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Abstract

Background: Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped
bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both
animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or
aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac
or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly
and continued for 60 days. However, if treatment is delayed or administered improperly, the patient’s chances of
survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and
spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that
have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well

as anti-toxin therapies.

Methods: A literature search was conducted using the University of Manitoba search engine. Using this search
engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general
use. In order to be considered for discussion for this review, all articles must have been published later than 20009.

Results: The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and
in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds
that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very
effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B.
anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be

administered.

Conclusions: Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise.
A combination treatment that targets both bacterial growth and toxin production would be ideal and probably

necessary for effectively combatting this armed bacterium.
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Background

Bacillus anthracis, the etiological agent of anthrax, is a
Gram-positive, sporulating and toxin-producing, rod-
shaped bacterium [1, 2]. It is readily found in soil and is
responsible for causing disease in livestock including
cows, sheep, and goats and wild animals (bison, buffalo)
[3]. This pathogen can be transmitted to humans via
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direct contact, ingestion, aerosolization or injection of
vegetative cells or spores resulting in cutaneous, gastro-
intestinal, inhalational or injectional anthrax, respect-
ively [4]. Cutaneous anthrax (CA), the least severe, albeit
the most common form of anthrax, represents approxi-
mately 95 % of all reported cases [5, 6]. Clinical presen-
tation of CA often manifests as isolated infections on
the face, neck, and arms and is characterized by a black
necrotic skin eschar [5, 6]. This form is rarely fatal and
can be effectively treated with antibiotics [6]. Gastro-
intestinal anthrax (GA) is more severe although rare,
with no cases having ever been reported in the United
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States (USA) [7]. Symptoms of GA are considered non-
specific (nausea, vomiting, fever, bloody diarrhea and mal-
aise) often resulting in misdiagnosis, leading to treatment
delays and high mortality rates of over 50 % [3, 7, 8]. Inha-
lational anthrax (IA) is the most severe manifestation of an-
thrax with a mortality rate of up to 90 % if left untreated
[9-11]. Similar to GA, this respiratory infection is often
misdiagnosed due to non-specific symptoms (fever, cough,
fatigue and chest or abdominal pain) [9, 10]. IA rapidly pro-
gresses to a fulminant stage of infection resulting in cardiac
and pulmonary shock. It can also commonly spread to the
brain resulting in meningitis, which is quickly followed by
death [9, 10]. The final and most recently identified clinical
form of anthrax, known as injectional anthrax, has primar-
ily been associated with heroin drug users in the United
Kingdom (UK) and Europe [3]. Since 2009, over 50 cases of
injectional anthrax have been reported with a mortality rate
of approximately 33 % (3, 12-15].

Over the last hundred years, there have been numerous
documented anthrax outbreaks due to both natural and
intentional causes [3, 6, 7, 11, 12, 14-18]. Anthrax is en-
demic in several developing countries in Africa, Latin
America, Eastern Europe and Asia (see Fig. 1) [3, 6, 7, 19—
21]. Turkey and Greece are particularly affected due to
common practices of animal husbandry, lack of protective
measures (such as animal vaccinations) and lack of know-
ledge about B. anthracis [22—24]. Contaminated heroin
originating in Afghanistan likely contributed to the 2009
outbreak of injectional anthrax in Europe and the UK
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possibly due to casing the drug in skins of goats that died
from anthrax [25]. In 1979 in Ekaterinburg, Russia
(formerly known as Sverdlosk), over 60 people were in-
fected with anthrax due to the accidental release of B.
anthracis spores from a military microbiology laboratory
[18, 26]. Because of this air filter malfunction, 42 residents
from the surrounding city perished from IA [26]. In 1993,
aerosolized spores were deliberately released by the Aum
Shinrikyo cult over Kameido, Japan. However, since the at-
tenuated B. anthracis Sterne 34 F2 strain was utilized, no
infections were recorded [16]. In 2001, B. anthracis Ames
strain spores were sent through the USA post office to
various news and government offices leading to the expos-
ure of thousands of individuals to anthrax resulting in 22
reported cases (5 deaths) [2, 11, 17].

B. anthracis pathogenesis is mainly attributed to two
large plasmids, pXO2 and pXOl, that are essential for
full virulence (see Fig. 2) [27]. pXO2, the smaller of the
two plasmids, encodes 80 genes including the capBCAE
operon responsible for the unique, negatively-charged,
poly-y-D-glutamate capsule that enables host immune
evasion and macrophage intracellular survival [1, 27—
29]. pXO1 encodes 140 genes including the tripartite
exotoxin genes, pagA, lef and cya, which produce the
protective antigen (PA), lethal factor (LF), and edema
factor (EF), respectively [28]. Once the toxin compo-
nents are produced, they are secreted by the cell.

