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Background: Many nations maintain stockpiles of neuraminidase inhibitor (NAI) antiviral agents for use in influenza
pandemics to reduce transmission and mitigate the course of clinical infection. Pandemic preparedness plans include
the use of these stockpiles to deliver proportionate responses, informed by emerging evidence of clinical impact.
Recent uncertainty about the effectiveness of NAls has prompted these nations to reconsider the role of NAls in
pandemic response, with implications for pandemic planning and for NAI stockpile size.

Methods: We combined a dynamic model of influenza epidemiology with a model of the clinical care pathways in
the Australian health care system to identify effective NAI strategies for reducing morbidity and mortality in pandemic
events, and the stockpile requirements for these strategies. The models were informed by a 2015 assessment of NAI
effectiveness against susceptibility, pathogenicity, and transmission of influenza.

Results: Liberal distribution of NAls for early treatment in outpatient settings yielded the greatest benefits in all of the

considered scenarios. Restriction of community-based treatment to risk groups was effective in those groups, but
failed to prevent the large proportion of cases arising from lower risk individuals who comprise the majority of the

population.

Conclusions: These targeted strategies are only effective if they can be deployed within the constraints of existing
health care infrastructure. This finding highlights the critical importance of identifying optimal models of care delivery

for effective emergency health care response.
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Background

Many developed nations maintain stockpiles of neu-
raminidase inhibitor (NAI) antiviral agents for use in
the event of an influenza pandemic, and have devel-
oped management plans for using these stockpiles to
deliver a proportionate response, informed by emerging
evidence of likely clinical impact. In light of recent con-
flicting messages concerning the effectiveness of NAIs for
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reducing transmission and mitigating the course of clini-
cal infection of pandemic influenza [1-4], many of these
nations are now re-evaluating the best use of NAls in
pandemic response, with implications for future stockpile
size.

The effectiveness of antiviral interventions on the trans-
mission of pandemic influenza and the resulting burden
on health care settings has previously been studied in the
Australian context [5—8]. These studies have shown that
NAISs are likely to be effective in constraining transmission
of a pandemic virus only in a relatively small propor-
tion of low transmissibility, high severity scenarios (where
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infection is highly visible to the health care system and the
basic reproduction number is not much greater than 1).
Accordingly, the focus has shifted from using NAls for
containment (e.g., limiting transmission until vaccines
become available) to using them to mitigate complica-
tions and population impact. In these scenarios, where
pharmaceutical interventions are likely unable to reduce
transmission, evidence supports some degree of clini-
cal effectiveness against complications and death [9] and
indicates that early administration of NAIs to reduce hos-
pitalisations, severe outcomes and death is an appropriate
strategy [10]. The benefits of such treatment appear great-
est in individuals with underlying risk conditions [10].

Here, we use an updated assessment of parame-
ter estimates of NAI effectiveness against susceptibil-
ity, pathogenicity, and transmission of influenza, to
inform a dynamic model of influenza epidemiology in
combination with a model of clinical-care pathways
through the health care system. NAls are distributed
within the consultation and admission constraints of the
Australian health care system, as estimated from pub-
lic health care reports. This model is used to iden-
tify effective NAI strategies for reducing morbidity and
mortality, and to determine the stockpile requirements
(within plausible bounds) to achieve these goals. Our
focus is on responding to the first pandemic wave,
prior to the availability of a definitive vaccine interven-
tion. The outcomes of this analysis are then evaluated
in the global context of recommendations for updated
pandemic preparedness plans in other high-income
countries.

Methods

In accordance with the Australian Health Management
Plan for Pandemic Influenza (AHMPPI) [11], we assume
that all identified cases are provided with treatment and
post-exposure prophylaxis (PEP) is provided to all iden-
tifiable contacts during the first four weeks of the pan-
demic (the Initial Action Stage). During the subsequent
Targeted Action Stage, treatment and prophylaxis recom-
mendations are rationalised and targeted for maximum
effect for the remainder of the pandemic, based on impact
assessment and the observed epidemiology.

