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Abstract

Background: While the global burden of typhoid fever has been often brought up for attention, the detailed
surveillance information has only been available for the limited number of countries. As more efficacious vaccines
will be available in the near future, it is essential to understand the geographically diverse patterns of typhoid risk
levels and to prioritize the right populations for vaccination to effectively control the disease.

Methods: A composite index called the typhoid risk factor (TRF) index was created based on data with the Global
Positioning System (GPS). Demographic and Health Surveys (DHS) and National Geographical Data Center (NGDC)
satellite lights data were used for this analysis. A count model was adopted to validate the TRF index against the
existing surveillance burden data. The TRF index was then re-estimated for 66 countries using the most recent data
and mapped out for two geographical levels (sub-national boundary and grid-cell levels).

Results: The TRF index which consists of drinking water sources, toilet facility types, and population density
appeared to be statistically significant to explain variation in the disease burden data. The mapping analysis showed
that typhoid risk levels vary not only by country but also by sub-national region. The grid-cell level analysis
highlighted that the distribution of typhoid risk factors is uneven within the sub-national boundary level. Typhoid

risk levels are geographically heterogeneous.

Conclusions: Given the insufficient number of surveillance studies, the TRF index serves as a useful tool by
capturing multiple risk factors of the disease into a single indicator. This will help decision makers identify high risk
areas for typhoid as well as other waterborne diseases. Further, the study outcome can guide researchers to find

relevant places for future surveillance studies.
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Background

Typhoid fever remains a major public health concern in
less developed countries [1-3]. The disease is transmitted
through consumption of food or water contaminated with
feces containing Salmonella Typhi. Typhoid is more com-
mon in impoverished areas with unsafe drinking water
sources and poor sanitation. This can be exacerbated in
areas where rapid population expansion is observed. More
efficacious vaccines such as typhoid conjugate vaccines, are
expected to be approved by World Health Organization
(WHO) prequalification program in coming years. Con-
sidering many developing countries face limited resources
and must contend with controlling typhoid transmission in
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endemic settings, it is critical to plan for the effective use of
typhoid conjugate vaccines by prioritizing areas where
people are at a greater risk for typhoid.

There are still large knowledge gaps about the disease
burden of typhoid in many parts of developing countries.
Community-based typhoid fever incidence studies are
limited in number available from selected countries, and
often confined to small areas such as urban slums.
Typhoid disease is very common in South Asia because
this is one of the regions where a large portion of the
population lacks clean water and safe sanitation [4]. While
much attention has been paid to urban or urban slum
areas in South Asia [5—8], non-urban areas have received
little attention with regards to typhoid occurrence, except
for some selected studies [9—11]. In Latin America and
the Caribbean, only two clinical trial data [12, 13] were
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found in a recent global typhoid burden study [3], and
those studies were conducted over 20 years ago. This
evidence gap is also apparent in Africa where there is high
variability in incidence rates observed from published
studies [14—18]. While low and medium incidence rates
were reported in some countries [14-16], a recent
population-based surveillance study in Kenya [18] re-
vealed dramatically high typhoid incidence rates alerting
critical knowledge gaps in the region where little attention
has been paid. Although a multi-country burden study is
currently underway in ten countries in Africa, a more
evidence-based approach is needed to cover the relatively
broader diversities in the region.

The previous global burden studies [1-3] have been use-
ful to understand the extent of endemicity of typhoid. How-
ever it was inevitable for these models to rely on several
assumptions due to the insufficient number of surveillance
studies. Instead, this study proposes a new way of recogniz-
ing the global dynamics of exposure to typhoid infection by
creating a composite index called the typhoid risk factor
(TRF) index based on the fundamental risk factors of the
disease. This study first attempts to identify typhoid risk
factors which have strong relationships with typhoid inci-
dence rates obtained from previous typhoid surveillance by
taking into account the time and site location where each
surveillance was conducted. Geocoding and spatial analysis
techniques, which consider location and time information,
have become an important tool in understanding various
types of epidemiological trends over space. Geographical
Information System and spatial statistics were previously
used [4, 19, 20] and proved to be useful in identifying areas
and populations at risk [4]. Once risk factors are deter-
mined, the study identifies populations exposed to different
risk levels of typhoid infection including areas where no
surveillance data is available.

