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Abstract

Background: The study aimed to identify the potential biomarkers in pulmonary tuberculosis (TB) and TB latent
infection based on bioinformatics analysis.

Methods: The microarray data of GSE57736 were downloaded from Gene Expression Omnibus database. A total of
7 pulmonary TB and 8 latent infection samples were used to identify the differentially expressed genes (DEGs). The
protein-protein interaction (PPI) network was constructed by Cytoscape software. Then network-based
neighborhood scoring analysis was performed to identify the important genes. Furthermore, the functional
enrichment analysis, correlation analysis and logistic regression analysis for the identified important genes were
performed.

Results: A total of 1084 DEGs were identified, including 565 down- and 519 up-regulated genes. The PPI network
was constructed with 446 nodes and 768 edges. Down-regulated genes RIC8 guanine nucleotide exchange factor
A (RIC8A), basic leucine zipper transcription factor, ATF-like (BATF) and microtubule associated monooxygenase,
calponin LIM domain containing 1 (MICAL1) and up-regulated genes ATPase, Na+/K+ transporting, alpha 4
polypeptide (ATP1A4), histone cluster 1, H3c (HIST1H3C), histone cluster 2, H3d (HIST2H3D), histone cluster 1, H3e
(HIST1H3E) and tyrosine kinase 2 (TYK2) were selected as important genes in network-based neighborhood scoring
analysis. The functional enrichment analysis results showed that these important DEGs were mainly enriched in
regulation of osteoblast differentiation and nucleoside triphosphate biosynthetic process. The gene pairs RIC8A-
ATP1A4, HIST1H3C-HIST2H3D, HIST1H3E-BATF and MICAL1-TYK2 were identified with high positive correlations. Besides,
these genes were selected as significant feature genes in logistic regression analysis.

Conclusions: The genes such as RIC8A, ATP1A4, HIST1H3C, HIST2H3D, HIST1H3E, BATF, MICAL1 and TYK2 may be
potential biomarkers in pulmonary TB or TB latent infection.

Keywords: Pulmonary tuberculosis, Mycobacterium tuberculosis, Bioinformatics analysis, Differentially expressed
genes, Biomarker

Background
Pulmonary tuberculosis (TB) is a widespread and fatal
infectious disease. It is caused by various strains of
mycobacteria, usually Mycobacterium tuberculosis [1]. It
is estimated that one third of the world’s population are
infected with M. tuberculosis [2]. More than 90 % of in-
fected individuals remain asymptomatic with a latent

infection [3]. With aging or immune system deteriorat-
ing, M. tuberculosis can reactivate and cause severe pul-
monary TB [4]. Roughly 10 % of the latent infections
can progress to active TB. The general signs and symp-
toms of this disease include fever, chills, night sweats,
loss of appetite, weight loss, and fatigue [5]. Approxi-
mately, there are 9 million newly diagnosed cases of pul-
monary TB and 1.5 million deaths annually, mostly in
developing countries [6]. Therefore, uncovering thera-
peutic biomarkers in pulmonary TB would supply new
insights for the diagnosis and treatment of this disease.
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Numerous studies have been done to investigate the
potential biomarkers for the treatment of pulmonary
TB. For example, the serum CA-125 level is found sig-
nificantly higher in active pulmonary TB than in in-
active TB or normal sample, suggesting that CA-125
may be a beneficial parameter in determination of pul-
monary TB activity [7]. Pollock et al. [8] suggested that M.
tuberculosis Rv1681 protein was a diagnostic marker of
active pulmonary TB. Additionally, Chowdhury et al. [9]
reported that the serum interleukin (IL)-6 level of the
active pulmonary TB patients following anti-tuberculosis
drug therapy played an important role in immune-
protection of the host against M. tuberculosis infection.
Although many factors have been found, the diagnostic
efficiency of pulmonary TB is still unsatisfactory [10].
Therefore, it is necessary to identify novel potential thera-
peutic biomarkers in pulmonary TB.
In the present study, the microarrays data GSE57736

were downloaded to identify the differentially expressed
genes (DEGs) between pulmonary TB and latent tuber-
culosis infection samples. This dataset is deposited by
Guerra-Laso et al. [11], the study of whom demonstrates
that IL-26 is a candidate gene for TB susceptibility. In this
study, we aimed to use different bioinformatics method to
identify the DEGs between the two kinds of samples.
Based on the obtained DEGs, we performed protein-
protein interaction (PPI) network construction and
network-based neighborhood scoring analysis. Besides,
the hierarchical clustering analysis, functional enrichment
analysis, correlation analysis and logistic regression ana-
lysis of DEGs were performed as well. Findings of this
study may help to explore potential targets for the diagno-
sis and treatment in pulmonary TB.