For the purposes of this study, the Australian population
was stratified into five distinct risk groups, whose sizes
were informed by June 2014 demographic data from the
Australian Bureau of Statistics [12]:

Young children aged 0—4 years comprise 6.5 % of the
population, for whom NAI treatment is assumed to
confer no beneficial effects [10, 13, 14].

Elderly aged 66+ years comprise 13.7 % of the popula-
tion, for whom NAI treatment is assumed to confer
the same benefits as per the general population.

Page 2 0f 13

High Risk aged 5-65 years comprise 10 % of this age
group (8 % of the total population) and have greater
risks of requiring hospitalisation, being admitted to
ICUs, and of death due to infection; early NAI treat-
ment is assumed to confer a greater benefit for this
group than for the general population.

Health Care workers comprise 325,000 of the 5-65 age
group (informed by expert advice and 2011 census
data [15]); they have no significant risk factors [16]
but are separated from the general population in
order to estimate the impact of pandemic scenarios
on the health care work force.

General population comprise the remainder of the 5-65
age group and have no significant risk factors.

Each group can be targeted independently for treat-
ment and/or post-exposure prophylaxis; the effects of
these interventions on subsequent transmission and on
case severity differ by risk group. The model framework
used to investigate the effects of targeted NAI strategies
combined a mechanistic compartment-model of infection
(stratified by risk group) with a finite-capacity compart-
ment model of clinical pathways, subject to likely health
care capacities and mean lengths of stay for inpatient
settings. We now describe these two models in turn.

Infection model

The infection model has been described and analysed in
previous studies [6, 8]. It is based on a classic susceptible-
exposed-infectious-recovered (SEIR) paradigm. All indi-
viduals are assumed fully susceptible (S) at the outset of
the epidemic, and vulnerable to acquiring infection (E)
upon contact with an infectious (I) case. Once recovered
(R), individuals are assumed to be fully resistant to reinfec-
tion. All simulations commence with 100 infections in the
population, distributed between the E and I classes in pro-
portion to the mean duration of the latent and infectious
periods.

The model incorporates a dynamic “contact” label,
applied to a fixed number of individuals drawn from the
whole population each time a new infectious case appears.
We define these contacts, based on the findings of socio-
logical studies, as those people who have been sufficiently
close to an infected individual to conceivably contract
infection. Only contacts of an infectious case may pro-
ceed to the exposed and infectious classes, however the
majority of contacts escape unscathed, returning to their
original state within 72 hrs of exposure. The capture of
“contacts” in the model framework allows simulation of
targeted post-exposure antiviral prophylaxis (PEP) [17].

In modelling the delivery of antiviral agents to the popu-
lation, the model accounts for (1) a drop in efficacy due to
delays in distribution (e.g., due to the requirement for lab-
oratory confirmation during the Initial Action Stage and
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(2) constraints on the maximum rate of delivery of antivi-
rals to the population (related to health sector capacity).
Both of these factors have previously been shown to dra-
matically influence the expected outcome from an antivi-
ral intervention and to modify stockpile usage [6]. We
assumed that the maximum antiviral delivery ranged from
a low estimate of 103 packets per day to an aspirational
target of 10° packets per day and drew samples from a
log-uniform distribution.

Clinical pathways model

Some proportion of infections will require hospitalisa-
tion (“severe cases”) while some proportion of infections
will not require hospitalisation and may present to outpa-
tient settings (“mild cases”). The proportion of mild cases
that present to hospital EDs rather than to GP clinics in
Australia was estimated to be 20 %, based on expert con-
sultation. It is further assumed that a fraction of the cases
that will ultimately become severe will present early in
their clinical course to an outpatient setting and, should
they receive early treatment, their risk of subsequent hos-
pitalisation is reduced [10]. Hospitalised cases have a risk
of ICU admission (which varies by risk group and the pro-
vision of treatment) and the ICU admissions have a risk of
death (which also varies by risk group and the provision of
treatment) as shown in Fig. 1.

National consultation and admission capacities for each
health care setting were informed by public reports of
Australian health care infrastructure, under the assump-
tion that in a worst-case scenario up to 50 % of total
capacity in each health care setting could possibly be
devoted to influenza patients (Table 1).