Methods

The overall study design consists of two parts: identifica-
tion of typhoid risk factors and mapping out different risk
levels using the most up-to-date data.

Risk factor identification

In order to identify risk factors for typhoid candidate risk
factor variables were validated against typhoid disease
burden data. A systematic literature review was previously
conducted to establish a typhoid disease burden database
[3]. To include more surveillance data than in the previous
database, a second round of additional search was con-
ducted with more relaxed criteria: extension of publication
years from 1990-2013 to 1980—2013, inclusion of hospital-
based studies, and community-based studies which did not
meet the criteria in the previous search (e.g., blood culture,
refusal rates). Thirty-eight studies were selected after con-
sidering the availability of matching data sources (Fig. 1),
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and these provided 84 disease burden data points by age
group, as shown in Table 1.

For candidate risk factors it was critical to find data
sources available over time and across countries. Demo-
graphic and Health Surveys (DHS) and National Geograph-
ical Data Center (NGDC) satellite lights data were used for
this analysis. Both DHS and NGDC provide not only
longitudinal datasets, but also geo-coordinates of DHS
clusters and NGDC lights data. Thus, each incidence rate
estimated in a specific year and site was compared to candi-
date variables obtained from the same year of the surveil-
lance (or close approximation) around the area where the
surveillance was conducted. Figure 2 shows an example of
Pakistan and demonstrates how both DHS and NGDC
night lights data were paired with the disease burden data
from the surveillance site. For example, clusters within
100 km from a site were included by using coordinates for
the DHS dataset. For countries where there is no GPS infor-
mation available, the next smallest geographical unit, which
is the state-level in DHS, was used to select data in the state
where the site was located. It is arbitrary whether the radius
should be greater or less than 100 km. However, the distri-
bution of DHS clusters is dispersed in some countries or
states, whereas some clusters are densely gathered in other
countries depending upon the size of countries or other
logistical issues. Because this study includes multiple coun-
tries across continents, it is important to ensure that certain
numbers of DHS clusters were included for all the surveil-
lance sites. The 100 km radius ensures at least over 400
households for all the sites. This is a better way than pairing
up with available country-level indicators ignoring the time
and site location where surveillance was conducted.

It should be noted that although DHS carries out
standardized surveys there are some differences across
countries and survey periods in terms of questionnaire
types and data availability. For this reason, variables which
are most relevant to typhoid fever and exist consistently
over time and across places were selected. As water and
sanitation issues are the main risk factors for typhoid infec-
tion [19, 21-24], drinking water sources (hv201) and toilet
facility types (hv205) were considered from the DHS data-
set. Since the major categories of the variables are standard
but individual codes are country-specific [25], the variables
were sub-categorized as shown in Table 2. Each category
was converted into a proportion out of total households
who responded to each question. Prior to creating TRF
indices and making formal comparisons, the sub-categories
were first screened by simple scatter plots and correlations
with the disease burden data by age group. The sub-
categories which indicated unexpected signs or weak corre-
lations (p < 0.4 for hv201, p < 0.3 for hv205) were excluded
from further analysis.

In addition population density was considered because
highly crowded areas tend to have high rates of typhoid
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infection in developing countries [4, 6, 18]. In order to
measure population density at the small geographical level
over time, satellite lights data were obtained from NGDC.
The satellite lights data are available from 1992 to 2012 in
smaller geographical units: 30 arc second grid spacing
(approximately 1 km?), and the same radius was used as
DHS. The higher the lights were observed, the higher the
population density was assumed. Prior to applying this
assumption, correlations between lights data and census
data were examined to ensure that lights data can be used
as an appropriate proxy (overall p = 0.7).