PA, the non-enzymatic portion of the toxin, is an 83
kilodalton (kDa) protein (PA83) that facilitates toxin
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Fig. 1 World distribution map of anthrax as determined by the World Health Organization [21]. Reprinted with permission received on April 28"
2015 from the Louisiana State University Department of Veterinary Medicine
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Fig. 2 The two plasmids, pXO1 (181.6 kb) and pXO2 (96.2 kb),
required for a fully pathogenic B. anthracis strain. Image used with
permission from Agathe Bourgogne et al [27]

entry into the host cell by binding endothelial cell sur-
face receptors (i.e. tumor endothelial marker-8 [TEM-8]
and capillary morphogenesis protein-2 [CMG-2])
throughout the body (see Fig. 3) [30, 31]. Once PAS83 is
bound to host receptors, it is cleaved by host proteases,
namely furin, into two fragments referred to as PA20 (a
20 kDa PA) and PA63 (a 63 kDa PA) [32]. Following the
disassociation of PA20, the remaining cell-bound PA63
heptamerizes and binds up to 3 molecules of LF and/or
EF to form the lethal toxin (LT) or edema toxin (ET), re-
spectively [33-35]. The toxin complexes are subse-
quently translocated into the host cell via receptor-
mediated endocytosis and delivered to the endosome.
Here, the acidic pH induces a conformational change
resulting in the release of LF and EF into the cell cytosol
where they can exert their enzymatic properties [35, 36].

EF is an 89 kDa calcium and calmodulin (CaM)-de-
pendant adenylate cyclase that catalyzes the reaction of
adenosine triphosphate (ATP) to 3, 5'-cyclic adenosine
monophosphate (cAMP) [37]. The sudden increase of
cAMP prevents apoptosis, cell motility, macrophage and
neutrophil abilities as well as impairs the release of sev-
eral inflammatory cytokines [38—40].

LF is a zinc-dependant metalloproteinase that cleaves
and inactivates mitogen-activated protein kinase kinases
(MAPKKSs) resulting in the disruption of many signalling
pathways such as macrophage activation, maturation,
and chemotaxis, as well as induces cell death [40, 41]. In
addition, in certain rodents, LT also targets NLRP1 (an
inflammasome sensor) resulting in the activation of the
caspase-1 dependent cell death signalling pathway [42,
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43]. This pathway has been studied extensively and is
the basis for many LT assays since LT is especially cyto-
toxic to rodents resulting in rapid macrophages lysis and
cell death [42].

Through ET and LT, B. anthracis has evolved to target
multiple cells throughout the host. In addition to target-
ing the innate immune system, ET interferes with the
adaptive immune system by impairing lymphocyte func-
tion ensuring the establishment of the B. anthracis infec-
tion and future bacterial growth [43, 44]. Furthermore, it
targets hepatocytes and intestinal epithelial cells leading
to extensive tissue edema [43, 44]. LT primarily targets
cardiomyocytes and smooth muscle cells [43-45].
Through liver and cardiovascular impairment, B. anthra-
cis is able to impact two vital host systems resulting in
lethal vascular collapse.

In order to effectively treat anthrax, prompt recognition
and therapeutics are essential. Once the secreted toxins
accumulate in the body, antibiotics are rendered ineffect-
ive and the patient’s chances of survival are decreased
drastically [2, 11, 17]. Once B. anthracis is suspected, anti-
biotic administration should be commenced immediately
and continued for 60 days [2]. If clinical symptoms are ab-
sent, doxycycline or penicillin G should be administered
orally or intravenously (i.v.) at 100 mg twice a day (BID)
or 1,200,000 units every 12 h, respectively [46]. Con-
versely, if clinical symptoms do manifest, an oral or iv.
formulation of 400 mg of ciprofloxacin BID is recom-
mended [47]. Despite this lengthy administration period,
current antimicrobials are ineffective against the B.
anthracis spore. In non-human primates (NHP), spores
have been shown to germinate up to 100 days post infec-
tion resulting in death rates of up to 30 % [47-50]. Thus,
the most promising way to eradicate B. anthracis might be
to prevent the sporulation process altogether. Studies
looking at the effect of the “gold standard” antibiotics on
B. anthracis sporulation found that treatment with doxy-
cycline (a bacteriostatic, protein synthesis inhibitor) re-
sulted in a predominantly vegetative final population
while treatment with the bactericidal ciprofloxacin led to a
predominantly spore population [51, 52]. Hence, although
doxycycline killed more slowly initially, overall it was con-
sidered more effective.

Aside from its inefficiency against spores, the lengthy
treatment regimen can also result in a decrease in patient
compliance (as seen in 2001 when compliance rates were
only 40 %) [53, 54]. Furthermore, the possibility of selec-
tion of antibiotic resistant mutants due to high antibiotic
usage is a risk since B. anthracis resistance has been
shown to occur gradually over time [55, 56]. In fact, stud-
ies have shown that after 21 subcultures, B. anthracis cip-
rofloxacin sensitivity was decreased from 0.1 to 1.6 mg/l
[56]. Likewise, after repeated subculturing with doxcy-
cline, the minimum inhibitory concentration (MIC)
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Fig. 3 Processes by which antimicrobials (yellow) and anti-toxins (green) interfere with essential B. anthracis functions and pathogenesis

was 600 times its initial MIC [57]. Although natural
resistance is considered to be low in B. anthracis,
with no naturally occurring ciprofloxacin or doxycyc-
line resistant strains documented to date, lactamase
genes (that cleave lactam drugs i.e. penicillin) have
been discovered, albeit in order to be functional,
they need to be induced [58]. Induction of these
genes results in clinical isolates with MICs as high
as 128 g/ml and surveillance has found penicillin re-
sistance in approximately 15 % of reported cases [58,
59]. Additionally, reports have been published show-
ing that penicillin, ciprofloxacin and doxycycline re-
sistant strains can be easily bioengineered [55, 60].
Therefore, in the event of a bioterrorist attack, it
may be possible that the microorganism being used
might be resistant to first-line antibiotic therapy (i.e.
penicillin, doxycycline, or ciprofloxacin).