Patients are admitted to general wards with a mean
length of stay of 5 days, and are admitted to ICUs with a
mean length of stay of 10 days. Therefore, it is the preva-
lence of cases requiring hospitalisation that determines
the available ward and ICU bed capacities for new admis-
sions. Admissions are preferentially allocated by strata,
with priority given to health care workers and high-risk
adults.

In the event that there is insufficient capacity to admit
a newly-presenting case, the following hierarchy of case
priorities and overflows are applied:

1. ICU admissions are preferentially allocated in the
following order: (1) health care workers; (2) high-risk
adults; (3) children; (4) elderly; and (5) general adult
population.

2. Any cases that cannot be admitted to an ICU are
considered for admission to a general ward, subject
to the same order of preferential allocation.

3. In the situation that there is insufficient capacity to
admit all cases that require hospitalisation, these
cases are assumed to instead present to hospital EDs.
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Fig. 1 Assumed clinical pathway in the model, reflecting predestined
clinical course and potential points of intervention. Dashed arrows
indicate outflows that are only a fraction of the inflow; percentages
shown are for the general population, and the values may differ for
other strata (e.g., High-Risk, see Table 3). Shaded boxes indicate
compartments with residence times greater than one day (i.e, where
available capacity is determined by prevalence, not incidence)

4. A fixed proportion of the mild cases present to
hospital EDs, subject to the same order of preference
as for ICU and ward admissions.

5. Presentations that cannot receive consultation at an
ED are assumed to present at GP clinics.

6. All remaining presentations present at GP clinics,
subject to the same order of preference.

7. Presentations that cannot receive a GP consultation
are unable to receive antiviral treatment, on the
grounds that there was no capacity to consult with
these patients.

Pandemic scenarios

The Australian Health Management Plan for Pandemic
Influenza (AHMPPI) defines pandemic impact levels
based on the clinical severity of the disease and on the
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Table 1 Hospital bed and daily consultation capacities for each
health care setting

Setting  Total capacity Available capacity Mean length of stay
ICU 2,000 [37] 1,000 beds 10 days®

Ward 55,000 [38]° 27,600 beds 5 days [38°

ED 17,800 [39, 40]¢ 8,900 consults —

GP 342,000 [41] 171,000 consults —

GP consultation capacity was calculated under the assumption that each GP may
consult with up to 10 influenza patients per day. Note that we do not account for
additional constraints on health sector capacity that may plausibly arise from health
care work illness or absenteeism

@Assumed the length of stay for ICU cases is double that for other hospitalised cases
bBeds in public acute hospitals, mean length of stay for overnight acute separations
@Based on annual accident and emergency visits

transmissibility of the virus between humans, and char-
acterises both qualities using a “Low’; “Moderate”, “High”
scale [11]. Consistent with previous modelling studies and
as used in the AHMPPI, we used the pandemic scenar-
ios defined in Table 2. The classification of past influenza
pandemics according to these scenario definitions are
shown in Fig. 2.

For each scenario, model uncertainties (e.g., epidemic
time-course, effectiveness of NAIs) were accounted for by
using Latin hypercube sampling (LHS) to randomly select
model parameter combinations for 10,000 simulations.
We report outcome measures in terms of their median, 5th
and 95 percentiles, unless stated otherwise.

Antiviral strategies

For the first four weeks of the epidemic—corresponding
to the Initial Action Stage as defined in the AHMPPI—all
identified cases are provided with treatment and post-
exposure prophylaxis (PEP) is provided to all identi-
fiable contacts. This intensive response has previously
been shown necessary to have any chance of signifi-
cantly reducing infection in those scenarios where such
an outcome is possible. This outcome is only achievable
in the particular scenario where the disease is both vis-

Table 2 Pandemic influenza scenarios, identified by number (“#")
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ible (i.e., high severity) and has limited transmissibility
(i.e., Ry < 1.25 [18]) and an intensive combined treat-
ment and prophylaxis recommendation is initiated early
in the outbreak. Data collected during this stage will allow
the outbreak to be classified according to the pandemic
scenarios defined above.