The sub-categories filtered through the first screening (2
7,9, 10, 11, 12 for hv201 and 1, 2, 3, 6, 7 for hv205) were
used to create a composite index called the typhoid risk
factor (TRF) index. To identify the most suitable index
which explains the trend in typhoid incidence rates, five
TRF indices were created based on different combinations
of the sub-categories for the DHS variables and NGDC
lights data. The variables in each set were first standardized

Table 1 Disease burden data points by age group

Age group Types of disease burden
Population based Hospital based

Age group 1 (age < 2) 12 0

Age group 2 2 <age <5) 17 2

Age group 3 (5 <age < 15) 17 6

Age group 4 (age 2 15) 10 1

Age group 5 (overall) 15 4

Total 71 13

individually by subtracting the mean and dividing by its
standard deviation. The standardized values were then
averaged across the variables. Some of the variables which
go to the opposite direction were converted by subtracting
from one, so all variables go towards the same underlying
concept which is the typhoid risk level. For example, while
a high proportion of the households who use river or lake
as their water source would be at high risk, a high propor-
tion of those who drink private tap water would be at low
risk. The values were converted into a range from zero (low
risk) to one (high risk) by using the max-min method and
categorized into three percentiles (CTRF1: 0-25%, cTRF2:
25-75%, ¢TRF3: 75-100%). This method is more com-
monly used in the field of social science, and more details
were extensively discussed elsewhere [26].

Incidence rates (/1000) can be considered as a non-
negative integer value. Count models are suitable for our
risk-factor validation because the count model estimates
non-negative integer values and specifies the incidence
rate with a mean that is dependent on exogenous variables
[27, 28]. The Poisson or its variants (e.g., negative
binomial) typically takes the exponential form for expected
demand, and the Poisson probability density function can
be written as

“A\n
Pr(x; = n) :en' i n=0,1,2.

where n is observed demand and \; is the mean, \;=
exp(z;iP). Overdispersion may occur when the variance is
greater than the mean of the distribution [29, 30].
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Fig. 2 DHS and NGDC data inclusion process. a Study site. b Study site with DHS clusters. ¢ Selected clusters around the study site. d Night lights
data with the study site. e Selected night lights data around the study site. f DHS clusters & Night lights data

Table 2 Sub-categorization for DHS variables

Category  HV201: source of
drinking water

HV205: toilet facility types

1 Tubewell or borehole

2 Protected well/spring,
public covered well

3 Unprotected well/spring,
(public) open well

4 Well, spring, public well,
hand pump

5 Well in residence/yard/plot

6 Piped water sources

7 Public/private tap water

8 Cart, buy from a car/
vendor, tanker truck

9 Rain water

10 Surface water

1M Bottled (sachet) water

12 Dam/river/lake/pond

13 Others

Ventilated improved pit latrine

Piped/septic sewer system,
modern flush toilet

Pit latrine (covered:
washable slab), composting

Pit latrine with non-washable
slab/uncovered

Hanging latrine, drop/overhang
Flush to others

Public/shared toilet,
outside dwelling

Bucket, without cement sink,
traditional toilet

No facility, borehole, nature
Others

Additional file 1: Appendix 1 provides more details on
how the overdispersion issue was managed. Care must be
taken when dealing with counts of events observed in small
geographical areas. While spatial correlation was less of a
concern due to the data points obtained from dispersed geo-
graphical locations in this study, Moran I test was carried out
to confirm that there is no significant spatial autocorrelation
in the dataset [31, 32] (see Additional file 1: Appendix 1).

Because hospital-based incidence rates are likely to be
higher than population-based incidence rates a dummy
variable was created to treat them separately. This dummy
variable was then multiplied by an age group categorical
variable, and used as an interaction variable. Each of the
five TRF indices was regressed against typhoid incidence
rates separately, and the most statistically significant TRF
index was chosen for the mapping analysis.