In addition to antibiotics, under certain specific cir-
cumstances (i.e. not generally across the population) vac-
cination is also recommended to aid in the development
of an active immune response and to prevent infection

with B. anthracis. There are two anthrax vaccines that
are currently licensed for use: Anthrax Vaccine Precipi-
tated (AVP) which is licensed in the UK and Anthrax
Vaccine Absorbed (AVA) which is licensed in the USA.
AVPD, first licensed in 1979, is a PA-based vaccine made
from an avirulent B. anthracis Sterne 34 F2 strain and
requires 4 intramuscular doses over a period of 32 weeks
[61]. AVA or Biothrax (Emergent BioDefense Operations
Lansing LLC), a cell-free PA-based vaccine made from
the V770-NP1-R B. anthracis strain, contains an
aluminum adjuvant and is part of the USA strategic na-
tional stockpile [7, 62]. A subcutaneous (SC) dose of
0.5 mL of AVA must be administered as five doses at 0
and 4 weeks and at 6, 8 and 12 months to be effective as
pre-exposure prophylaxis [63, 64]. Although it is primar-
ily used for pre-exposure prophylaxis in high-risk popu-
lations such as military personnel, researchers or
veterinarians, AVA has also been shown to be effective
in post-exposure situations [62, 65, 66].

Aside from requiring multiple doses, there are many
other points to be considered with the current anthrax



Head et al. BMC Infectious Diseases (2016) 16:621

vaccine. Specifically, AVA has varying amounts of PA per
batch, and a limited shelf life (stocks must be replaced every
4 years) [67-69]. Although it is considered safe, adult pa-
tients have reported some side effects (lymphadenopathy,
immune system disorders, tremor, ulnar nerve neuropathy,
as well as musculoskeletal, connective tissue and bone dis-
orders) [64]. Also, the safety of AVA in children less than
18 years of age is currently unknown. In addition, in a 2008
observational study it was found that pregnant USA mili-
tary women that had been vaccinated with AVA during
their first trimester had slightly elevated rates of birth de-
fects compared to non-vaccinated pregnant women. There-
fore, AVA is not recommended for pregnant women or
people under 18 years of age unless all other options have
been exhausted [70].

Furthermore, although PA can elicit a humoral im-
mune response, it is limited in its ability to promote
long-lasting immunity (due to a declining anti-PA re-
sponse over time) [64, 71]. Storage of both the vaccine
and antibiotics in such large quantities along with the
requirement for constant patient monitoring make these
strategies less practical. Consequently, treatment follow-
ing a scenario of a biological anthrax attack where a
large number of individuals are exposed would not be
feasible using the current treatment regimens.

In this review article, we explore and discuss advances
that have been made in anthrax therapeutics with a pri-
mary focus on alternative pre-approved and novel antibi-
otics as well as anti-toxin therapies that could be useful
in the event of a bioterror attack.

Qualifications for new drugs for the treatment of
B. Anthracis infections

Since B. anthracis is primarily an agent of bioterrorism, nat-
urally occurring human infections are infrequent. Moreover,
due to the high morbidity and mortality associated with an-
thrax, it would be unethical to perform clinical studies in
humans. In the case of bioterrorism agents, the Food and
Drug Administration (FDA) may approve a drug based on
the Animal Efficacy Rule which states that a drug may re-
ceive approval for the treatment of IA if its efficacy has been
demonstrated in more than one animal model as long as
the models serve as a reasonable substitute for humans [72].
Furthermore, pharmacokinetic studies must be conducted
in animals and humans allowing proper dose selection and
the mechanisms of drug toxicity must be relatively well
understood. Finally, it is expected that the drug will have a
favorable endpoint and will improve host survival [73].

Antibiotics currently approved for the treatment
of other bacterial diseases

It is often recommended that the medication being eval-
uated already be approved for the treatment of other ill-
nesses since their safety profile and clinical
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pharmacology will already be known. Doxycycline and
penicillin G, two antibiotics that have recently been ap-
proved for their use in the treatment of IA, had been on
the market for upwards of 50 years and had been used
to treat over 100 million patients in the USA prior to
their approval for anthrax therapy [73].

Second and third generation fluoroquinolones, such as
ofloxacin, levofloxacin, and moxifloxacin, have already
been approved by the USA FDA under the respective
names of Floxin (Ortho-McNeil Pharmaceutical), Leva-
quin (Janssen Incorporated), and Avelox (Bayer Health-
Care Pharmaceuticals) for the treatment of various
respiratory and skin infections [74-76]. These fluoroqui-
nolones are bactericidal against a broad spectrum of mi-
croorganisms and function by inhibiting the bacterial
DNA gyrase and topoisomerase IV (Fig. 3) [75, 77, 78].
Fluoroquinolone resistance has been assessed and al-
though spontaneous in vitro resistance is rare (10~°-10
~19), bioengineering of resistant strains in a laboratory
setting is possible and should be taken into consider-
ation [75]. Athamna et al. investigated the ability of the
B. anthracis ST-1 and Sterne strains to develop resist-
ance to ciprofloxacin, ofloxacin, levofloxacin, moxifloxa-
cin and garenoxacin [55]. Within 10 passages, resistance
was recorded for all quinolones and after 18 passages, all
of the MIC increased from 0.03 to 8 mg/L with the ex-
ception of garenoxacin which increased from 0.015 to
0.5 mg/L for the ST-1 strain. Cross-resistance among
the fluoroquinolones was also demonstrated; however,
being resistant to one fluoroquinolone did not necessar-
ily indicate resistance to all others [55].

