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monitoring human papillomavirus infection
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Abstract

Background: HPV DNA diagnostic tests for epidemiology monitoring (research purpose) or cervical cancer screening
(clinical purpose) have often been considered separately. Women with positive Linear Array (LA) polymerase chain
reaction (PCR) research test results typically are neither informed nor referred for colposcopy. Recently, a sequential
testing by using Hybrid Capture 2 (HC2) HPV clinical test as a triage before genotype by LA has been adopted for
monitoring HPV infections. Also, HC2 has been reported as a more feasible screening approach for cervical cancer in
low-resource countries. Thus, knowing the performance of testing strategies incorporating HPV clinical test (i.e, HC2-only
or using HC2 as a triage before genotype by LA) compared with LA-only testing in measuring HPV prevalence will be
informative for public health practice.

Method: We conducted a Monte Carlo simulation study. Data were generated using mathematical algorithms. We
designated the reported HPV infection prevalence in the US. and Latin America as the “true” underlying type-specific
HPV prevalence. Analytical sensitivity of HC2 for detecting 14 high-risk (oncogenic) types was considered to be less
than LA. Estimated-to-true prevalence ratios and percentage reductions were calculated.

Results: When the “true” HPV prevalence was designated as the reported prevalence in the U.S, with LA genotyping
sensitivity and specificity of (0.95, 0.95), estimated-to-true prevalence ratios of 14 high-risk types were 2.132, 1.056, 0.958
for LA-only, HC2-only, and sequential testing, respectively. Estimated-to-true prevalence ratios of two vaccine-associated
high-risk types were 2.359 and 1.063 for LA-only and sequential testing, respectively. When designated type-specific
prevalence of HPV16 and 18 were reduced by 50 %, using either LA-only or sequential testing, prevalence estimates were
reduced by 18 %.

Conclusion: Estimated-to-true HPV infection prevalence ratios using LA-only testing strategy are generally higher than
using HC2-only or using HC2 as a triage before genotype by LA. HPV clinical testing can be incorporated to monitor HPV
prevalence or vaccine effectiveness. Caution is needed when comparing apparent prevalence from different
testing strategies.
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Background

Cervical cancer is the third most common cancer among
women and the second most frequent cause of cancer-
related deaths, accounting for approximately 300,000
deaths annually worldwide [1]. More than 80 % of these
cervical cancer related deaths occurs in low-resource
countries [2]. Human papillomavirus (HPV) infections
have been identified as a necessary cause of cervical
cancer [3-5]. Screening and vaccination are the best
strategies for reducing cervical cancer incidence. HPV-
clinical DNA testing has been considered as a more
cost- effective and feasible approach [3]. Since HPV
vaccination was introduced in 2006, many developed
countries also have initiated HPV immunization pro-
grams for adolescents [6—8]. While the high cost of HPV
vaccination remains a barrier, HPV vaccine has been in-
troduced in some developing countries successfully [9].
Because cervical cancer outcomes take years to observe,
monitoring HPV infections has served as an early
indication of vaccine effectiveness [7, 10-13]. In this
study, we compare three HPV DNA testing strategies for
monitoring HPV infection prevalence.

Molecular testing methods are available for detecting
HPV infections for research or for clinical purposes.
Polymerase chain reaction (PCR)-based DNA genotyp-
ing tests using target amplification technique can detect
the existence of minute amounts of virus and have been
considered as the “gold standard” for detecting infec-
tious organisms [14, 15]. Linear Array (LA) genotyping
assay is the commercialized version of PCR genotyping
testing designed to standardize the PCR process for
detecting existence of HPV DNA for research purposes.
The LA genotyping assay is based on PCR amplification
of a 450-bp sequence of the L1 region by using
PGMY09/11 primer, hybridization of the amplified prod-
uct to oligonucleotide probes, and their detection by
colorimetric reaction [16]. LA can detect 37 HPV geno-
types simultaneously. The test has been used in
epidemiological and clinical research studies to detect
HPV infections and is also the most widely used assay
by HPV LabNet laboratories to monitor HPV infection
prevalence for HPV vaccine effectiveness [17]. By com-
parison, commercially available Digene Hybrid Capture
2 (HC2) clinical-HPV assay uses the signal amplified
hybridization microplate-based technique to detect HPV
DNA presence. The HC2 clinical HPV test is an aggre-
gate test that detects 13 high-risk (oncogenic) types
(HPV1e, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and
68), and because of cross-reactivity, it can also detect
HPV66. HC2 is designed to detect high enough viral
loads (i.e., clinically relevant viral loads), and it has
been used as a co-test with the Papanicolaou smear
test or a clinical test alone for screening women likely
to develop or who have already developed cervical
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cancer. The HC2 assay has also been used as a refer-
ence test in studies evaluating newly developed
clinical-HPV assays [18, 19].

PCR genotyping test has been used to monitor HPV
infection prevalence and vaccine effectiveness for re-
search purposes because of its high analytical sensitivity.
Women with positive PCR genotyping test results typic-
ally are neither informed nor referred for colposcopy,
and the PCR processing procedures can be complex and
labor-intensive. Recently, a sequential testing strategy
using HC2 as a triage and genotype only those HC2
positive specimens by LA PCR has been used to monitor
HPV infections in China and England [20, 21]. Using
PCR genotyping assays to monitor HPV infections is
also not feasible in low-resource countries [22—-24].
Alternatively, HC2 has been reported as a more feasible
screening approach in low-resource countries [3, 23]
because HC2 (particularly, careHPV, the developed
countries version of HC2) does not require special
facilities and is less labor-intensive than PCR-based
methods [22, 25, 26]. Thus, knowing the performance
of testing strategies incorporating HPV-clinical HC2,
compared with using LA-only PCR testing, in meas-
uring HPV infection prevalence will be informative
for public health practice.