To understand the model fit the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC)
fit tests were used. Considering the relatively small sample
size and generalizability of the model, a Hausman test
(1978) on the equality of coefficients was carried out with
50% of randomly selected data from the main model [29].
The most statistically significant TRF index was chosen
and used for further analyses.
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Mapping analyses

While a specific year of the datasets was considered to
match the same period of each surveillance data for the
validation model above the most recent datasets were
obtained from the same data sources for the mapping
analysis to show the current states of typhoid risk levels
across countries. The final TRF index was re-estimated at
two different levels: sub-national boundary level and grid-
cell level. All countries where relevant information was
available from both data sources were selected. Although
NGDC provides lights data for all countries, DHS data
were only available for the selected countries. As shown in
Fig. 3, 66 out of 88 countries where drinking water sources
and toilet facility types in the DHS household recode data
exist were chosen for the mapping analysis.

The most recent years of DHS surveys vary country by
country ranging from 1996 (Brazil) to 2013 (Nigeria).
Because it would not be sensible to compare data in 1996
with the ones in 2013 the 66 DHS countries were divided
into three groups (Table 3), and the same TRF index was
estimated separately for each group.

Figure 4 demonstrates how the TRF index was re-
estimated by the sub-national boundary level and the
grid-cell level. DHS provides sub-national boundaries
which are usually the state or province level. This is the
smallest geographical unit in which DHS sample weights
were based. The proportions of sub-categories of the risk
factor variables validated above were calculated by the
DHS sub-national boundary level. The sample weights
provided by DHS were applied so that the outcomes are
representative at the population level. The mean value of
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lights data was also estimated by the sub-national
boundary level for population density. The TRF index
was then estimated by the same level. In addition, the
grid-cell analysis was conducted in order to look at ty-
phoid risk levels in the smaller geographical unit than
the sub-national boundary level.. DHS provides geo-
coordinates for the groups of households that partici-
pated in the survey, known as clusters for 46 of 66 coun-
tries. Considering the different sizes of countries and
computational power, the size of grid-cells in each coun-
try was determined based on three categories: large (ra-
dius = 20.5 km), medium (radius = 10.5 km), and small
(radius = 5 km). Centroids were created for all grid-cells.
DHS clusters and NGDC lights data within a radius de-
fined above from a centroid were included for each grid-
cell. The risk factors were calculated in the same manner
by the grid-cell level. It should be noted that unlike the
sub-national boundary level, there were no sample
weights applied in the grid-cell level analysis.

Results

The validation model evaluated the predictors’ bearing on
the incidence rate (/1000) for the three percentiles of the
TRF index controlled by age group and types of incidence
rates. The five TRF indices were regressed against typhoid
incidence rates separately and compared in Table 4. A nega-
tive binomial model was preferred over a Poisson model
after checking overdispersion in the data. Among the five
types of TRF indices, the TRF index (type 5) with sub-
category 4, 7, 11, 12 for hv201, 6 for hv205, and population
density data appeared to be the most statistically significant

NGDC lights data
(all countries) (n=88)

All DHS countries

—

Not distributed / Restricted data (n = 8) ]

No household recode data available (n = 10) ]

Je!

DHS household recode
(HR) data (n = 70)

|

No data for either hv201 or hv205 (n = 4) ]

DHS countries with
selected variables (n = 66)
\ J

Total number of countries included in the analysis
(n=66)

Fig. 3 Country inclusion criteria
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Table 3 List of countries by DHS period

DHS year Country

2010 — Present Angola, Armenia, Bangladesh, Benin, Burkina Faso,

(n=33) Burundi, Cameroon, Colombia, Comoros, Congo Rep,
Cote d'lvoire, Ethiopia, Gabon, Guinea, Haiti, Honduras,
Indonesia, Jordan, Kyrgyz Republic, Liberia, Madagascar,
Malawi, Mozambique, Nepal, Niger, Nigeria, Rwanda®,
Senegal®, Tajikistan, Tanzania, Timor-Leste, Uganda,
Zimbabwe