The Initial Action Stage is followed by a Targeted Action
Stage (for the remaining duration of the epidemic) where
treatment and prophylaxis recommendations are revised
and targeted for maximum effect as part of a propor-
tionate response for the relevant pandemic scenario. Four
alternative targeted strategies for this stage are considered
here:

Rx All/PEP Eld, HR Treatment of all identified cases
regardless of risk stratum or setting of care, and pro-
vision of prophylaxis for individuals in the “Elderly”
and “High-Risk” strata.

Rx All Treatment of all identified cases regardless of risk
stratum or setting of care, and no recommendation
for prophylaxis.

Rx At-Risk, Hosp Treatment of all identified cases in the
“Children’; “Elderly’, “High-Risk” and “HCW” strata,
and of all cases in hospital and ICU settings.

Rx Hosp Treatment of all cases in hospital and ICU
settings.

Effects of antiviral treatment and prophylaxis

The effects of NAI treatment on clinical outcomes for
severe cases are listed in Table 3. We assumed that, with
the provision of NAIs, high-risk adults were twice as likely
to require ICU admission as other adults (0.25 vs 0.125)
and were three times more likely to die due to severe
infection than other adults [19]. Using the risk ratios for
total influenza-related complications reported by Falagas
et al. (0.74 for otherwise healthy patients and 0.37 for
high-risk patients [20]), we calculated the counter-factual
risks of ICU admission and death in the high-risk and
general adult populations (refer to the “No Rx” rows of

# Transmissibility Ro Severity n am Mean CAR Mean AR
1 Low 1.05-1.20 Low 10741073 9.8% 20% 204 %
2 High 140-1.70 Low 1074-1073 98% 6.0% 61.0%
3 Low 1.05-1.20 Moderate 1073-1072 11.6% 23% 204 %
4 Moderate 1.20-1.40 Moderate 107321072 11.6% 48% 420%
5 High 140-1.70 Moderate 1073-1072 11.6% 7.0% 61.0%
6 Low 1.05-1.20 High 1072-107" 29.8% 57 % 204 %
7 High 140-1.70 High 1072-107" 29.8% 17.1% 61.0%

Note that low transmissibility represents low-level epidemic activity. n is the proportion of infections that, in the absence of early treatment, will require hospitalisation
(“severe cases”). am, is the proportion of non-severe infections that present to outpatient settings (‘mild cases”). The Clinical Attack Rate (CAR) is the proportion of the
population that present due to pandemic influenza infection; the Attack Rate (AR) is the proportion of the population infected during the pandemic.
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Fig. 2 The classification of previous influenza pandemics. Note that
the H5N1 avian flu outbreak is not a true pandemic (transmission is
sporadic), but is included for illustration

Table 3). On the understanding that NAI treatment conf
ers negligible benefits to children [10, 13, 14], we did not
reduce either risk for the children stratum.

A recent population cohort data linkage study of the
2009 HIN1 pandemic in British Columbia reported that
the hazard ratio of all-cause hospitalisation, given early
NAI treatment, was approximately 0.84 in the general
population and 0.52 among those with co-morbidity [10].
We assumed that the relative risk of hospitalisation given
early NAI treatment was identical to these hazard ratios:
0.52 for the high-risk stratum, 0.84 for all other adult
strata, and 1.0 for children (assuming that NAI treatment
confers no benefits to children). In the absence of early
treatment, all severe cases require hospitalisation.

These assumptions are also consistent with a recent
world-wide meta-analysis of patients hospitalised
with A(HIN1)pdmO09, which reported that early NAI
treatment, in comparison to late NAI treatment, was
associated with significant reductions in mortality and
likelihood of requiring ventilatory support [14].