Since sensitivities and specificities of these testing
strategies may not be easily obtained and the true
HPV infection prevalence is normally not known, we
use Monte Carlo simulation approach to compare dif-
ferent testing strategies. Simulation methods have
been used for answering “what-if” questions. For
example, IF the “true” prevalence level is “a” and IF
the sensitivity/specificity of the test is “b”/’c”, the
simulation will provide information on what we ex-
pect to measure as the apparent prevalence (estimate)
and thus the difference (bias) between the “true” and
apparent prevalence (estimate). In this study, we use
the reported HPV prevalence from the US and Latin
America as the “true” HPV prevalence level. What we
try to answer is, if the “true” prevalence is at the level
as the reported prevalence in the US and Latin
America and we use the test with sensitivity and
specificity as specified, what is the apparent preva-
lence based on the testing strategy (i.e., LA-only,
HC2-only, and sequential testing by using HC2 as a
triage and genotyped by LA for HC2-positive speci-
mens)? What is the ratio of the apparent prevalence
to the “true” prevalence?

Methods

Simulation setup

The Monte Carlo simulation approach similar to Lin et
al. [27, 28] was extended to incorporate various testing
strategies. Analytical sensitivity is the probability of truly
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infected subjects with a positive test result; analytical
specificity is the probability of truly uninfected sub-
jects with a negative result. Mathematical algorithms
with designated values of “true” underlying type-
specific prevalence, genotyping assay analytical sensi-
tivity and specificity, and correlations among HPV
types were used to generate data.” True” type-specific
infectious statuses were determined on the basis of
the designated type-specific prevalence. The genotyp-
ing test results were determined based on the basis of
type-specific infection status and genotyping test per-
formance (i.e., analytical sensitivity and specificity).
Without loss of generalizability, the total number of
subjects in each data set was set at 4,000, and corre-
lations between HPV types were set at 0.06. For each
simulated data set, there are “true” type-specific infec-
tious status of 14 high-risk (oncogenic) types, the LA
genotyping test results of 14 high-risk types and the
HC2 result for each of the 4000 subject. Five hundred
data sets were generated for each scenario. Mean and
standard deviation of the “true” and apparent preva-
lence (estimates) of 500 data sets were calculated.
Mathematical algorithms related to our simulation
setup were given in the literature [27, 28].

To simulate scenarios on the basis of both high- and
low-resource regions, the reported prevalence of the 14
high-risk HPV types for the United States and Latin
America were designated as the known “true” underlying
type-specific prevalence (Fig. 1) [29, 30]. HPV type-
specific prevalence in Latin America was lower than in
the United States, and the relative HPV infection preva-
lence was also different.
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LA genotyping assay (type-specific) analytical sensitiv-
ity and specificity were initially set as (0.95, 0.95) to
reflect the scenarios where specimens were carefully
handled and PCR procedures were conducted ad-
equately. Since various factors (i.e., precisely execut-
ing processing procedures, number and quality of
virus genomes presented in the samples, etc.) could
affect the performance of LA, LA genotyping assay
analytical sensitivity and specificity were subse-
quently varied from (0.95, 0.95) to (0.95, 0.90), (0.95,
0.85), (0.90, 0.90), (0.90, 0.85), (0.85, 0.85), (0.80,
0.80). The idealistic scenario, LA genotyping assay
analytical performance reached (1.00, 1.00), was also
considered.

To obtain HC2 results, we based our study on the
test results of 8,403 women participating in the U.S.
NHANES (2003-2010) study with both LA and HC2
test conducted [9]. Forty-five percent of subjects
with at least one LA-positive test among 14 high-
risk HPV types also tested positive by HC2, and
93 % of subjects with all LA type-specific negative
results also tested negative by HC2. This was equiva-
lent to that the analytical sensitivity of HC2 in
detecting any of the 14 high-risk HPV types was ap-
proximately 50 % lower than LA, but the analytical
specificity was similar.

For each simulated data set, the data included the
“true” type-specific infectious status of 14 high-risk
types, the LA genotyping test results of 14 high-risk
types and the HC2 result of the 4,000 subject. Using the
simulated data, the “true” prevalence, estimated preva-
lence and estimated-to-“true” prevalence ratios from
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Table 1 Designated and estimated prevalence of the 14 high-risk virus types by Linear Array (LA)-only, Hybrid Capture (HC2)-only,
and sequential testing strategies in the United States and Latin America

Genotyping Time Designated LA-only HC2-only Sequential test

assay composite Composite Estimate-to- Composite Estimate-to- Composite Estimate-to-

performance E)Srg\)/a\emce preyalence true ratio preyalence true ratio prgvalence true ratio

estimate (SD) estimate (SD) estimate (SD)

United States

Sen=1.00 Baseline 0.287 (0.007) 0.287 (0.007) 1.000 0.180 (0.006) 0.628 0.129 (0.005) 0446

spe=100 Reduced 0.265 (0.007) 0.265 (0.007) 1.000 0.172 (0.006) 0.657 0.124 (0.005) 0468
% Reduction 76 76 03 39

Sen=0.95 Baseline 0.287 (0.007) 0.612 (0.008) 2.132 0.303 (0.007) 1.056 0.275 (0.007) 0.958

ope =095 Reduced 0.265 (0.007) 0.602 (0.008) 2272 0.299 (0.007) 1.128 0.271 (0.007) 1.023
% Reduction 76 16 13 1.5