Methods
Affymetrix microarray data
The array data of GSE57736 based on the platform of
GPL13497 (Agilent-026652 Whole Human Genome
Microarray 4x44K v2) was downloaded from Gene Ex-
pression Omnibus database, which was deposited by
Guerra-Laso et al. [11]. The dataset available in this ana-
lysis contained 15 peripheral blood samples from seven
pulmonary TB patients and eight latent tuberculosis
infections. Among the seven pulmonary TB patients,
there were three men and four women (average
82.7 years) with different clinical conditions: psoriasis
(one patient), previous heart failure (one patient), arterial
hypertension (two patients), bronchial asthma (one
patient), chronic obstructive pulmonary disease (two pa-
tients), and prostate cancer (one patient). The eight la-
tent tuberculosis infection samples included six men and
two women (average 81.1 years), which had scored a
positive result in the QuantiFERON-TB Gold in-tube
test (Cellestis, Carnegie, Vic., Australia).

Data preprocessing and differential expression analysis
The probe IDs were converted into corresponding gene
symbols based on the annotation information on the
platform. When multiple probes corresponded to a same
gene, the average expression value was calculated to
represent the gene expression level. The limma package
[12] in R was used to identify DEGs between pulmonary
TB and TB latent infection samples. The Benjamin and
Hochberg (BH) [13] method was used to adjust the raw
p-values [false discovery rate (FDR)]. Then, log2-fold
change (log2FC) was calculated. Only genes with
|log2FC| > 1.0 and FDR < 0.05 were selected as DEGs.

PPI network construction
Human Protein Reference Database (HPRD, http://
www.hprd.org/) [14] is a database of curated proteomic
information pertaining to human proteins. Search Tool
for the Retrieval of Interacting Genes (STRING, http://
string.embl.de/) [15] is an online database which collects
comprehensive information of proteins. In our study, the
DEGs were mapped into STRING and HPRD databases
to identify significant protein pairs with confidence
score > 0.4. Then the PPI network was constructed based
on these protein pairs using Cytoscape software [16].

Network-based neighborhood scoring
Neighborhood scoring [17] is a local method for prioritiz-
ing candidates based on the distribution of DEGs in the
network. Gene in PPI network was assigned a score, which
was based on its FC and the FC of its neighbors. The score
of each node in PPI network was calculated with the
neighborhood scoring method [18]. When the hub node
and its neighborhood nodes were significantly highly
expressed, the score > 0; When the hub node and its
neighborhood nodes were significantly lowly expressed,
the score < 0. Therefore, the top 50 nodes with higher
scores and the last 50 nodes with lower scores were identi-
fied as important genes.
In order to confirm the efficiency of these important

genes differentiating pulmonary TB and TB latent in-
fection samples, hierarchical clustering analysis of the
important genes was performed using cluster software
[19]. The results were presented by TreeView software
[20]. The expression profile data were filtered and nor-
malized using cluster software. In detail, genes that
were expressed in at least 80 % of the samples were
selected. Besides, the genes and samples were normal-
ized with median center method [21].

Functional enrichment analysis
Gene Ontology (GO, http://www.geneontology.org)
database [22] is a collection of a large number of
gene annotation terms. Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.genome.ad.jp/kegg/)
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knowledge database [23] is applied to identify the
functional and metabolic pathway. Database for Annota-
tion, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/) [24] is a tool that provides a
comprehensive set of functional annotation for large list
of genes. In this study, the important genes were per-
formed GO and KEGG pathway enrichment analyses with
DAVID. With the enrichment threshold of p-value < 0.05,
the DEGs enrichment results in GO terms and KEGG
pathways were obtained.

Correlation analysis
The immune system dysfunction has been suggested to
play an important role in the occurrence of pulmonary
tuberculosis [25]. Therefore, it is necessary to analyze
the correlations of genes associated with immune sys-
tem. In the present study, the Pearson correlation coeffi-
cient (PCC) was calculated across 15 samples to
investigate potential regulatory relationships between
important genes. The gene pairs with |PCC| > 0.5 were
selected for further analysis.

Logistic regression analysis
In order to identify the risk biomarkers of pulmonary TB,
we performed multivariate logistic regression analysis for
the gene pairs with significant correlations (|PCC| > 0.5)
using SPSS 19.0 software (SPSS Inc., Chicago, Illinois,

USA) [26]. The genes with p-value < 0.05 were selected as
feature genes.