2005-2009 Albania, Azerbaijan, Congo Dem. Rep, Dominican

(n=22) Republic, Egypt, Ghana, Guyana, India, Kenya,

Lesotho, Maldives, Moldova, Namibia, Pakistan®,
Peru®, Philippines, Sao Tome and Principe, Sierra
Leone, Swaziland, Ukraine, Vietnam, Zambia

Before 2005
(n=11)

Brazil, Central African Republic, Chad, Guatemala,
Kazakhstan, Morocco, Nicaragua, South Africa,
Togo, Turkey, Yemen

“More recent years of surveys were available for these countries, but the most
recent ones did not provide GPS information. Thus, the second recent datasets
were chosen to have more sample size for the grid-cell analysis

index to explain variation in the disease burden data, after
reversing the sub-categories of 7, 11 for hv201, and 6 for
hv205. This model also outperformed the others in terms of
AIC and BIC. Table 4 shows regression coefficients for the
risk factor identification analysis. cTRF1 (0-25%) and age
group 5 were reference groups for each categorical variable.
The TRF index (type 5) was statistically significant with ex-
pected signs for all categories. The age group variable and
interaction variables were also highly significant. The Haus-
man test confirmed that we fail to reject the null hypothesis
(Y’ =4.98, P=0.89) that the coefficients of the two sets of
data are the same, which validates the generalizability of the
model. The full specification of each regression is available
(see Additional file 1: Appendix 2).

Page 6 of 10

The TRF index 5 was then selected as the final index and
estimated for the mapping analysis to show the geograph-
ical distribution of typhoid risk levels. For interpretation-
purposes the map of Pakistan was demonstrated in Fig. 5.
The mapped color scale ranges from the low level of ty-
phoid risk factors (dark green) to the high level of typhoid
risk factors (dark red). The typhoid risk level estimated at
the sub-national boundary level was very high in Sindh and
Punjab as shown in Fig. 5(a). On the other hand, the
North-Western frontier province was relatively moderate
compared to other provinces in terms of the risk level. The
grid-cell analysis was also conducted for Pakistan and dem-
onstrated in Fig. 5(b), showing that typhoid risk levels vary
not only by province but also within each province. In
Sindh and Punjab, most of the households located in the
grid-cells were highly exposed to typhoid risk factors,
reflecting the overall risk level of the province. However,
some areas in Punjab were safer than some places in the
North-Western frontier province. This provides informa-
tion that not all households are at high risk for typhoid in
the province where the overall sub-national boundary level
TRF index is high in the nation. Thus, the grid-cell analysis
helps target high risk areas more precisely when resources
for vaccination are limited.

Similarly the global distribution of typhoid risk levels as
estimated by the TRF index 5 was shown in Fig. 6. 37 of
the 66 countries were from the African region. Of these,
the states at high risk for typhoid (TRF index >0.9) in-
clude the Northern province in Sierra Leone, Luapula and
Northern provinces in Zambia. In a total of 16 countries
in Asia, East Nusa Tenggara in Indonesia, Punjab and
Sindh in Pakistan were at high risk for typhoid. Among 13

A Sub-national boundary level

g
v

Fig. 4 TRF index estimation by the sub-national boundary level and the grid-cell level in Pakistan. a Sub-national boundary level. b Grid-cell level

b Grid-cell level
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Table 4 Regression output for the TRF validation model