Sen=0.95 Baseline 0.287 (0.007) 0.792 (0.006) 2.760 0.371 (0.008) 1.293 0.356 (0.008) 1.240

Spe =090 Reduced 0.265 (0.007) 0.787 (0.007) 2970 0.369 (0.008) 1.392 0.354 (0.008) 1.340
% Reduction 8.0 0.6 0.5 06

Sen=0.90 Baseline 0.287 (0.007) 0.788 (0.006) 2.746 0.370 (0.007) 1.289 0.355 (0.007) 1.237

Spe =090 Reduced 0.265 (0.007) 0.783 (0.007) 2955 0.368 (0.007) 1.389 0.352 (0.002) 1.328
% Reduction 7.7 0.6 0.5 08

Sen=0.90 Baseline 0.287 (0.007) 0.887 (0.005) 3.091 0.407 (0.008) 1418 0.399 (0.008) 1.390

ope =085 Reduced 0.265 (0.007) 0.885 (0.005) 3.340 0.405 (0.008) 1.528 0.397 (0.008) 1498
% Reduction 8.0 25 0.5 03

Sen=0.85 Baseline 0.287 (0.007) 0.885 (0.005) 2979 0.407 (0.007) 1418 0.399 (0.007) 1.390

spe =085 Reduced 0.265 (0.007) 0.883 (0.005) 3332 0.405 (0.007) 1.528 0.397 (0.007) 1498
% Reduction 8.0 22 0.5 03

Sen=0.80 Baseline 0286 (0.007)  0.939 (0.004) 3.283 0.426 (0.008) 1489 0.422 (0.008) 1475

spe =080 Reduced 0.265 (0.007) 0.938 (0.004) 3.540 0424 (0.008) 1.600 0421 (0.008) 1.589
% Reduction 80 12 4.7 0.2

Latin America

Sen=1.00 Baseline 0.104 (0.005) 0.104 (0.005) 1.000 0.110 (0.005) 1.058 0.048 (0.003) 0461

Spe =100 Reduced 0.084 (0.004) 0.084 (0.004) 1.000 0.103 (0.005) 1.220 0.039 (0.003) 0464
% Reduction 19.2 19.2 6.3 18.7

Sen=0.95 Baseline 0.104 (0.005) 0.527 (0.008) 5.067 0.270 (0.007) 2.596 0.237 (0.007) 2279

ope=095 Reduced 0.084 (0.004) 0.518 (0.008) 6.167 0.267 (0.007) 3.179 0.233 (0.006) 2774
% Reduction 19.2 1.7 1.1 1.7

Sen=0.95 Baseline 0.104 (0.005) 0.749 (0.007) 7.202 0.355 (0.007) 3413 0.338 (0.007) 3.250

Spe =090 Reduced 0.084 (0.005) 0.745 (0.007) 8.869 0.353 (0.007) 4.202 0.335 (0.007) 3.988
% Reduction 19.2 0.5 0.6 08

Sen=0.90 Baseline 0.104 (0.004) 0.748 (0.007) 7.192 0.354 (0.008) 3404 0.337 (0.008) 3.240

ope =090 Reduced 0.084 (0.004) 0.743 (0.007) 8.845 0.353 (0.008) 4.202 0.335 (0.008) 3.988
% Reduction 19.2 0.7 03 06

Sen=0.90 Baseline 0.104 (0.005) 0.867 (0.006) 8337 0.400 (0.008) 3.846 0.390 (0.008) 3.750

spe =085 Reduced 0.084 (0.004) 0.865 (0.005) 10.298 0.399 (0.008) 4.750 0.390 (0.008) 4.643
% Reduction 19.2 03 0.2 0

Sen=0.85 Baseline 0.104 (0.005)  0.866 (0.005) 8327 0.399 (0.007) 3.837 0.389 (0.007) 3.740

ope =085 Reduced 0.084 (0.004) 0.864 (0.005) 10.286 0.398 (0.007) 4738 0.388 (0.007) 4619
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Table 1 Designated and estimated prevalence of the 14 high-risk virus types by Linear Array (LA)-only, Hybrid Capture (HC2)-only,
and sequential testing strategies in the United States and Latin America (Continued)

% Reduction 19.2 0.2
Sen =0.80 Baseline 0.104 (0005) 0930 (0004) 8942
Spe=080 Reduced 0084 (0004) 0929 (0.004)  11.060
% Reduction 19.2 0.1

0.2 0.2
0.424 (0.008) 4.077 0419 (0.008) 4.029
0423 (0.008) 5.036 0418 (0.008) 4.976
0.2 0.2

Type-specific prevalence at baseline, in the United States: HPV16 = 0.047; HPV18 =0.019; HPV31 = 0.022; HPV33 = 0.015; HPV35 = 0.013; HPV39 = 0.022; HPV45 =
0.020; HPV51 =0.041; HPV52 = 0.036; HPV56 = 0.023; HPV58 = 0.014; HPV59 = 0.030; HPV66 = 0.034; and HPV68 = 0.016; in Latin America: HPV16 =0.033; HPV18 =
0.012; HPV31 =0.012; HPV33 = 0.008; HPV35 = 0.007; HPV39 = 0.004; HPV45 = 0.007; HPV51 = 0.005; HPV52 = 0.007; HPV56 = 0.004; HPV58 = 0.001; HPV59 = 0.004;

HPV66 = 0.004; and HPV68 = 0.004
Reduced: HPV16 and HPV18 are reduced by 50 %
Abbreviations: SD standard deviation, Sen sensitivity, Spe specificity

various testing strategies based on the following defin-
ition were calculated.