Results
Identification of DEGs
Based on the thresholds of |log2FC| > 1.0 and FDR <
0.05, a total of 1084 DEGs were identified between
pulmonary TB and TB latent infection samples, including
565 down-regulated genes and 519 up-regulated genes.
The result was shown in volcano plot (Fig. 1).

PPI network construction
The PPI network consisted of 768 interaction pairs among
446 genes, including 253 down- and 193 up-regulated
genes (Fig. 2). In this network, the proteins proto-
oncogene tyrosine-protein kinase Fyn (FYN, degree = 34),
CREB binding protein (CREBBP, degree = 28), growth fac-
tor receptor-bound protein 2 (GRB2, degree = 23) and
guanine nucleotide binding protein (G protein) and beta
polypeptide 2-like 1 (GNB2L1, degree = 21) were selected
as hub nodes (genes) for the high connectivity degree.

Network-based neighborhood scoring
The top 50 nodes with higher scores and the last 50 nodes
with lower scores were selected and the top 5 and last 5
genes were shown in Table 1. For instance, sirtuin 5
(SIRT5), tyrosyl-tRNA synthetase (YARS), sphingomyelin

Fig. 1 Volcano plot for the differentially expressed genes (DEGs). The x-axis represents the log2-fold change (log2FC). The y-axis represents the
-log10 p-value. Blue-colored nodes are DEGs with p-value < 0.05 and |log2FC| > 1. Green-colored nodes are non-DEGs
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phosphodiesterase 2, and neutral membrane (SMPD2)
had scores > 0. While the scores of solute carrier family 6
(neutral amino acid transporter), member 17 (SLC6A17),

SCL6A8 and chloride channel, voltage-sensitive 7
(CLCN7) were < 0. Additionally, the down-regulated genes
RIC8 guanine nucleotide exchange factor A (RIC8A), basic

Fig. 2 The protein-protein interaction (PPI) network of differentially expressed genes (DEGs). The green nodes stand for down-regulated genes.
The red nodes stand for up-regulated genes
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leucine zipper transcription factor, ATF-like (BATF) and
microtubule associated monooxygenase, calponin LIM
domain containing 1 (MICAL1), and the up-regulated
genes ATPase, Na+/K+ transporting, alpha 4 polypeptide
(ATP1A4), histone cluster 1, H3c (HIST1H3C), histone
cluster 2, H3d (HIST2H3D), histone cluster 1, H3e
(HIST1H3E) and tyrosine kinase 2 (TYK2) were also
important genes.
Furthermore, hierarchical clustering analysis for these

important genes showed that these 100 important genes
could differentiate the pulmonary TB samples and TB
latent infection samples (Fig. 3).

Functional enrichment analysis
GO enrichment analysis was carried out for the import-
ant genes. The significant (p < 0.05) GO biological
process (BP) terms of up- and down-regulated genes
were shown in Table 2 (p-values in ascending order).
The down-regulated genes were significantly enriched in
regulation of osteoblast differentiation (p = 0.00816) and
positive regulation of hydrolase activity (p = 0.018904).
Besides, the up-regulated genes were mainly related
to nucleoside triphosphate biosynthetic process (p =
0.003512), mRNA export from nucleus (p = 0.004389)
and purine nucleoside triphosphate metabolic process
(p = 0.005796).
In addition, 2 pathways were enriched by the up-

regulated important genes (Table 2), including adipocy-
tokine signaling pathway and cardiac muscle contraction
pathway. However, the down-regulated genes were not
enriched in any pathways.

Correlation analysis
A total of 950 gene pairs were identified in Pearson cor-
relation analysis. The top 10 highly correlated gene pairs
were shown in Table 3. Specially, the expression levels of
the top 4 correlated gene pairs (PCC > 0.9) were shown in

Fig. 4, that was, RIC8A-ATP1A4, HIST1H3C-HIST2H3D,
HIST1H3E-BATF and MICAL1-TYK2, besides, all of them
showed positive correlations.

Logistic regression analysis
In order to identify the risk biomarkers of pulmonary TB,
the gene pairs with significant correlations (|PCC| > 0.5)
were performed logistic regression analysis. The analysis
identified 80 significant feature genes, such as ATP1A4
(p = 0.031), RIC8A (p = 0.035), HIST1H3E (p = 0.005),
BATF (p = 0.021), TYK2 (p = 0.008) and MICAL1 (p =
0.011). The prediction accuracy for the two groups of
samples were 100 %.