Levofloxacin, an isomer of ofloxacin, has demon-
strated improved in vitro potency and reduced tox-
icity compared to its second generation precursor
[75]. In 2008, levofloxacin, or more specifically Leva-
quin (Janssen Incorporation), received approval by the
FDA as an alternative therapeutic for the treatment of
IA [75]. A 60-day regimen of Levaquin should be ad-
ministered to both adult and pediatric patients. How-
ever, adults and children weighing >50 kg should be
given 500 mg/kg every day (QD) while children
weighing < 50 kg should be administered 8 mg/kg BID
[75, 79]. Side effects of Levaquin have only been
assessed in adult populations and are similar to those
of other fluoroquinolones (tendon rupture and tendi-
nopathy, peripheral neuropathy, arthralgia, myalgia,
dermatologic reactions, thrombocytopenia, and inter-
stitial nephritis) [75]. In addition, in some juvenile
animal studies quinolones have been associated with
osteochondrosis [74, 80]. Although the safety profile
of using levofloxacin long term (for example in a 60-
day regimen) is still currently unknown, due to the
gravity of IA and to the current lack of approved al-
ternative antibiotics, the benefits of wusing a
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fluoroquinolone such as levofloxacin greatly out-weigh
the risks.

Moxifloxacin, another third generation quinolone, has
also been assayed for its effectiveness against B. anthra-
cis. In a recent study, a hollow-fiber pharmacodynamic
model (IPDM) was used to compare the efficacies of
moxifloxacin, linezolid and meropenem to the currently
prescribed antibiotics in killing the spore forming Sterne
and non-spore forming CR4 B. anthracis strains [51].
Against the CR4 strain, meropenem killed the fastest
followed by the fluoroquinolones (moxifloxacin and cip-
rofloxacin), with doxycycline and linezolid exhibiting the
slowest kill rate. Heat-shock studies demonstrated that
the bacterial populations exposed to bactericidal antibi-
otics (fluoroquinolones and meropenem) consisted pri-
marily of spores while populations treated with
doxycycline and linezolid consisted primarily of replicat-
ing bacteria. A possible reason for the latter could be be-
cause linezolid and doxycycline are protein synthesis
inhibitors and may have prevented the population from
converting into the spore form [73, 81]. Although these
bacteriostatic antibiotics kill at a slower rate, their po-
tential ability to increase the window of antibiotic expos-
ure due to the prevention of spore formation may result
in better overall rate of clearance of the total population.
These findings were corroborated by another group who
compared the efficacy of linezolid to ciprofloxacin in
treating B. anthracis Sterne strain infections in an IPDM
[52]. Their study demonstrated that a dose of 600 mg of
linezolid was sufficient to prevent vegetative B. anthracis
from converting to spores while a 500 mg dose of cipro-
floxacin BID was not [52].

To date, linezolid has not been approved by the FDA
for the treatment of B. anthracis infections. However, it
has been approved for the treatment of a variety of other
Gram-positive microorganisms including methicillin-
resistant Staphylococcus aureus (MRSA) and multidrug
resistant Streptococcus pneumonia under the name
Zyvox (Pfizer Canada Inc) [82]. Linezolid is a bacterio-
static oxazolidinone that inhibits bacterial protein syn-
thesis by preventing the formation of the 70S ribosomal
complex [83]. Since linezolid has such a unique mode of
action, cross resistance with other antibiotic classes is
unlikely and has not yet been observed. Thus, linezolid
is an attractive therapeutic for penicillin or fluoroquino-
lone resistant bioterrorism agents. In vitro linezolid re-
sistance occurs at a frequency of approximately 107°
and has been associated with point mutations in the bac-
terial 23S rRNA gene [82]. Studies have shown that li-
nezolid can reduce the production of the S. aureus toxin,
toxic shock syndrome toxin-1 [84]. Since linezolid is a
protein synthesis inhibitor that can decrease toxin pro-
duction in other Gram-positive organisms it is reason-
able to consider that it may also prevent B. anthracis

Page 6 of 14

toxin production. Louie et al. looked at the effect of cip-
rofloxacin and linezolid on B. anthracis PA production
at various times throughout a 10-day experiment [52].
They detected PA in the control after 3 h and in levo-
floxacin from 3 to 8 h. However, no PA was observed
with linezolid treatment [52]. In a similar manner, linez-
olid has also been found to prevent spore production
while non-protein synthesis inhibitors, such as moxiflox-
acin and meropenem, could not [51]. These findings
support the hypothesis that a protein synthesis inhibitor
(i.e. linezolid) may be a practical way to prevent the
deleterious effects of the anthrax toxins while preventing
sporulation. Studies looking at resistance to, and the
pharmacodynamics of, linezolid have found that a phar-
macodynamically optimized regimen of 700 mg QD did
not lead to resistance and was just as effective at killing
as the clinically prescribed linezolid (600 mg BID) and
gold standard ciprofloxacin (500 mg BID) [85]. Not only
does this dosing regimen decrease the total dosage pa-
tients would be exposed to, but it would also aid in pa-
tient compliance by decreasing the dose frequency from
BID to QD making it more feasible and more cost
effective.