“True” and estimated infection prevalence

Four outcome measures: 14 oncogenic high-risk types, 2
vaccine-associated high-risk types (HPV16 or HPV18
based on bivalent and quadrivalent HPV vaccine), type-
specific HPV16, and type-specific HPV 18 were consid-
ered. HPV 16 and HPV 18 infections account for
approximately 70 % of invasive cervical cancer globally
[31, 32]. The “true” prevalence of each outcome measure
was defined as the proportion of subjects having HPV
infections. The “true” infection status of the four out-
come measures were defined as follows: for each subject,
the “true” positive infection status of the 14 high-risk
types or the 2 vaccine-associated high-risk types was
defined as having at least one of the 14 high-risk or the
2 vaccine-associated high-risk types, respectively. The
“true” positive type-specific infection status of HPV16/
HPV18 was defined as having type-specific infection of
HPV16/HPV18.

Apparent prevalence (estimates) of each outcome
measure was defined as a proportion of subjects with
positive test results from different testing strategies. For
the LA-only testing strategy, specimens taken from all
subjects were genotyped by LA, therefore, the type-
specific results of 14 HPV type were available. A positive
LA test outcome of the 14 high-risk types and the 2
vaccine-associated high-risk types was defined as having
at least one positive LA type-specific result of the 14
high-risk types and two positive vaccine-associated high-
risk types, respectively. A positive test outcome of indi-
vidual type-specific HPV16 or HPV18 was defined as
having a positive HPV16 or HPV18 LA genotyping
result, respectively.

For the HC2 clinical HPV testing-only strategy, speci-
mens of all subjects were tested by HC2, therefore, HC2
results were available for all subjects. A positive HC2
test result was defined as subjects with at least one of
the 14 high-risk HPV types. Since HC2 test result was
an aggregate result, no type-specific result was available.

For the sequential testing strategy, specimens of all
subjects were tested by HC2 first, and only those speci-
mens with positive HC2 results were genotyped by LA.
Therefore, for HC2 negative subjects, the LA type-
specific results were not available. A positive sequential
test outcome of the 14 high-risk types was defined as
having both HC2-positive and at least one positive LA
type-specific result of the 14 high-risk types. Similarly, a
positive sequential test outcome of the two vaccine-
associated high-risk types was defined as having a
positive HC2 result and at least one positive LA type-
specific result of two vaccine-associated high-risk types.
A positive sequential test outcome of HPV16/HPV18
was defined as having positive HC2 and HPV16/HPV18
type-specific LA results.

The estimated-to-true prevalence ratio was calcu-
lated to examine how well prevalence estimates that
were based on different testing strategies measured
the designated “true” prevalence. A ratio >1 indicated
the prevalence estimate overestimated the designated
“true” prevalence. A ratio <1 indicated the prevalence
estimate underestimated the designated “true” preva-
lence. To examine vaccine effectiveness, for demon-
stration purpose, the designated “true” type-specific
prevalence of vaccine-associated high-risk types (i.e.,
HPV16 and HPV18) were reduced by 50 %. Percent-
age reductions of prevalence estimates of the 14 high-
risk types, two vaccine-associated high-risk types,
HPV16, and HPV18 that were based on different test-
ing strategies were calculated.

Results

Apparent prevalence (estimates) of the 14 high-risk HPV
types by various testing strategies are given in Table 1.
In the idealistic scenario, when the analytic sensitivity
and specificity of LA genotyping assay reach (1.00, 1.00),
as expected, the LA-only testing strategy performs the
best. When LA genotyping assay sensitivity and specifi-
city are <095 and <0.95, respectively, prevalence
estimates from all three testing strategies generally over-
estimat designated infection prevalence of the 14 high-
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Table 2 Designated and estimated prevalence of two vaccine-associated high-risk types by Linear Array (LA)-only and sequential

testing strategies in the United States and Latin America

Genotyping Time Designated LA only Sequential testing

assay composite Composite Estimate-to- Composite Estimate-to-

performance E)Srg/alence preyalence true ratio preya\ence true ratio

estimate (SD) estimate (SD)

United States

Sen=1.00 Baseline 0.064 (0.004) 0.064 (0.004) 1.000 0.029 (0.003) 0453

spe=100 Reduced 0.032 (0.003) 0.032 (0.003) 1.000 0.015 (0.002) 0469
% reduction 50 50 48

Sen=0.95 Baseline 0.064 (0.004) 0.151 (0.006) 2.359 0.068 (0.004) 1.063

ope =095 Reduced 0.032 (0.003) 0.124 (0.005) 3.875 0.056 (0.004) 1.750
9% Reduction 50 179 176

Sen=0.95 Baseline 0.064 (0.004) 0.287 (0.007) 4484 0.107 (0.005) 1672

Spe =090 Reduced 0.032 (0.003) 0.213 (0.006) 6.656 0.096 (0.004) 3.000
9% Reduction 50 258 103

Sen=0.90 Baseline 0.064 (0.004) 0.234 (0.007) 3.656 0.105 (0.005) 1.641

Spe =090 Reduced 0.032 (0.003) 0.211 (0.006) 6.594 0.095 (0.005) 2.969
9% Reduction 0.50 9.8 9.5

Sen=0.90 Baseline 0.064 (0.004) 0.314 (0.008) 4.906 0.142 (0.006) 2219

ope =085 Reduced 0.032 (0.003) 0.294 (0.007) 9.188 0.132 (0.006) 4125
9% Reduction 50 64 7.0

Sen=0.85 Baseline 0.064 (0.004) 0.312 (0.007) 4.875 0.141 (0.005) 2219

Spe =085 Reduced 0.032 (0.003) 0.293 (0.008) 9.156 0.132 (0.005) 4125
% Reduction 50 42 7.0