Independent variables Coefficients (SD)
TRF type 1 TRF type 2 TRF type 3 TRF type 4 TRF type 5
(hv201: 9, 10, 12) (hv205: 2, 7) (hv201: 2, 7, 11) (hv205: 1, 3) (hv201:4, 7,11, 12,
hv205: 6, NGDC)
CTRF2 (25-75%) -0.592 (0.31)° -0.124 (0.404) 0278 (0.326) -0.368 (0.308) 1.165 (0.317)¢
CTRF3 (75-100%) 0.379 (0.349) 0.179 (0.44) -1 (0453)° 0.029 (0.353) 1422 (037)°
Age group 1 (age < 2) 0952 (0.445)° 0.822 (0437)° 0.798 (0.446)° 0.808 (0.44)* 0.791 (0.449)°
Age group 2 (2 <age < 5) -4379 (1.337)° -5.084 (1.327)° -5486 (1.383)¢ -5.06 (1.346)° -5.378 (1.337)°
Age group 3 (5 < age < 15) -1.639 (0.66)° -1.745 (0.662)° -1.513 (0659)° -1505 (0678)°  -1.705 (0.664)°
Age group 4 (age 2 15) -3686 (1513)° -4.39 (1.504) -5.086 (1.558)° -4.485 (1.529)° -4.944 (1.522)°
Incidence rate type dummy -3.278 (0.601)° -3.396 (0.64)° -4.139 (0.658)° -3.391 (0.6)° -3.58 (0.599)°
(population based vs. hospital based)
Interaction variable1 omitted omitted omitted omitted omitted
(age group 1 X incidence rate type dummy)
Interaction variable2 5.702 (1.39) 6.277 (1.388)° 6.64 (1.439)° 6.294 (1.408)° 6.53 (1.393)°
(age group 2 X incidence rate type dummy)
Interaction variable3 2357 (0.779) 2223 (0.776)° 1.905 (0.783)° 2.056 (0.785)° 2236 (0.781)°
(age group 3 X incidence rate type dummy)
Interaction variable4 3.255 (1.597)° 4005 (1.582)° 4.608 (1.637) 4.188 (1.618)° 4.509 (1.605)°
(age group 4 X incidence rate type dummy)
Constant 3521 (0.529)¢ 4391 (0512)° 5.086 (0.655)° 4485 (0.58)° 3.521 (0.529)
Log likelihood -225434 -230.207 -225.987 -229.632 -222.464
AIC 4728678 4824148 473.9739 481.2634 466.929
BIC -243.245 -233.698 -242.139 -234.849 -249.184
3significance at the 10% level, ®at the 5% level, at the 1% level
( N

a Sub-national boundary level b Grid-cell level

TRF Index
Low

,.@,, 0 100 200 400 &0
— S .

Fig. 5 TRF index in Pakistan. a Sub-national boundary level. b Grid-cell level
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Fig. 6 TRF index for the countries included in the study

countries from Latin America, Caribbean, and Europe, the
states with the TRF index values above the same threshold
were Puno and Ucayali in Peru, Gracias a Dios in
Honduras, and Urban Tirana in Albania. It is worth noting
that little attention has been paid to Latin America
compared to other regions, partly due to the significant im-
provement in water and sanitation infrastructure over the
past decade. However, some countries such as Honduras
and Peru still appeared to be at high risk for typhoid. The
grid-cell analysis was carried out for 31 countries in Africa,
7 in Asia, and 8 in Latin America and others. Additional file
1: Appendix 3 demonstrates the maps for the TRF index by
regional group (see Additional file 1: Appendix 3). A full list
of the TRF index by sub-national boundary is available
(see Additional file 1: Appendix 4).

Discussion

This study provides insight into the identification of ty-
phoid risk factors by finding the relationships between
surveillance data and socio-environmental circumstances.
Some of the risk factors identified in this study were
consistent with previous findings [33, 34]. In particular,
Dewan et al. found that communities closer to rivers have
elevated risk of typhoid infection compared to other
locations in Bangladesh [33]. The TRF index constructed
in this study summarized multiple risk factors of the
disease as a single indicator which enables people to inter-
pret easily. This approach is useful to maximize the effect-
ive use of typhoid conjugate vaccines to control typhoid in
endemic settings where vaccination strategies should be
carefully determined. Because many endemic countries do
not have sufficient resources to fund mass vaccination
programs, decision makers may need to identify relatively
small, yet well-defined geographical locations to prioritize
vaccinating populations at high risk areas [33].