Aside from being a protein synthesis inhibitor, linezo-
lid also has excellent bioavailability and is available in
both oral and iv. formulations [52, 82, 85, 86]. Con-
versely, one drawback to linezolid is that it is quite
costly. The average price of medication for one patient
for one day costs approximately $140 Canadian dollars
(CAD) which is much higher than levofloxacin ($2
CAD), ciprofloxacin ($2.50 CAD), and doxycycline ($3
CAD) combined making linezolid undesirable if a 60-
day regimen is required [87-90]. In addition, although
linezolid is considered relatively safe when used for a
short term (<2 weeks), side effects such as peripheral
neuropathy, thrombocytopenia, and neutropenia have
been associated with long term use (>28 days) [86, 91—
94]. This toxicity may, however, be reduced by modifying
the currently acceptable linezolid regimen to the sug-
gested pharmacodynamic dosage schedule suggested by
Louie et al. [85]. By the same token, linezolid could be
used initially in the event of a bioterror attack and once
susceptibilities of the agent have been determined pa-
tients could switch to alternative antibiotics such as cip-
rofloxacin, penicillin or doxycycline.

A newer class of antibiotic, the cyclic lipopeptides, and
more specifically daptomycin, has recently gained more
interest as a possible surrogate for anthrax therapy. This
agent binds to the bacterial membrane depolarizing the
membrane potential resulting in DNA, RNA and protein
synthesis inhibition ultimately leading to cell death [95-
97]. This unique mechanism of action sets daptomycin
apart from other antibiotic classes and to date, no resist-
ant isolates have been documented. Currently, cyclic
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lipopeptides are only approved for the treatment of anti-
microbial resistant Gram-positive microorganisms like
those of the staphylococcus, streptococcus and entero-
coccus genera [95]. However, studies have demonstrated
that this class is also efficacious against B. anthracis in
vitro [95, 96]. One study in particular found that a 21-
day treatment of daptomycin (SC injection of 50 mg/kg
BID) was as effective as a 21-day treatment of ciproflox-
acin (intraperitoneal [IP] injection of 30 mg/kg of body
weight BID) in treating B. anthracis Ames strain in-
fected mice with both treatments yielding survival rates
of 90 % [96]. Moreover, no bacteria (vegetative or
spores) were cultivable from the lung, spleen and medi-
astinum samples collected from all of the surviving mice
[96]. This mouse inhalational study suggests daptomy-
cin may be a potential candidate as an alternative thera-
peutic and further in vivo B. anthracis studies are
warranted.

Several studies have evaluated the effect of combin-
ation therapy in order to further increase the rate of bac-
terial killing and to circumvent bacterial resistance [98,
99]. The combination of rifampin and clindamycin and
the combination of telithromycin and amoxicillin have
been shown to work synergistically against the B.
anthracis Sterne strain [98]. Other therapies containing
a combination of either ciprofloxacin or tetracycline
with clindamycin, rifampin, or linezolid have demon-
strated indifference while combinations containing peni-
cillin were found to be antagonistic [98]. Similarly, when
combined, linezolid and levofloxacin have been shown
to behave antagonistically and resulted in decreased B.
anthracis killing [100]. Due to the alarming increase in
antibiotic resistance and the resilience of B. anthracis,
further research determining effective combination ther-
apies is merited and will be invaluable.

Exploiting novel targets for antibiotic
development

With an increase in antimicrobial resistance, there is a
greater need for the development of newer classes of an-
timicrobials. Studying essential bacterial processes such
as DNA replication, RNA synthesis, and cell division
that are currently underexploited would potentially
broaden our arsenal against this microbe by leading to
new and innovative antibiotics for which there is no pre-
existing bacterial resistance mechanism.

Targeting bacterial DNA replication has been success-
ful in the past; however, specifically targeting the bacter-
ial DNA helicase or primase are relatively new ideas [2,
101-103]. Through the use of high-throughput screen-
ing, several coumarin-based helicase inhibitors were
identified for their efficacy against B. anthracis and S.
aureus [104]. Chemical optimization of these inhibitors
led to the discovery of two potent biphenyl coumarin
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compounds (20 and 22) with half maximal inhibitory
concentration (ICso) values of 3 and 1 uM (against both
microorganisms) that worked non-competitively when
inhibiting DNA helicase [105]. In contrast, benzobisthia-
zole helicase inhibitors and their derivatives work in a
competitive manner with DNA and ATP substrates by
binding to the helicase active site [106]. Compound 59,
the most potent helicase inhibitor identified to date, has
a high selectivity index (greater than 500), no observable
cytotoxicity, and inhibits B. anthracis with an ICsy of
0.2 uM [106].

In a recently reported dose—response assay, doxorubi-
cin (an interferon inhibitor), and tilorone (an interferon
inducer) demonstrated low micromolar inhibitory activ-
ities towards the B. anthracis 34 F2 Sterne strain pri-
mase DnaG [107]. One challenge for making DnaG
inhibitors is that in order to be effective these com-
pounds must be able to access the bacterial cytoplasm.
Doxorubicin was able to traverse the bacterial envelope
and exert its bacteriostatic effects on the 34 F2 Sterne
strain with a MIC of 6.6 uM; however, tilorone could
not [107]. Since DnaG is an essential enzyme for
chromosomal DNA replication, is moderately conserved
among bacterial species (30 % sequence identity between
Bacillus and Mycobacterium), and shares very low se-
quence similarity to the eukaryotic topoisomerase II, tar-
geting this enzyme could lead to a novel inhibitor with
high species specificity [107-109].