Sen=0.80 Baseline 0.064 (0.004) 0.385 (0.008) 6.016 0.173 (0.006) 2703

spe =080 Reduced 0.032 (0.003) 0.371 (0.007) 11.594 0.167 (0.005) 5219
% Reduction 50 42 35

Latin America

Sen=1.00 Baseline 0.045 (0.003) 0.045 (0.003) 1.000 0.020 (0.002) 0444

Spe =100 Reduced 0.022 (0.002) 0.022 (0.002) 1.000 0.010 (0.002) 0455
% Reduction 51 5.1 5.0

Sen=0.95 Baseline 0.045 (0.003) 0.135 (0.005) 3.000 0.060 (0.004) 1.333

ope=095 Reduced 0.022 (0.002) 0.116 (0.005) 5273 0.052 (0.003) 2364
% Reduction 51 14.1 133

Sen=0.95 Baseline 0.045 (0.003) 0.222 (0.007) 4933 0.099 (0.005) 2.200

Spe =090 Reduced 0.022 (0.002) 0.205 (0.006) 9318 0.093 (0.005) 4.227
% Reduction 51 76 6.1

Sen=0.90 Baseline 0.045 (0.003) 0.219 (0.006) 4.867 0.099 (0.005) 2.200

Spe =090 Reduced 0.022 (0.002) 0.204 (0.006) 8870 0.092 (0.005) 4.000
% Reduction 51 6.8 7.1

Sen=0.90 Baseline 0.045 (0.003) 0.302 (0.007) 6.711 0.136 (0.005) 3.022

spe =085 Reduced 0.022 (0.002) 0.288 (0.007) 13.091 0.130 (0.005) 5.909
% Reduction 51 46 44

Sen=0.85 Baseline 0.045 (0.003) 0.300 (0.007) 6.667 0.135 (0.005) 3.000

ope =085 Reduced 0.022 (0.002) 0.288 (0.007) 13.091 0.129 (0.005) 5.864



Lin and Li BMC Infectious Diseases (2016) 16:642

Page 7 of 12

Table 2 Designated and estimated prevalence of two vaccine-associated high-risk types by Linear Array (LA)-only and sequential

testing strategies in the United States and Latin America (Continued)

% Reduction 51 46 44
Sen=0.80 Baseline 0.044 (0.003) 0.376 (0.007) 8.545 0.169 (0.006) 3.841
spe=080 Reduced 0.022 (0.002) 0.366 (0.007) 16.63 0.165 (0.006) 7.500
% Reduction 50 27 24

Type-specific prevalence at baseline, in the United States: HPV16 = 0.047 and HPV18 =0.019; in Latin America: HPV16 = 0.033 and HPV18 =0.012

Reduced: HPV16 and HPV18 are reduced by 50 %
Abbreviations: SD standard deviation, Sen, sensitivity, Spe, specificity

risk types. The prevalence estimate from the LA-only
testing strategy is higher than the HC2-only or
sequential testing strategies.

Estimated-to-true prevalence ratios are larger in the
Latin America scenarios than in the U.S. scenarios be-
cause the designated “true” type-specific infections are
lower in Latin America. When LA genotyping assay sen-
sitivity and specificity are equal to (0.95,0.95) and the
designated individual type-specific infection prevalence
rates of HPV16 and HPV18 are reduced by 50 %, the
designated “true” composite infection prevalence of 14
high-risk types is decreased by 7.6 % in the United States
and 19.2 % in Latin America. The estimated reductions
of 14 high-risk types from the LA-only, HC2-only, and
sequential testing strategies are similar (1.6 %, 1.3 %, and
1.5 % for the United States and 1.7 %, 1.1 %, and 1.7 %
for Latin America) and much lower than the designated
“true” percentage reduction.

When LA genotyping assay sensitivity and specificity
are <0.95 and <0.95, respectively, using either the LA-
only or the sequential testing strategy overestimates the
designated “true” prevalence of the two vaccine-
associated high-risk types (Table 2). The prevalence esti-
mates using the LA-only testing strategy are higher than
using the sequential testing strategy. Similarly, compared
with the U.S. scenarios, estimated-to-true prevalence
ratios are higher when the “true” prevalence is desig-
nated as the reported prevalence in Latin America.
When the designated “true” type-specific prevalence of
HPV16 and HPV18 are reduced by 50 %, composite
prevalence estimates calculated on the basis of either the
LA-only or the sequential testing strategy underestimate
the designated reduction.

Designated “true” and estimated type-specific preva-
lence for HPV16 are displayed in Table 3 and for HPV18
in Table 4. When LA genotyping sensitivity and specifi-
city reach (1.00 1.00), LA-only performs best. The
sequential testing strategy typically underestimates the
designated underlying prevalence. When LA genotyping
assay sensitivity and specificity are <0.95 and <0.95,
respectively, the prevalence estimates from the LA-only
testing strategy generally overestimate the designated
“true” infection prevalence of HPV16 or HPV18. For

HPV16, in certain scenarios, the prevalence estimates
from sequential testing strategies underestimate the
designated prevalence. Similarly, reducing the desig-
nated individual type-specific prevalence of HPV16
and HPV18 by 50 % when using either the LA-only
or the sequential testing strategy underestimates the
designated reduction.