The TRF index expressed through the mapping analysis
identifies high risk areas and can be a useful tool for deci-
sion makers to prioritize target populations for vaccination.
The TRF index is a relative measure for the countries
included in this study. Thus the TRF index at the sub-
national boundary level reflects the overall typhoid risk
level of a state (or province) relative to other states. At the
grid-cell level, different dynamics of risk level were further
specified in the state. For example, the overall risk level of
the Dhaka state in Bangladesh is relatively lower than those
of other states. This does not necessarily mean that typhoid
incidence is low in the entire area of Dhaka. As shown in
the grid-cell level analysis, selected areas in Dhaka are still
at high risk for typhoid (see Additional file 1: Appendix 5).
In fact, Corner et al. [4] demonstrated that within Dhaka
Metropolitan Area (DMA), 9.16% of population are at high
risk, 44.01% are at moderate risk, and 46.83% are at low risk
of typhoid showing that typhoid incidence varies in DMA.

The absence of surveillance data has been a consistent
problem for various types of typhoid modeling studies at
the global level and this study is not an exception. Des-
pite the additional search with more relaxed criteria, the
risk factor identification model would be more robust if
more disease burden data points were available. Among
the additional studies, some reported approximated
population information, and this was manually adjusted
for the surveillance periods, meaning the accuracy of the
data would not be as robust as the data obtained from
the literature review conducted beforehand. In order to
assure the stability of the model, special care was taken
in addition to model fit tests. Testing a model against
validation data helps researchers to prevent from devel-
oping an overfitted model [29]. The Hausman test con-
firmed the generalizability of the model. To understand
typhoid risk levels at the smaller geographical level than
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the sub-national boundary level, the grid-cell analysis
was carried out for the countries where DHS GPS infor-
mation is available. While the TRF index by the sub-
national boundary level is representative at the population
level, it should be noted that there were no sample
weights available at the grid-cell level. Thus, typhoid risk
level in the grid-cell analysis should be interpreted as the
representativeness of the households in the clusters within
a grid-cell, rather than the overall representativeness of a
grid-cell. While the current study identified the six risk
factors which consistently exist for all selected countries
over time, others also found gender, health-seeking behav-
ior, and seasonal variations as typhoid risk factors [33].

By using the TRF index the global disease burden of
typhoid can be reformulated in a more sophisticated man-
ner. In previous studies [1, 3], great efforts were made to
measure the global typhoid burden. However, due to the
limited amount of data sources, some broad assumptions
were assigned to the point where the disease burden esti-
mates from surveillance sites were regarded as the whole
country-level, and some surveillance data were considered
to be the same in neighboring countries where no such in-
formation was available. The recent burden study [3] up-
dated the previous burden estimates by differentiating
populations at high risk from non-high risk populations
with an adjustment factor. However, this adjustment was
also limited to applying a single odds ratio to all countries
uniformly. In future studies, these limitations can be im-
proved by adjusting surveillance data with the TRF index
estimated in this study.

Conclusions

While continuous efforts have been made over the past
decades to estimate the different levels of typhoid disease
burden, there are still large knowledge gaps which leave
the typhoid burden in many parts of developing countries
unknown. The TRF index and mapping analysis proposed
in this study can facilitate the process of targeting appro-
priate populations in high risk areas for typhoid fever
prevention activities such as vaccination. As typhoid con-
jugate vaccines will be available in the near future, our
study findings can help decision makers in resource-
constrained countries plan more effective vaccination
strategies at the local level and can also ease potential sup-
ply limitations during the early stage of the new vaccine
introduction. Given that many parts of developing coun-
tries still lacks population-based surveillance data, this
study can guide decision makers in identifying areas where
future surveillance studies should be conducted. Further-
more, because the study outcomes were generated based
on public data sources which are periodically updated,
these findings can assess the progress of the countries
over time by observing changes in the index values as the
information is updated.
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