Table 3 Risks of clinical outcomes, with and without NAI
treatment, for each stratum (note that “Others” comprises the
elderly, health care worker, and general population strata)

Risk
Outcome Precondition(s) High-risk  Children  Others
Hospitalisation ~ No Early Rx 1 1 1
Hospitalisation  Early Rx 0.5 1 0.84
ICU admission  Hospitalisation, NoRx  0.395 0.144 0.144
ICU admission  Hospitalisation, Rx 0.25 0.144 0.125
Death ICU admission, NoRx ~ 0.949 0.461 0.461
Death ICU admission, Rx 0.6 0.461 04
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Results

For each of the seven pandemic scenarios we performed
10,000 simulations with different combinations of param-
eter values, meaning that no single epidemic can char-
acterise any of these scenarios. This design allows us to
account for uncertainty in the precise nature of the epi-
demic itself, in the early (imprecise) estimates of transmis-
sibility and severity obtained during initial action, in the
effectiveness of NAIs to reduce susceptibility, pathogenic-
ity, and transmission, in logistic capacities that limit NAI
distribution, and in population compliance. An illustra-
tion of the variety of epidemics that were considered in
this study are shown in Fig. 3, which depicts the median,
5% and 95 percentile epidemic curves, as measured by
Clinical Attack Rate (CAR). The epidemic duration for
each scenario is reported in Table 4.

Figures 4, 5, 6, 7, and 8 present an overview of the
key health care outcomes for each of the pandemic sce-
narios and for each targeted antiviral strategy for the
Targeted Action Stage. Here, we identify the key find-
ings for each of the following pandemic scenarios: #4
(moderate severity, medium transmissibility), #6 (high
severity, low transmissibility) and #7 (high severity, high
transmissibility).

Moderate severity, medium transmissibility

Medium transmission scenarios are not controllable by
antiviral interventions, regardless of the proportion of
infections that are identifiable. In these scenarios antiviral
interventions have only a marginal effect on the preva-
lence of infection, but can yield reductions in case severity,
hospital admissions, and deaths.

Across the range of antiviral strategies for the Tar-
geted Action Stage, the median peak ICU occupancy
ranges from 119-164 (out of 1000 beds) and the median
peak ward occupancy ranges from 317-420 (out of
27,600 beds), indicating that there is more than suffi-
cient hospital capacity to care for all cases that might
require hospitalisation. This holds true even for the 95th
percentiles (540-723 ICU beds and 1412-1824 ward
beds).

While some of the more conservative antiviral strategies
cause ED capacity to be overwhelmed (in a small fraction
of the simulations) by 3-7 % for a period of up to one
week, this is a direct result of assuming that 1 in 5 mild
presentations occurs at an ED rather than at a GP clinic.
We note here that this assumption was based on expert
consultation and it is unclear how to validate it against
available public health data. The peak burden on GPs, on
the other hand, only consumes up to 22 % of the available
consultation capacity. The conclusion to draw from these
observations is that there is more than sufficient capacity
for all mild cases to receive consultation, but that the ED
consultation capacity can be temporarily overwhelmed if
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Fig. 3 Representative epidemic curves for each pandemic scenario, selected by Clinical Attack Rate (CAR)

a moderate proportion of these cases elect to present to
EDs rather than to GP clinics.

The more liberal antiviral strategies produce median
reductions of 400 fewer deaths, 370 fewer ICU admis-
sions, and 700 fewer hospitalisations, given median stock-
pile usage of 650,000 to 1.3 million doses (95th percentile
usage is less than 3 million doses). More conservative
strategies produce median reductions of 330-380 fewer
deaths, 235-330 fewer ICU admissions, and 15-427 few
hospitalisations, given median stockpile usage of 60,000 to
300,000 doses (95th percentile usage is less than 600,000
doses).

High severity, low transmissibility
Low transmission scenarios are more readily controllable
if a sufficient proportion of infections are identifiable and

Table 4 Epidemic duration for each pandemic scenario,
reported as the interval over which 90 % of all infections occurred

Epidemic duration (weeks)

Scenario Median (5th, 95t 94 iles) Mean
Low transmission 184 (10.9, 26.5) 18.8
Medium transmission 8.1 (5.5,12.3) 84
High transmission 47 (3.3,6.8) 48

can be provided with antivirals for treatment or prophy-
laxis [18]. This visibility substantially reduces the clinical
attack rate (CAR) and can, in ideal circumstances, lead to
successful mitigation of the epidemic.

