6.3%), and the
least in vaccinated group B (3.8%). The differences
between groups were not statistically significant
(Additional file 1). The only clinical signs that were ob-
served were sneezing and diarrhoea. The most frequent
observation of sneezing was in group D and the least in
group B; again the differences between the groups were
not statistically significant. A sharp rise in viable cell
concentration in nasal wash fluid has been used as a sur-
rogate marker for the host response to influenza infec-
tion [25]. All groups showed a rise in cell count between
days 2 and 3 post-infection (Fig. 3a). Infectious virus
shedding was monitored by plaque assay of nasal wash
fluids. All ferrets were found to shed infectious virus
from their nasal cavities, with a peak on day 3 post-
infection (Fig. 3b). Group C showed a lower mean titre
on days 2 to 5, but differences between groups were not
statistically significant. Using area under the curve as an
indication of total virus shedding, group C shed signifi-
cantly less virus over the course of the infection than
group B (Mann-Whitney test, p = 0.04). Virus shedding
became undetectable in surviving animals by 8 days
post-infection (Fig. 3b).

Viral RNA replication in ferret tissues

RNA was extracted from nasal turbinate, trachea and 3
lobes of the lung from each animal post-mortem. Viral
RNA concentration (M gene) was determined by real-
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time PCR and normalised for the amount of tissue ex-
tracted. As expected the vVRNA levels dropped in all tissue
types between days 5 and 10 post-challenge (Fig. 4). None
of the vaccinated groups showed clear reductions in VRNA
load in any of the tissues, relative to the unvaccinated
group D, except that, when considering the combined
lung samples for each animal, group A showed signifi-
cantly lower vVRNA loads than group D at 5 days post-
challenge (Mann-Whitney test, p = 0.04).

Discussion

This study provides a comparative analysis of efficacy
using two established depot adjuvants in protecting
against a low-dose challenge with a human HIN1 virus
in a ferret model. Ferrets are considered the most repre-
sentative model for studying influenza pathology since it
has been extensively characterised and used for influenza
vaccine development [30, 31].

Aluminium adjuvants induce robust antibody re-
sponses which make it suitable for use in vaccines that
target pathogens, neutralised primarily by antibodies.
Long-term success in the use of aluminium-adjuvanted
vaccines targeting intracellular pathogens, in the context
of protective efficacy, is less recognised and highlights



Heath et al. BMC Infectious Diseases (2017) 17:232

Page 6 of 9

-

a 1E+09 e -
A | 4 Nasalturbinate
1E+08 : a r
|
1.E+07
)
£
~ 1E+06 ‘ )
2
g
< 1.E+05
z
=
1.E+04
1.E+03
1.E+02 T T T T T |
A B C D B C
day 26 day 31
b 1.E+09
Trachea
1.E+08
s °
1.E+07
g 2
E o
g LEH6 w
-
8 4
< 1.E+05
z
3
1.E+04
1.E+03 @ :
1.E+02 T T T T T 1
A B Cc D B c
day 26 day 31
C 1E:09
Lung
1.E+08 o
1.E+07
- ¥ L]
E m e
..
o 1.E+06
.sge A
< 1.E+05 *
z
= |
1E+04 + t
+
1.E+03 '
14E+02 T T T T T 1
A B C D B C
day 26 day 31
Fig. 4 Tissue RNA loads as copies of M gene RNA per mg tissue. a nasal turbinate’s, b trachea, ¢ lung. Panels a and b show titres of individual
ferrets. In panel ¢, for each ferret 3 lung lobes were sampled and the mean was taken




Heath et al. BMC Infectious Diseases (2017) 17:232

the limitations in providing protective efficacy in human
populations that require robust Th1l T-cell responses, as
a consequence of its function to preferentially induce
Th2 cells [32].

Co-precipitates of micro crystalline tyrosine (MCT)
and proteins have been extensively used and endorsed
by health authorities for use as a depot adjuvant in long-
course allergen specific subcutaneous immunotherapy
[19]. As a consequence, the use of MCT in infectious
disease models and cancer is now being explored and is
showing early promise [33].

The adsorption capacity of MCT was assessed inde-
pendently since this adjuvant has not previously been
formulated with an infectious disease target. Adsorption
of infectious disease antigens to aluminium adjuvants is
well documented has been shown to improve vaccine
potency and stability [34]. The mode of action of an ad-
juvant can be influenced by the amount of antigen phys-
ically adsorbed to the adjuvant and, in some cases,
considered to be an important aspect for their function
[35]. As a consequence, The World Health Organisation
has since recommended a figure of >95% adsorption at
0.5% antigen loading levels in some indications [36] and
the results presented herein (Fig. 1) confirm >95% ad-
sorption of MCT with the HINI target antigen. The
aromatic ring of Tyrosine in its crystalline complex with
a target offers an alternative predominant mechanism of
adsorption to aluminium which is governed via ligand
exchange between hydroxyl groups on the adjuvant and
available phosphorylated groups of the antigen. A num-
ber of advantages may also exist in the use of MCT
alone and in synergy within adjuvant system complexes.
For example, in an adjuvant-adsorption study, Bell et
al. (2015) characterised the compatible nature of
MCT with a TLR4 agonist, inferring pi-chi interac-
tions as a predominant mechanism of adsorption.
Some TLR agonists and antigens do not readily ad-
sorb to Aluminium, but may be more compatible
with alternative formulations [37].