Discussion
In this study, a total of 1084 DEGs including 565
down- and 519 up-regulated genes were selected. The
up-regulated genes were mainly related to nucleoside
triphosphate biosynthetic process. The down-regulated
genes were significantly enriched in regulation of osteoblast
differentiation. The gene pairs RIC8A-ATP1A4, HIST1H3C-
HIST2H3D, HIST1H3E-BATF and MICAL1-TYK2 were
identified with highly positive correlations. Besides, they
were selected as feature genes in logistic regression analysis.
RIC8A encoding protein interacts with guanine nucleo-

tide binding protein (G protein) [27]. It has been reported
that RIC8A controls Drosophila neural progenitor asym-
metric division by regulating heterotrimeric G proteins
[28]. G protein is an important signal transducing mol-
ecule in cells [29], which activates MAP kinase signaling
[30]. Elkington et al. [31] have reported that active pul-
monary TB can be mediated by MAP kinase signaling
pathway. In this study, RIC8A was down-regulated in pul-
monary TB, suggesting that RIC8A may be associated with
the pulmonary TB development through regulating MAP
kinase signaling pathway with G proteins.
ATP1A4 is a member of P-type cation transport

ATPase family and belongs to Na, K-ATPase subfamily.
The P-type ATPases remove Ca2+ against very large
concentration gradients in eukaryotic cells and play an
important role in intracellular calcium homeostasis
[32]. Importantly, calcium homeostasis involves in
apoptosis and regulates important cellular events trig-
gered upon infection of macrophages with pathogenic
mycobacteria [33]. It has been reported that the M.
tuberculosis blocks the delivery of the Na, K-ATPases
[34]. Additionally, Rao et al. [35] have shown that de
novo ATP synthesis is essential for the viability of hyp-
oxic nonreplicating mycobacteria, requiring the cyto-
plasmic membrane to be fully energized. Interestingly,
ATP1A4 was found enriched in nucleoside triphosphate
biosynthetic process in this study. Therefore, we specu-
lated that ATP1A4 may play a vital role in the occur-
rence of pulmonary TB by controlling ATP synthesis.

Table 1 The top 5 gene with higher neighborhood scores and
the last 5 genes with lower neighborhood scores

Gene Neighbor score Rank

SIRT5 1.339588 1

YARS 1.3003 2

SMPD2 1.278101 3

NAA10 1.275932 4

UQCC 1.265338 5

LOXL3 −1.36572 −5

MEN1 −1.37437 −4

CLCN7 −1.3931 −3

SLC6A8 −1.4102 −2

SLC6A17 −1.4102 −1
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Fig. 3 Clustering analysis of the important genes. The above dendrogram shows clustering of the samples. The red color stands for up-regulated
genes, while green color stands for down-regulated genes
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HIST1H3C, HIST2H3D and HIST1H3E belong to his-
tone H3 family, which are responsible for controlling the
dynamics of the chromosomal fiber in eukaryotes by
regulating histone acetylation. Importantly, this process
is essential in modulating gene transcription through
chromatin organization, and perturbation of this process

can result in aberrant gene transcription and cause some
diseases, including lung diseases [36, 37]. Additionally,
histones play a central role in DNA repair and DNA rep-
lication [38]. Boshoff et al. [39] reported that DNA-
damaging agents were rich in vivo produced by host
cells due to an effort to eradicate the M. tuberculosis.

Table 2 The Gene Ontology (GO) biological process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of differentially expressed genes