For this scenario, the absence of antiviral interven-
tions results in median CARs of 6.8 % in the High-Risk
population and 4.9 % for the rest of the population.
In contrast, the application of a 4 week Initial Action
Stage followed by a Targeted Action Stage where antivi-
rals are only provided to hospitalised cases results in
median CARs of 5.5 % in the High-Risk population and
4.1 % for the rest of the population. As the antiviral
strategy for the Targeted Action Stage becomes more
liberal, the median CARs are reduced even further, to
minimums of 0.9 % in the High-Risk population and
0.7 % for the rest of the population. The most liberal
strategy (“Rx All/PEP Eld, HR”) substantially improves
the relative risk of presentation (median relative risk:
0.376), hospital admission (median relative risk: 0.320),
ICU admission (median relative risk: 0.223) and death
(median relative risk: 0.146); see the summary tables
in Additional file 1 for further details. This control is
achieved with a median stockpile usage of fewer than
one million doses for the most liberal antiviral strategies,
where the majority of the doses are used for post-exposure
prophylaxis.
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Fig. 4 Median clinical outcomes for each antiviral strategy

Overall hospital capacity is never exceeded. ICU capac-
ity is exceeded in a small number of simulations, but the
mean and median number of days for which this occurs
is zero. With even the most conservative antiviral strategy
during the Targeted Action Stage, the mean and median
peak ICU occupancy is 577 beds (out of 1000 beds), and
the mean and median peak ward occupancy is 1394 beds
(out of 27,600 beds).

The clearest indicators of the effect that antiviral inter-
ventions have on the epidemic burden are the reduc-
tions in deaths, ICU admissions and hospitalisations that
are achieved, in comparison to the same scenario with
no antiviral interventions. When the most conserva-
tive strategy is used during the Targeted Action Stage,
and antivirals are only provided for treatment to hos-
pitalised cases, the median reductions are 4,780 fewer
deaths, 4,095 fewer ICU admissions and 5,656 fewer
hospital admissions. These outcomes improve as more
liberal antiviral strategies are used during the Targeted
Action Stage, to median reductions of 6,437 fewer deaths,
7,793 fewer ICU admissions and 24,566 fewer hospital
admissions.

High severity, high transmissibility

High transmission scenarios are not controllable by antivi-
ral interventions, regardless of the proportion of infec-
tions that are identifiable. In these scenarios antiviral
interventions cannot affect the prevalence of infection,
but can yield reductions in case severity, hospital admis-
sions, and deaths. Compared with the medium transmis-
sion scenarios, antiviral interventions will achieve greater
absolute reductions in burden, but the higher transmis-
sion means that these are smaller fractional reductions in
burden.

In this worst-case scenario, ICU bed capacity is
exceeded for 6 weeks and ED consultation capacity is
exceeded for 3—4 weeks, regardless of the antiviral strat-
egy for the Targeted Action Stage (i.e., essentially for
the duration of the pandemic). The more liberal antivi-
ral strategies produce median reductions of 13,000 fewer
deaths, 12,400 fewer ICU admissions, and 25,000 fewer
hospitalisations, given median stockpile usage of 1.3 to
2.2 million doses (95th percentile usage is 5 million
doses). More conservative strategies produce median
reductions of 12,300-13,700 fewer deaths, 8,800—12,000
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Fig. 5 The range of clinical outcomes for each antiviral strategy

fewer ICU admissions, and 2,600-18,200 few hospital-
isations, given median stockpile usage of 600,000 to
1 million doses (95th percentile usage is 2.2 million
doses).

All choices of antiviral strategy for the Targeted Action
Stage reduce deaths by approximately 50 % and also
reduce ICU and hospital admissions, but while the pro-
portional reduction in clinical burden is similar to the
medium transmission and moderate severity scenario
(above), the absolute burden remains substantially higher.
In this case, the most important conclusions to draw
are that antiviral strategies can substantially reduce the
number of deaths in even the most severe pandemic
scenarios where hospital bed capacities are substantially
overwhelmed for many weeks, assuming that antivirals
can continue to be delivered in a timely and effective man-
ner (as they are through general practice in the model).