A single dose (45 pg) of HA protein (15 pg each from
the HIN1, H3N2 and B components) adjuvanted with
either MCT (study group B) or aluminium hydroxide
(study group C) was effective in generating a sero-
positive (HAI > 20) titre 2 days prior to challenge
(19 days post-vaccination). An HAI titre of >40 is con-
sidered protective in human sera and by 26 days post-
vaccination (5 days post challenge), 3/3 ferrets in group
B (MCT), 1/3 ferrets in group C (Alum), and 0/3 ferrets
in groups A and D showed HALI titres >40. However,
10 days post challenge a much greater increase in HAI
titres was produced with no significant differences ob-
served between the two adjuvanted groups.

Neutralizing antibody titres, determined 2 days prior
to challenge, also showed a greater response in the two
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adjuvanted vaccine groups, B and C, compared to the
non-adjuvanted group A, with alum adjuvant giving a
higher mean titre. The close correlation of HAI and
neutralization titres suggests that the two adjuvants were
inducing functionally equivalent influenza-specific
antibodies.

The intra-nasal challenge of ferrets with 100 PFU
HIN1pdmO09 virus has previously been used to demon-
strate efficacy of both a defective influenza particle and
of oral oseltamivir therapy [25, 38, 39]. It is well estab-
lished that non-adjuvanted inactivated influenza vaccines
perform very poorly in the ferret model [10, 11, 40], so
the low-dose challenge was chosen for this study in
order to minimise the possibility of the virus infection
overwhelming any immunity which had been induced.
While no significant protection was observed following a
single dose of vaccine, in terms of virus shedding or viral
replication in the lungs, both alum and MCT adjuvants
clearly induced levels of influenza-specific functional
antibodies prior to infection which were not observed in
the non-adjuvanted vaccine group. There was also a
trend towards reduced disease (weight loss and nasal
symptoms) in the MCT-adjuvanted group B.

The addition of an adjuvant to an existing vaccine, as
has been done for influenza [18, 41-43], represents a
potential and substantial benefit, where seroconversion
rates and protective antibody titres in populations with
reduced responsiveness (i.e. infants and the elderly) is an
issue. Selection of an appropriate adjuvant will be influ-
enced by the type of CD4+ T cell response required for
protection. In the context of available HIN1 influenza
vaccine targets, there exists variable and relatively poor
effectiveness which may be linked to the lack of anti-
viral Thl responses. Two existing adjuvants MF59 and
AS03 have been explored in this context. MF59, an im-
munological adjuvant that uses squalene, has been suc-
cessfully formulated in licensed versions of the influenza
vaccine worldwide, with significant increase in vaccine
efficacy noted in clinical trials [41, 42]. MF59 appears to
be particularly effective in APC recruitment and uptake,
with subsequent drainage to the lymph nodes where an
appropriate immune response is induced generating ro-
bust antibody titres consistent with protective efficacy
(>40 HAI). AS03 is another squalene-based adjuvant,
used successfully in a pandemic HIN1 strain, again, im-
mune responses are robust and confer levels indicative
of protection, however, the persistence of the immune
response particularly in infants and the elderly can differ
and warrants further exploration in future vaccine candi-
dates [43].

In a more recent study assessing adjuvant (GLA-SE; a
TLR agonist) formulated with an H5N1 antigen, the au-
thors highlighted the critical nature in the quality of
CD4+ T cell responses for protection and survival. The
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strategy here was aimed at inducing anti-viral Thl re-
sponses through activation of TLR4 [10].

Our study highlights the attributes of Aluminium and,
for the first time in an infectious disease model, MCT, in
stimulating single-dose protection against a poorly im-
munogenic vaccine. Antibody responses are an import-
ant component in anti-influenza protection [44, 45].
While our study demonstrated the robust HAI titre gen-
erated by both groups receiving adjuvant candidate for-
mulations  (vs. unadjuvanted), it is the quality
(functionality) of this response that requires further con-
sideration in the context of what conditions increased
antibody production facilitates improved protection.
This would need to be considered to further assess its
use in this and/or other models, or as part of a “mix and
match” adjuvant systems approach. MCT’s immuno-
logical (Thl; IgG) synergy with TLR mimetics has been
established in allergy immunotherapy [46], while offering
a unique platform for adsorption to antigen targets and/
or 2nd generation immunomodulators/adjuvants, as
earlier described.

While the reported effectiveness of adjuvanting an in-
fluenza target are encouraging [18, 41]; the properties of
each adjuvant, alone, in the context of a human influ-
enza vaccine target may be limiting.

However, the properties of MCT that lead to the reported
effectiveness here, and elsewhere [23, 33], permits further
consideration in this and other vaccine targets - especially
those found to be weakly immunostimulating, non-
biodegradable or those which bind poorly to existing anti-
gens or when combined with other second generation im-
munomodulators/adjuvants. Further studies are now
underway in different infectious disease models, while ex-
ploring the immunological signature of MCT powered to
confer reproducibility.

Conclusions

The attributes of each adjuvant in stimulating single-
dose protection against a poorly immunogenic vaccine
was demonstrated. The use of MCT alone or in “mix
and match” adjuvant combinations for existing, new
and/or emerging diseases warrants further exploration.

Additional file

[ Additional file 1: Weight loss analysis. (TIFF 88 kb) ]
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