Anthracimycin, another inhibitor that targets the DNA
replication process, is a structurally unique compound
composed of a rare combination of 14-and 6-member
rings and is produced by a marine-derived actinomycete
[110]. This tricarbocyclic metabolite has demonstrated
good potency against the B. anthracis UM23C1-1 strain
with a MIC of 0.031 pg/mL as well as inhibitory activ-
ities against other Gram-positive microorganisms
(staphylococci, enterococci, streptococci) [110]. Chlorin-
ation of anthracimycin leads to improved bioactivity
against a broader spectrum of microbes (including
Gram-negatives) while retaining significant potency
against B. anthracis (MIC of 0.0625 pg/mL) [110]. Al-
though the exact mechanism of action is yet to be eluci-
dated, it is thought to be a DNA and RNA synthesis
inhibitor. Furthermore, it has also been suggested that
anthracimycin works synergistically with the cathelicidin,
LL-37, making microorganisms more sensitive to
cathelicidin-mediated killing [111, 112]. LL-37 plays an
important part in the host immune response especially
in the recruitment of neutrophils, monocytes, and T cells
and has been shown to play a role in containing the B.
anthracis infection [113-115]. Having an antibiotic that
works synergistically with a host cationic peptide may
increase the initial immune response when exposed to
B. anthracis. Although in vivo studies looking at the
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effect of anthracimycin of B. anthracis have yet to be
carried out, one study looking at the effect of this novel
compound on MRSA-infected CD1 mice found that
anthracimycin retained high potency in vivo and was
well tolerated [111]. Due to its broad spectrum abilities,
high potency, and possible host synergy, anthracimycin
and its derivatives represent a potential new and unique
class of antibiotics. Further studies are required to deter-
mine the exact mechanism of action by which this com-
pound exerts its effects as well as safety, resistance and
appropriate dosing.

Aside from hindering bacterial DNA replication, tar-
geting cell-to-cell cross-talk or other important cell pro-
cesses (nutrient acquisition or cell division) have also
proven to be invaluable [116—118]. The compound 371,
which is a FtsZ-targeting oligoclorophen, was recently
explored as a clinical agent and was found to have a
MIC of 320 nM against the B. anthracis Sterne strain
(comparable to tetracycline and penicillin G) [119].
Aside from being a potent antimicrobial, developing bac-
terial resistance to 3Z1 may also be difficult since FtsZ is
a conserved protein essential for bacterial cell division
[120-122]. Indeed, when studies looked at resistance
they found that the B. anthracis Sterne 7702 strain de-
veloped resistance at a much lower rate to the FtsZ in-
hibitor, 3Z1, compared to rifampin (4.34x10'° and
2.65x10° per generation, respectively) [117].

Baulamycins, produced by Streptomyces tempisquensis,
target bacterial siderophore synthesis genes necessary
for iron sequestration important for growth and survival
in iron deficient environments [116]. B. anthracis pro-
duces an iron scavenger named petrobactin, which is
synthesized by a nonribosomal peptide synthetase inde-
pendent siderophore synthetase, AsbA [118, 123]. Baula-
mycins A and B inhibited AsbA with an in vitro IC5y of
180 uM and 200 uM, respectively, and demonstrated
good cell solubility [118, 124-126]. Moreover, these
compounds exhibited broad spectrum activities against
MRSA, Escherichia coli, and Shigella flexneri. Further
studies are necessary to improve potency and target se-
lectivity; however, baulamycins show great potential.

Targeting the bacterial quorum sensing mechanism
which co-ordinates many behaviors (colonization, per-
sistence and often virulence) has been shown to attenu-
ate other pathogenic bacteria [126]. Many Bacillus,
including B. anthracis, synthesize small autoinducers
that allow the co-ordination of the toxin genes and cell
growth. A study by Jones et al. looked at the effect of
(5Z)-4-bromo-5-(bromo-methylene)-3-butyl-2(5H)-fura-
none and several furanone derivatives on the B. anthra-
cis autoinducer, Al-2 [116]. Not only did the furanones
inhibit log-phase growth on multiple B. anthracis strains
when added 3 h post-inoculation, but they also signifi-
cantly reduced toxin gene expression. Moreover, these
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naturally synthesized furanones have been shown to be
stable under storage conditions [116]. Although quorum
sensing systems have the potential to lead to promising
new therapeutics, little work has been collected on their
toxicity in animals; therefore further analysis is still
required.