Stockpile consumption

Stockpile consumption for the intensive response
delivered in the Initial Action Stage is shown in Table 5
for each pandemic scenario. The salient detail is that

delivering this response consumes a small number of
doses, relative to the size of a national stockpile, even for
the 95 percentile across all scenarios.

Overall stockpile consumption for each scenario and
each targeted antiviral strategy is shown in Fig. 6. Recall
that the (imposed) maximum distribution rate varied
from 103 to 10° packets per day. In the worst-case scenario
(high severity, high transmissibility) and with large maxi-
mum distribution rates (e.g., at least 9 x 10% packets per
day), the maximum rate was reached in two-thirds of the
simulations with liberal treatment of cases in the commu-
nity (the “Rx All/PEP Eld, HR” and “Rx All” strategies).

It is clearly evident that the most liberal strategy (“Rx
All/PEP Eld, HR”) consumes a substantially greater num-
ber of treatment courses than all other strategies, due to
the provision of post-exposure prophylaxis to all elderly
and high-risk contacts, but generally confers no signifi-
cant benefit over the more conservative “Rx All” strategy.
The targeted treatment strategies (“Rx At-Risk, Hosp” and
“Rx Hosp”) consume even fewer treatment courses than
the “Rx All” strategy but, as identified above, at the cost of
preventing substantially fewer hospital admissions.
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Discussion

Principal findings

NAI treatment strategies that allow liberal distribution of
antivirals for early treatment in outpatient settings yielded
the greatest benefits, evidenced by reductions in hos-
pitalisations, critical care requirements and deaths, for
all of the considered pandemic scenarios. Restriction of
community-based treatment to risk groups is effective in
those groups, but fails to prevent the large proportion of
cases arising from lower risk individuals who comprise the
majority of the population. In even the most severe sce-
narios, median stockpile consumption for treatment was
1.3 million doses, sufficient to cover 6.5 % of the popula-
tion (95 percentile: 3.3 million doses, sufficient to cover
16.5 % of the population).

In high severity scenarios, we predict that capacity
constraints within ICUs and hospitals will be exceeded,
placing greater pressure on community-based health ser-
vices. NAI treatment strategies can substantially reduce
the number of deaths in even the most severe pandemic
scenarios where hospital bed capacities are substantially
overwhelmed for many weeks, assuming that antivirals

can continue to be delivered in a timely and effective man-
ner (as they are through general practice in the model).
While we have assumed that general practitioners will be
able to deliver effective health care to the resulting “over-
flow” population, more consideration of models of care
delivery in such situations is needed to ensure access to
needed services.

Study strengths and weaknesses

Strengths include our use of LHS sampling and broad
parameter ranges to consider a wide range of epi-
demics, logistic capacities, and compliance, for each of
the pandemic scenarios; the spread of the results for
each scenario (reported as 5th and 95th percentiles) is
therefore indicative of the impact and outcomes, with-
out being strongly tied to specific values of model
parameters.

The major weaknesses are: (a) the assumption that up
to 50 % of actual health care capacities can be devoted
to treating influenza patients (approaching or exceeding
these capacities therefore represents an “apocalpytic” pan-
demic, with broader ramifications for society as a whole);
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(b) that the health care workforce does not suffer from
fatigue, absenteeism, or depletion due to illness (any of
which would compromise intervention delivery, and con-
sultation and bed capacities); (c) the role of emergency
departments as “gateways” to the hospital system is not
explicitly configured, including the potential for over-
whelmed EDs to constrain capacity for hospital admis-
sions; and (d) multiple presentations for a single case is
only considered for severe cases who receive (ineffective)
early treatment and subsequently require hospital admis-
sion, thus excluding the possibility of repeat presentations
in general despite evidence that this may be a common
occurrence [21].

Critically, the effectiveness of NAIs (see Table 3) is based
on available evidence, which is mostly observational since
there are no clinical trial data in hospitalised patients
and in high-risk groups [9]. The recent review by the
Academy of Medical Sciences and the Wellcome Trust
states that “there is a lack of evidence to guide decisions
on NAI treatment for high-risk groups and children,” but
also notes that “the steering group does not support the
assumption that observational data are invariably of less

use than data from RCTs” [9]. The interpretation of the
available evidence, however, remains a subject of some
controversy.