Discussion

With >80 % of the cervical cancer-related deaths occur-
ring in low-resource countries where women in most of
these countries typically do not have access to effective
screening or treatment before, successful introduction of
using HPV-clinical test to screen cervical cancer is sub-
stantially beneficial in identifying women at risk of devel-
oping severe cervical cell abnormalities for cervical cancer
prevention [3]. Availability of using HPV-clinical testing to
screen cervical cancer in low-resource countries might
allow public health officials to use the data to monitor
HPV infection in ways not previously possible. Since HPV
diagnostic testing strategies for epidemiological monitor-
ing and cervical cancer screening have been considered
separately, we have used a Monte Carlo simulation ap-
proach to investigate how well the apparent prevalence
based on HC2-only and sequential testing strategies com-
pared to LA-only measures the designated “true” preva-
lence. The results suggest that HPV clinical testing can be
incorporated to monitor HPV prevalence or vaccine ef-
fectiveness and the apparent prevalence based on different
testing strategies can be different.

Our simulation study is based on the assumption that
analytical sensitivity of HC2 for detecting existence of
the 14 high-risk HPV types is lower than LA-only but
the analytical specificity is similar between the two. The
HC2 clinical test is designed to detect high enough viral
loads (i.e., clinically relevant viral loads). Analytical sen-
sitivity of the LA is at the sub-picogram level of HPV
DNA and analytical sensitivity of HC2 is at the picogram
level [33-36]. Therefore, among infected subjects, the
number of subjects who test LA positive is higher than
the number of subjects who test HC2 positive. The mag-
nitude of difference between analytical sensitivities of
LA and HC2 depends on the distribution of the viral
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Table 3 Designated and estimated prevalence of HPV16 by Linear Array (LA)-only and sequential testing strategies in the United
States and Latin America

Genotyping Time Designated LA only Sequential testing

assay composite Composite Estimate-to- Composite Estimate-to-

performance prevalence (SD) prevalence true ratio prevalence true ratio

estimate (SD) estimate (SD)

United States

Sen=1.00 Baseline 0.047 (0.003) 0.047 (0.003) 1.000 0.009 (0.002) 0.191

spe=100 Reduced 0.023 (0.002) 0.023 (0.002) 1.000 0.004 (0.001) 0173
% Reduction 511 511 50

Sen=0.95 Baseline 0.047 (0.003) 0.092 (0.004) 1.958 0.028 (0.003) 0.596

ope =095 Reduced 0.023 (0.002) 0.071 (0.004) 3.087 0.021 (0.002) 0913
% Reduction 511 228 0.7

Sen=0.95 Baseline 0.047 (0.003) 0.140 (0.006) 2979 0.052 (0.004) 1.106

Spe =090 Reduced 0.023 (0.002) 0.120 (0.005) 5217 0.044 (0.003) 1913
% Reduction 511 143 154

Sen=0.90 Baseline 0.047 (0.003) 0.138 (0.005) 2936 0.051 (0.003) 1.085

Spe =090 Reduced 0.023 (0.002) 0.119 (0.005) 5174 0.044 (0.003) 1913
% Reduction 511 138 13.7

Sen=0.90 Baseline 0.047 (0.003) 0.185 (0.006) 3.936 0.075 (0.004) 1.596

ope =085 Reduced 0.023 (0.002) 0.167 (0.007) 7.261 0.068 (0.004) 2957
% Reduction 511 9.7 93

Sen=0.85 Baseline 0.047 (0.003) 0.183 (0.006) 3.894 0.074 (0.004) 1574

ope =085 Reduced 0.023 (0.002) 0.166 (0.006) 7217 0.068 (0.004) 2957
% Reduction 511 93 8.1

Sen=0.80 Baseline 0.047 (0.003) 0.228 (0.006) 4.851 0.097 (0.005) 2.064

spe =080 Reduced 0.024 (0.002) 0.214 (0.006) 8917 0.091 (0.005) 3.792
% Reduction 51.1 6.1 6.2

Latin America

Sen=1.00 Baseline 0.033 (0.003) 0.033 (0.003) 1.000 0.004 (0.001) 0.125

Spe =100 Reduced 0.016 (0.002) 0.016 (0.002) 1.000 0.002 (0.001) 0.125
% Reduction 515 515 50

Sen=0.95 Baseline 0.033 (0.003) 0.080 (0.004) 2424 0.022 (0.002) 0.667

ope=095 Reduced 0.016 (0.002) 0.065 (0.004) 4.063 0.017 (0.002) 1.063
% Reduction 515 18.7 227

Sen=0.95 Baseline 0.033 (0.003) 0.128 (0.005) 3879 0.046 (0.003) 1.394

Spe =090 Reduced 0.016 (0.002) 0.114 (0.005) 7.125 0.040 (0.003) 2.500
% Reduction 515 109 130

Sen=0.90 Baseline 0.033 (0.003) 0.126 (0.005) 3.818 0.045 (0.003) 1.364

Spe =090 Reduced 0.016 (0.002) 0.113 (0.005) 7.063 0.040 (0.003) 2.500
% Reduction 515 103 111

Sen=0.90 Baseline 0.033 (0.003) 0.175 (0.006) 5303 0.070 (0.004) 2121

spe =085 Reduced 0.016 (0.002) 0.162 (0.006) 10.125 0.065 (0.004) 4.063
% Reduction 515 74 7.1

Sen=0.85 Baseline 0.033 (0.003) 0.173 (0.006) 5242 0.069 (0.004) 2.091

Spe =085 Reduced 0.016 (0.002) 0.161 (0.005) 10.062 0.064 (0.004) 4.000
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Table 3 Designated and estimated prevalence of HPV16 by Linear Array (LA)-only and sequential testing strategies in the United

States and Latin America (Continued)

% Reduction 515 6.9 7.2
Sen=0.80 Baseline 0.033 (0.003) 0.219 (0.006) 6.636 0.093 (0.005) 2818
Spe=080 Reduced 0.016 (0.002) 0.209 (0.006) 13.064 0.089 (0.004) 5.563
% Reduction 515 4.5 43