Type Category Term Count P-value

GO

Down-regulated genes

GO:0045667 regulation of osteoblast differentiation 3 0.00816

GO:0051345 positive regulation of hydrolase activity 4 0.018904

GO:0030278 regulation of ossification 3 0.025314

GO:0010638 positive regulation of organelle organization 3 0.028404

GO:0045596 negative regulation of cell differentiation 4 0.030755

GO:0002076 osteoblast development 2 0.03129

GO:0045736 regulation of cyclin-dependent protein kinase activity 2 0.034366

GO:0007596 blood coagulation 3 0.041412

GO:0045667 regulation of osteoblast differentiation 3 0.00816

Up-regulated genes

GO:0009142 nucleoside triphosphate biosynthetic process 4 0.003512

GO:0006406 mRNA export from nucleus 3 0.004389

GO:0009144 purine nucleoside triphosphate metabolic process 4 0.005796

GO:0009260 ribonucleotide biosynthetic process 4 0.006063

GO:0006405 RNA export from nucleus 3 0.006715

GO:0009150 purine ribonucleotide metabolic process 4 0.00814

GO:0006164 purine nucleotide biosynthetic process 4 0.009852

GO:0015672 monovalent inorganic cation transport 5 0.014828

GO:0006644 phospholipid metabolic process 4 0.019213

GO:0034654 nucleic acid biosynthetic process 4 0.020019

GO:0034404 nucleoside and nucleotide biosynthetic process 4 0.020019

GO:0006665 sphingolipid metabolic process 3 0.021316

GO:0046784 intronless viral mRNA export from host nucleus 2 0.023835

GO:0006812 cation transport 6 0.024009

GO:0006643 membrane lipid metabolic process 3 0.024609

GO:0051028 mRNA transport 3 0.028097

GO:0006684 sphingomyelin metabolic process 2 0.03263

GO:0050657 nucleic acid transport 3 0.034322

GO:0050658 RNA transport 3 0.034322

GO:0019216 regulation of lipid metabolic process 3 0.044558

KEGG

up-regulated genes

hsa04920 Adipocytokine signaling pathway 3 0.039178

hsa04260 Cardiac muscle contraction 3 0.041574

Count: enriched gene number in the GO category
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Therefore, DNA repair-related histones may an play im-
portant role in inhibiting M. tuberculosis infection. In
this study, the up-regulation of HIST1H3C, HIST2H3D
and HIST1H3E may be associated with occurrence of
pulmonary TB.
BATF belongs to the adaptor-related protein 1 (AP-1)/

activating transcription factor (ATF) superfamily of tran-
scription factors. AP-1 family transcription factors con-
trol the differentiation of lymphocyte cells in immune
system [40]. Lymphocytes are crucial in the immune
defence against M. tuberculosis, which can secrete

interferons (ITFs) in response to M. tuberculosis infec-
tion [41]. It has been reported that ITF-γ, a product of T
lymphocytes, contributes to protective immunity against
M. tuberculosis by activating macrophages in pulmonary
TB [42]. Taken together, although the role of BATF in
pulmonary TB has not been studied, we speculate that
BATF may be involved in the occurrence of TB via
immune system.
TYK2 encodes a tyrosine kinase belonging to Janus ki-

nases (JAKs) family. It has been reported that JAKs are
activated following interactions between cytokines and
their cognate receptors on cell surface [43]. TYK2 nega-
tively regulates adaptive Th1 immunity by mediating IL-
10 signaling and promoting ITF-γ-dependent IL-10
reactivation [43]. Redford et al. [44] have reported that
IL-10 can suppress the functions of macrophage and
dendritic cell, which were required for the capture, control
and initiation of immune responses to M. tuberculosis.
Therefore, TYK2 may involve in the pathogenesis of pul-
monary TB via regulating IL-10. For MICAL1, it can act
as a cytoskeletal regulator [45]. Specially, cell migration
and phagocytosis are critically dependent on cytoskeletal
rearrangements [46]. It has been reported that cell migra-
tion and phagocytosis are important for resistance against
pulmonary TB [47]. Therefore, the down-regulation of
MICAL1 may be related to pulmonary TB via controlling
cell migration and phagocytosis.

Table 3 The top 10 highly correlated gene pairs

Node ID1 Node ID2 Correlation

ATP1A4 RIC8A 0.95073

HIST2H3D HIST1H3C 0.94367

HIST1H3E BATF 0.92093

TYK2 MICAL1 0.90583

THOC5 ATP1A4 0.89967

HPSE HIST1H3E 0.89867

F2RL3 BATF 0.8935

GALE YARS 0.8881

PRKAB2 MZT1 0.8855

APC PSMD14 0.86483

Correlation: Pearson correlation coefficient

Fig. 4 The expression levels of top 4 gene pairs. The x-coordinate represents samples; y-coordinate represents gene expression values. The blue
lines represent RIC8 guanine nucleotide exchange factor A (RIC8A), histone cluster 2, H3d (HIST2H3D), tyrosine kinase 2 (TYK2) and histone cluster
1, H3e (HIST1H3E), respectively. The green lines represent ATPase, Na+/K+ transporting, alpha 4 polypeptide (ATP1A4), histone cluster 1, H3c
(HIST1H3C), microtubule associated monooxygenase, calponin LIM domain containing 1 (MICAL1) and basic leucine zipper transcription factor,
ATF-like (BATF), respectively. R stands for Pearson correlation coefficient
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Conclusions
In conclusion, the present study identified several key gene
pairs (RIC8A-ATP1A4, HIST1H3C-HIST2H3D, HIST1H3E-
BATF, MICAL1-TYK2) associated with pulmonary TB or
TB latent infection by comprehensive bioinformatics
methods, which may provide new insights for the diagnosis
and treatment of this disease. However, this study had
some limitations. On the one hand, the sample size was
small which might cause a high rate of false positive
results. Secondly, there was no experimental verification.
Therefore, further genetic and experimental studies with
larger sample sizes are still needed to confirm the findings
in this study.
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