We have not accounted for social distancing measures
such as school closures in this study. Despite the lack of
substantial quantitative evidence to inform mathematical
models and optimal implementation [22], and concerns
about societal costs [23, 24], such methods have been
widely used in past epidemics (e.g., in the 2009 pandemic
in Australia [25] and other countries [26], and in Australia
during the 1918-19 pandemic [27]). Evidence from 2009
in the state of Victoria, Australia, is that compliance
with behavioural and pharmaceutical recommendations
was high, but were unlikely to have substantially altered
the course of the epidemic [25]. Due to the timing and
circumstances, this likely reflects a “best case” estimate of
public compliance during a moderate to severe influenza
pandemic [25].

These limitations highlight the critical importance of
considering tailored models of care delivery and how
appropriate communication may influence health care
seeking behaviour in target populations.
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The timing of the pandemic waves with respect to
season is another factor that can impact the basic repro-
duction number, causing substantial differences in the
pandemic impact experienced in different regions of
the world and confounding the applicability of overseas
pathogen assessments for the local context. This rein-
forces the importance of having local or region-specific
real-time surveillance and Ry estimation protocols in
place.

We have also restricted this study to considering
responses to a single pandemic wave. Multiple waves
were observed in 2009 in the UK [28, 29] and Australia
[30, 31], in 1918-19 in the UK [32—-34] and Australia [27],

Table 5 Initial Action Stage stockpile consumption — median
(95t percentile)

Low transmission Moderate transmission High transmission
High severity 2,400 (5,300)
Moderate severity 2,500 (6,000)
2,500 (6,800)

43,000 (330,000)
53,000 (380,000)
56,000 (400,000)

9,000 (170,000)

Low severity

and are typical of all pandemics in the 20th cen-
tury [35]. Accounting for secondary and tertiary
waves is an integral part of pandemic preparedness,
which we have not addressed here; implementa-
tion of a strain-specific vaccine is identified as the
definitive measure to reduce morbidity and mortal-
ity in subsequent pandemic waves in an Australian
pandemic response [11]. In subsequent waves there
may be greater knowledge about the pathogen, but
external factors such as seasonality, vaccine availabil-
ity [31], social behaviour, and changing host immunity
[33, 34] may act as confounders and greatly affect the
impact of these subsequent waves. All of these issues are
clearly of real importance, but are beyond the scope of
this study.

Meaning and implications

The results of this study suggest that the optimal use of
an antiviral stockpile in the event of an influenza pan-
demic is to provide treatment to as many cases as pos-
sible, in both inpatient and outpatient settings. In the
unlikely scenario that the pandemic strain exhibits both
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high clinical severity and low transmissibility, exhaustive
contact-tracing and provision of post-exposure prophy-
laxis may be able to sufficiently reduce transmission as
to mitigate the pandemic. In all other scenarios, this out-
come is not achievable and the provision of post-exposure
prophylaxis both confers no benefits to the population
and substantially increases stockpile consumption. This
finding highlights the critical importance of intensive
early data gathering to inform impact assessment (e.g.,
based on results of “first few hundred” studies [36]),
enabling reorientation of public health efforts for propor-
tionate and effective response.

Conclusions

The key issue identified in this study is the importance of
understanding how different models of care may enable
the delivery effective interventions in the event of a pan-
demic, without overwhelming existing day-to-day and
surge capacities. We have shown that a modest NAI stock-
pile permits liberal (early) treatment in both outpatient
and inpatient settings, which can substantially reduce hos-
pitalisations, critical care requirements and deaths in the
event of an influenza pandemic. However, these outcomes
are only achievable if liberal treatment strategies can be
effectively deployed within the constraints of the existing
health care infrastructure.

Additional file

Additional file 1: Model description and additional results tables. This
document presents the model equations, the distributions from which the
model parameters were sampled, and tables of simulation results for each
pandemic scenario and for each targeted NAI strategy. (PDF 103 kb)
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