Type-specific prevalence at baseline, in the United States: HPV16 = 0.047; in Latin America: HPV16 = 0.033

Reduced: HPV16 is reduced by 50 %
Abbreviations: SD standard deviation, Sen sensitivity, Spe specificity

load of the infected subjects. When a large portion of
the HPV infected subjects are with lower viral load
(i.e., lower than the HC2 detection limit of 5,000
genomes), the analytical sensitivity of LA is much
higher than HC2. When a smaller portion of the
HPV infected subjects is with lower viral load, the
analytical sensitivity of LA is closer to the analytical
sensitivity of HC2. In our study, the association
between HC2 and LA test results is based on samples
from 8,403 women in the U.S. NHANES (2003 to
2010) studies for whom both LA and HC2 test results
collected. It is equivalent to the scenario of analytical
sensitivity of HC2 being approximately 50 % lower
than LA, but specificity being similar. We further in-
vestigate the scenario, HC2 and LA results are more
agreeable, which is based on the pap cohort Study
[37]. Among 1,849 women, 83 % of LA test-positive
subjects were tested positive by using HC2, and 84 %
of LA test-negative subjects were also tested negative
by using HC2. This is equivalent to analytical sensi-
tivity of HC2 for detecting the 14 high-risk types is
approximately 15 % lower than LA, but analytical
specificity is similar. As expected, the conclusions are
similar (simulation results not shown).

For demonstration purpose, the 50 % reduction of
type 16 and 18 prevalence is chosen in this simula-
tion study. The estimated vaccine effectiveness (reduc-
tion in prevalence) in the literature [9] is much lower
than 50 % because of low coverage rate. Since the ob-
jective is to examine three testing strategies when in-
fection prevalence is reduced, the 50 % reduction
serves the purpose.

We consider type-specific infections to be correlated
because the risk factors of getting infected by various
virus types are similar and subjects with weaker immune
system are more likely to get infected and stay infected.
The correlations between HPV types in this simulation
study were set to be 0.06 which was based on the aver-
age value of 91 pairwise correlations of the LA genotyp-
ing results of the 14 high-risk HPV types in the
2003-2006 National Health and Nutrition Examination
Surveys (NHANES).

Discussion of using PCR genotyping assay to moni-
tor HPV is given elsewhere [27]. Estimated-to-true

prevalence ratios using the LA-only testing strategy
are high. It is because we still get enough false-
positives in a low-prevalence setting even when speci-
ficity is as high as 0.95, therefore, overestimate the
“true” prevalence substantially. Taking a type-specific
HPV infection as an example, this result can be easily
seen from the following equation:

Apparent prevalence = sensitivity*true prevalence + (1-
specificity) * (1- true prevalence).

The influence of the “true” prevalence level on the
magnitude of overestimation can also be seen by
comparing results from the US with those form the
Latin America. The magnitude of over-estimation is
more severe in Latin America. This is because the
“true” type-specific infection prevalence is generally
lower in Latin America.

The simulation results suggest that clinical-HC2 can
be used as a triage before genotype to monitor HPV
prevalence. Compared with LA-only testing strategy,
that estimated-to-true prevalence ratios using the
sequential testing strategy are closer to 1. In addition,
the sequential testing strategy might be more compatible
with cervical cancer screening programs. HC2 results for
women aged >30 years can be used to screen for cervical
cancer. In contrast, subjects with positive LA results are
neither informed nor referred for colposcopy. Also,
sequential testing strategy might reduce costs by greatly
reducing the number of genotyping tests [38].

The simulation results also reveal that HC2-only
can be used to monitor HPV prevalence of the 14
high-risk types, despite HC2 having lower analytical
sensitivity than LA. The estimated-to-true prevalence
ratios of the 14 high-risk HPV types from an HC2-
only testing strategy are closer to 1 than the LA-
only testing strategy. When the designated “true”
underlying vaccine-associated high-risk types (HPV16
and HPV18) are reduced by 50 %, similar to using
the LA-only testing strategy, prevalence estimates of
the 14 high-risk types from HC2-only testing strat-
egy also decline. Either using the LA-only or the
HC2-only testing strategy underestimates the desig-
nated “true” reduction.

Other possible benefits exist to incorporating the
HC2 clinical test for monitoring HPV infections. HC2
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Table 4 Designated and estimated prevalence of HPV18 by Linear Assay (LA)-only and sequential testing strategies in the United
States and Latin America

Genotyping Time Designated LA only Sequential testing

assay composite Composite Estimate-to- Composite Estimate-to-

performance prevalence (SD) prevalence true ratio prevalence true ratio

estimate (SD) estimate (SD)

United States

Sen=1.00 Baseline 0.019 (0.002) 0.019 (0.002) 1.000 0.003 (0.001) 0.158

spe =100 Reduced 0.009 (0.002) 0.009 (0.002) 1.000 0.002 (0.001) 0.222
% Reduction 52 52 33

Sen=0.95 Baseline 0.019 (0.002) 0.067 (0.004) 3.526 0.020 (0.002) 1.053

ope=095 Reduced 0.009 (0.002) 0.058 (0.004) 6.444 0.017 (0.002) 1.889
% Reduction 52 134 15

Sen=0.95 Baseline 0.019 (0.002) 0.116 (0.005) 6.105 0.043 (0.003) 2263

Spe =090 Reduced 0.009 (0.002) 0.108 (0.005) 12.000 0.040 (0.003) 4444
% Reduction 52 6.9 7