Anti-toxin therapies

Currently, the main priority for treating many illnesses
is to eliminate the replicating bacteria. However, in the
case of anthrax, preventing the effects of the toxins is
equally important when combatting late stage disease.
Throughout the last decade, extensive research has been
conducted looking at B. anthracis anti-toxins in order to
find cheaper, more stable and immunogenic molecules,
albeit very few anti-toxins are currently approved for an-
thrax treatment. Toxin inhibitors can target several steps
in the toxin entry process, which include: (i) PA83 bind-
ing to host receptor, (ii) PA83 cleavage, (iii) PA83 hepta-
merization, (iv) LF or EF binding, (v) LF proteolysis, (vi)
LF inflammasome activation, and (vii) EF adenylyl cy-
clase activity (Fig. 3). Since PA is essential for toxin entry
and is a component of both ET and LT, many studies
have focused on targeting this component (for a full re-
view see Chen, Moayeri, and Purcell [127]). Raxibacu-
mab (Abthrax; GlaxoSmithKline), a human IgGl
monoclonal antibody (mAb) against PA, received FDA
approval in 2012 for treating anthrax based on the Ani-
mal Efficacy Rule [128-130]. It binds PA with an affinity
of 2.78 nM and prevents PA-receptor binding [128]. It is
recommended for treating adult and pediatric patients
with IA and should be administered in combination with
antibacterial drugs. Indeed, when combined with cipro-
floxacin, raxibacumab demonstrated potency and did
not affect ciprofloxacin function [130]. In addition, it is
recommended for IA prophylaxis if alternative therapies
are not unavailable [130]. In adults, a 40 mg/kg dose of
Raxibacumab should be diluted in 0.9 % Sodium Chlor-
ide, USP to a final volume of 250 mL then administered
as a single i.v. dosage over 2 h and 15 min. [128, 130]
To reduce the risk of reaction, 25-50 mg of diphen-
hydramine should be administered within 1 h of Raxiba-
cumab. Common adverse reactions include rash, pain in
extremity, pruritus, and somnolence [130]. To date, Rax-
ibacumab is the best anti-PA option available; however,
there is still opportunity for improvement. This anti-PA
mAb cannot cross the blood brain barrier and is not
antibacterial; therefore it cannot prevent or treat menin-
gitis (often a consequence of late stage anthrax). [130] In
addition, for storage, this medication must be kept re-
frigerated (2 to 8 °C) and should not be exposed to light.
Furthermore, modifying the current route of administra-
tion from iv. to either SC or intramuscular would be
more desirable in the event of a bioterror attack.
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Anthim (Elusys Therapeutics), a humanized anti-PA
mADb that also targets PA-receptor binding, binds PA
with an affinity of 0.33 nM [127]. As mentioned by Chen
et al,, this drug has received Fast-track and orphan drug
status since it has demonstrated efficacy in both pre and
post-exposure situations in various animal models [127].
In studies where Anthim has been co-administered with
levofloxacin, ciprofloxacin or doxycycline, IA-infected
animals demonstrated higher survival outcomes com-
pared to solo antibacterial therapy [127, 129]. In fact, in
2016, Anthim received FDA approval as an alternative
treatment for adult and pediatric patients with IA and is
recommended in combination with antibacterial drugs
(ciprofloxacin) when alternatives are unavailable [131].
Due to hypersensitivity reactions and anaphylaxis,
Anthim is only recommended if its benefit outweighs
the risk. Similar to Raxibacumab, patients must be pre-
medicated with diphenhydramine and Anthim must be
diluted in Sodium Chloride prior to use. Medication
should be administered as a single i.v. dose of 16 mg/kg
over 1 h and 30 min. In addition, Anthim does not have
antibacterial activity, cannot cross the blood—brain bar-
rier and requires storage in a dark, refrigerated (2 to 8 °
C) area.

Targeting the next step in the toxin entry process,
PA83 cleavage by Furin, has shown some merit in sev-
eral studies [32, 132, 133]. Inter-a inhibitor protein
(IaIp), a human serine protease, inhibits furin with good
efficacy resulting in post-exposure protection in B.
anthracis Sterne 34 F2-infected AJ] mice when combined
with moxifloxacin [132]. In addition, treatment with this
combination led to normal liver and spleen histopath-
ology with no bacilli present. Since lalp have been
shown to be effective in murine models, the next step is
to determine their efficacy in larger IA animal models.
Some Ialp, like urinary trypsin inhibitors, have already
demonstrated their safety in clinical trials and their po-
tential for the treatment of anthrax disease seems prom-
ising [134, 135].

Another PA process that can be targeted is the forma-
tion of PA heptamers which enables LF and EF entry to
the cell. Valortin (PharmAthene/Medarex) is a fully hu-
man anti-PA mAb generated from transgenic mice that
interrupts PA heptamerization. This inhibitor has dem-
onstrated prophylactic efficacy in rabbits and monkeys
and has obtained Fast-Track, Orphan drug status [127].

As a result of more knowledge and understanding of
both EF and LF structure and function, a variety of
novel, small molecule inhibitors, antibodies and other
drug-like, anti-toxins have been discovered. Curcumin,
the active ingredient in turmeric spice (Curcuma longa),
is often used in traditional medicine and has demon-
strated beneficial activities in combating cancers, inflam-
matory diseases and anthrax [136-139]. Of Ilate,
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curcumin has been shown to inhibit metalloproteinases
(including LF) by binding to the zinc in their active site
[138—141]. Furthermore, chemically modified curcumin
has demonstrated improved solubility, stability, and bio-
availability, with similar potency and less toxicity [138,
139]. Other lethal factor inhibitors (LFI) that contain a
zinc chelating group are ROLF-1, ROLF-2 and modified
peptidomimetic inhibitors (MPI) [142—145]. Both RILF-
1 and RIOLEF-2 are stable in solution and are efficient at
inhibiting LF in kinetic assays. However, in a longer
murine macrophage assay, the stability of ROLF-1 de-
creased drastically while ROLF-2 had better stability and
macrophage protection. MPI containing portions of ei-
ther BI-MFM3 (Cengent Therapeutics Incorporated) or
L915 (Merck Research Laboratories) have demonstrated
high binding abilities to both the LF substrate-binding
groove and the catalytic zinc-binding site leading to
good LF inhibition.