Sen=0.90 Baseline 0.019 (0.002) 0.115 (0.005) 6.052 0.042 (0.003) 2210

Spe =090 Reduced 0.009 (0.002) 0.107 (0.005) 11.889 0.039 (0.003) 4333
% Reduction 52 7.0 7.1

Sen=0.90 Baseline 0.019 (0.002) 0.164 (0.006) 8632 0.066 (0.004) 3474

ope =085 Reduced 0.009 (0.002) 0.157 (0.006) 17.444 0.064 (0.004) 7011
% Reduction 52 43 30

Sen=0.85 Baseline 0.019 (0.002) 0.163 (0.006) 8.579 0.066 (0.004) 3474

Spe =085 Reduced 0.009 (0.002) 0.156 (0.006) 1733 0.063 (0.004) 7.000
% Reduction 52 43 45

Sen=0.80 Baseline 0.019 (0.002) 0.211 (0.006) 11.105 0.090 (0.004) 4.737

Spe =080 Reduced 0.009 (0.002) 0.206 (0.006) 22.889 0.088 (0.005) 9.778
% Reduction 52 23 22

Latin America

Sen=1.00 Baseline 0.012 (0.002) 0.012 (0.002) 1.000 0.003 (0.001) 0.250

Spe =100 Reduced 0.006 (0.002) 0.006 (0.002) 1.000 0.001 (0.001) 0.167
% Reduction 50 50 50

Sen=0.95 Baseline 0.012 (0.002) 0.061 (0.004) 5.083 0.016 (0.002) 1.333

ope=095 Reduced 0.006 (0.002) 0.056 (0.004) 9.333 0.015 (0.002) 2.500
% Reduction 50 8.2 6.3

Sen=0.95 Baseline 0.012 (0.002) 0.110 (0.005) 9.167 0.039 (0.003) 3.250

Spe =090 Reduced 0.006 (0.001) 0.105 (0.005) 17.500 0.037 (0.003) 6.167
% Reduction 50 4.5 5.1

Sen=0.90 Baseline 0.012 (0.002) 0.109 (0.005) 9.083 0.039 (0.003) 3.250

Spe =090 Reduced 0.006 (0.001) 0.105 (0.005) 17.500 0.037 (0.003) 6.167
% Reduction 50 37 5.1

Sen=0.90 Baseline 0.012 (0.002) 0.159 (0.006) 13.250 0.063 (0.004) 5.250

ope =085 Reduced 0.006 (0.001) 0.154 (0.006) 25.667 0.062 (0.004) 10333
% Reduction 50 3.1 16

Sen=0.85 Baseline 0.012 (0.002) 0.158 (0.006) 13.167 0.063 (0.004) 5250

ope =085 Reduced 0.006 (0.001) 0.154 (0.005) 25.667 0.061 (0.004) 10.166
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Table 4 Designated and estimated prevalence of HPV18 by Linear Assay (LA)-only and sequential testing strategies in the United

States and Latin America (Continued)

% Reduction 50 3.1 3.1
Sen=0.80 Baseline 0.012 (0.002) 0.207 (0.006) 17.250 0.087 (0.004) 7.250
spe=080 Reduced 0.006 (0.001) 0.204 (0.006) 34.000 0.086 (0.004) 14.333
% Reduction 50 1.1 1.1

Type-specific prevalence at baseline, in the US: HPV18 =0.019; in Latin America: HPV18 =0.012

Reduced: HPV18 is reduced by 50 %
Abbreviations: SD standard deviation, Sen sensitivity, Spe specificity

(particularly, careHPV, the developed countries ver-
sion of HC2) procedures are less complex and less
labor-intensive, therefore, less subject to human error.
HC2 testing using the automation provided by a rapid
capture system can achieve high-volume throughput
[39]. Also, performance (sensitivities and specificities)
of commercially manufactured HC2 has been reported
to be highly reliable and reproducible in cervical can-
cer screening setting [22, 40]. High repeatability and
consistent performance of HC2 testing allows public
health professionals to compare HPV prevalence esti-
mates of the 14 high-risk types across different geo-
graphic areas.

The simulations were conducted on the basis of an
assumption that analytical sensitivity of LA-only test-
ing is higher than sensitivity of HC2-only testing.
When PCR procedures are performed incorrectly
according to standard protocols, performance of LA
might be worse than the performance of HC2, which
was not considered in our study. Additionally, we did
not consider the scenarios of cross-protection or type
replacement attributable to vaccination in this simula-
tion study because evidence of cross-protection and
type replacement is inconclusive [41]. Conducting a
cost-benefit analysis to compare LA-only testing strat-
egy with HC2 as a triage before LA for monitoring
HPV prevalence among specific age groups or within
regions might be beneficial. Bias introduced because
of study design (e.g., sampling strategy), confounders
(e.g., demographic characteristics or sexual behaviors),
or missing data are also beyond the scope of this
paper. Future studies are needed to investigate the
impact of those factors. Future study can also be
extended to incorporate the newly approved Cobas
HPV-clinical test and nine-valent HPV vaccine.

Conclusion

Estimated-to-true HPV infection prevalence ratios
using LA-only testing strategy are generally higher
than using HC2-only or using HC2 as a triage before
genotype by LA. Clinical HPV test can be incorpo-
rated to monitor HPV infection prevalence. Data from
screening through HPV-clinical test may be utilized
for epidemiological monitoring. Caution is needed

since the intervention effectiveness can be underesti-
mated and the apparent prevalence from different
testing strategies can be different.

Abbreviations
DNA: Deoxyribonucleic acid; HC2: Hybrid Capture 2; HPV: Human papillomavirus;
LA: Linear Array; PCR: Polymerase chain reaction
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