Aside from targeting LF’s proteolytic ability, studies
have also looked at inhibiting LF’s ability to activate the
NLRP1 inflammasome (i.e. caspase-mediated apoptosis)
[146-149]. Both Auranofin (an organogold compound
with anti-inflammatory abilities) and Idebenone (a
benzoquinone that has previously been used in Alzhei-
mer’s patients) are speculated to interfere with inflam-
masome activation. Specifically, Auranofin inhibits LT-
mediated caspase-1 activation and catalytic activity while
Idebenone inhibits the voltage-gated potassium chan-
nels. When combined, these two compounds work syn-
ergistically to strongly inhibit the LT activity of B.
anthracis [146-149].

Although majority of studies have focused on PA and
LF inhibition, significant research into EF inhibition has
also been conducted (reviewed extensively in [150]). EF
inhibition can occur through different ways including
targeting the adenylyl cyclase, substrate binding, and
allosteric sites. To date, the most promising anti-EF mol-
ecule is EF13D, a chimeric chimpanzee/human mAb
that neutralizes EF with a very high affinity of 0.05-0.12
nM [127]. Studies have shown that EF13D prevents
edema formation as well as rescues ET-challenged mice.
It functions by binding CaM and can also displace pre-
bound CaM from EF.

Since CaM stimulates EF catalytic activity, certain
studies have targeted CaM and the CaM-target inter-
action [37, 151-153]. Several well-known, potent CaM-
inhibitors that have already been discovered and pro-
duced for their use in other illnesses, such as depression
and psychosis, have demonstrated good efficacy against
EF [151, 154-157]. Clomipramine (antidepressant), flu-
phenazine (antipsychotic), penfluridol (antipsychotic),
and trifluoperazine (antipsychotic), were able to inhibit
EF by 20 %, 30 %, 45 % and 40 %, respectively. In
addition, Calmidazolium chloride (CDZ) was able to



Head et al. BMC Infectious Diseases (2016) 16:621

abolish EF activity all together [151]. Interestingly,
CDZ inhibits EF through an allosteric mechanism
(while the other EF inhibitors directly target the
CaM-EF binding region) [158]. Unfortunately, CDZ
often affects unintentional targets [151]. In a like
manner, P-site inhibitors (such as N-methyl
anthraniloyl-nucleotides [(M)ANT-nucleotides] and
adefovir), that function by targeting the adenylyl cy-
clase catalytic site, are non-selective between EF and
mammalian adenylyl cyclases. Therefore, to date, have
not been clinically useful.

An adenylyl cyclase inhibitor that has demonstrated
good potential as an EF inhibitor is the fluorine-based
compound, DC5 [159, 160]. This compound can inhibit
EF with a more potent ICs, than prostaglandin E,-imid-
azole (a previously described front-runner EF inhibitor).
In addition, it can prevent toxin-induced cAMP accu-
mulation from both enterotoxinogenic E. coli and B.
anthracis [159, 160]. Moreover, through modification of
its aromatic group, DC5 derivatives have become more
soluble and less toxic (but equally potent) compared to
their parent compound.

Since the EF catalytic site has demonstrated close similarity
to other bacterial adenylyl cyclases, such as the heat-labile
toxin of enterotoxinogenic E. coli and the cholera toxin, it
may be possible to synthesize EF inhibitors with broad
spectrum activity [159, 160]. However, since bacterial and
mammalian adenylyl cyclase catalytic sites also share hom-
ology, constructing highly selective and potent EF inhibitors
may be difficult [150]. Therefore, research looking at target-
ing EF allosteric sites is also recommended, albeit caution is
recommended since targeting allosteric sites, as seen with
CDZ, can have off-target effects [151]. Collectively, studies
have demonstrated how problematic it has been to create a
soluble, highly selective, and potent EF inhibitor.

It is known that combination therapy can have consid-
erable benefits. Particularly, combining toxin inhibitors
with antibiotics has proven to be a valuable way to com-
bat several infections from Pseudomonas spp, klebsiella
spp and B. anthracis [127, 129-131, 161-164]. Indeed,
in a study by Karginov and colleagues, solo treatment
with ciprofloxacin was only able to rescue 50 % of the
Sterne-infected mice while the combination of ciproflox-
acin and anti-PA antibodies was able to rescue more
than 90 % [99]. These studies, and others, reiterate the
fact that combination therapy may be the most promis-
ing means for combatting B. anthracis.

Conclusions

Although B. anthracis has been a microorganism of high
interest for many years, anthrax still remains a danger-
ous disease that is often untreatable. A great deal of pro-
gress has been made in anthrax therapies with many
novel antibiotics and toxin inhibitors showing great
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potential. Utilizing antibiotics that have already been ap-
proved for the treatment of other bacterial infections
may prove to be an asset in treating anthrax. Further-
more, targeting the anthrax toxins could increase the
length of which treatment may be administered. A com-
bination treatment that targets both bacterial growth
and toxin production would be ideal and probably ne-
cessary for effectively combatting this armed bacterium.
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