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Filling gaps in notification data: a model-
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campylobacteriosis cases in New Zealand
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Abstract

Background: Data containing notified cases of disease are often compromised by incomplete or partial information
related to individual cases. In an effort to enhance the value of information from enteric disease notifications in New
Zealand, this study explored the use of Bayesian and Multiple Imputation (MI) models to fill risk factor data gaps. As a
test case, overseas travel as a risk factor for infection with campylobacteriosis has been examined.

Methods: Two methods, namely Bayesian Specification (BAS) and Multiple Imputation (MI), were compared
regarding predictive performance for various levels of artificially induced missingness of overseas travel status in
campylobacteriosis notification data. Predictive performance of the models was assessed through the Brier Score,
the Area Under the ROC Curve and the Percent Bias of regression coefficients. Finally, the best model was selected and
applied to predict missing overseas travel status of campylobacteriosis notifications.

Results: While no difference was observed in the predictive performance of the BAS and MI methods at a lower
rate of missingness (<10 %), but the BAS approach performed better than MI at a higher rate of missingness
(50 %, 65 %, 80 %). The estimated proportion (95 % Credibility Intervals) of travel related cases was greatest in
highly urban District Health Boards (DHBs) in Counties Manukau, Auckland and Waitemata, at 0.37 (0.12, 0.57),
0.33 (0.13, 0.55) and 0.28 (0.10, 0.49), whereas the lowest proportion was estimated for more rural West Coast,
Northland and Tairawhiti DHBs at 0.02 (0.01, 0.05), 0.03 (0.01, 0.08) and 0.04 (0.01, 0.06), respectively. The national
rate of travel related campylobacteriosis cases was estimated at 0.16 (0.02, 0.48).

Conclusion: The use of BAS offers a flexible approach to data augmentation particularly when the missing rate is
very high and when the Missing At Random (MAR) assumption holds. High rates of travel associated cases in
urban regions of New Zealand predicted by this approach are plausible given the high rate of travel in these
regions, including destinations with higher risk of infection. The added advantage of using a Bayesian approach
is that the model’s prediction can be improved whenever new information becomes available.
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Background
Information originating from investigation of notified
cases of an infectious disease has the potential to inform
about the epidemiology and risk factors associated with
the disease. Aggregating demographic and risk factor in-
formation from surveillance systems can help to set pol-
icy, monitor trends, and develop risk management
options. However, the value of this information is often
compromised by incomplete or partial information re-
lated to individual cases.
In New Zealand, cases of notifiable diseases are re-

ported by general practitioners, laboratories and public
health workers and the information is stored in the Epi-
Surv database. EpiSurv is operated by the Institute of
Environmental Science and Research (ESR) on behalf of
the Ministry of Health. A series of case report forms
(https://surv.esr.cri.nz/episurv/index.php) are used to
collect information about cases, disease diagnosis and
clinical course, risk factors for the disease and case
management.
Campylobacteriosis has been a notifiable disease in

New Zealand since 1980. Data from notified cases are
reported annually in surveillance summaries and have
been analyzed for trends and to assess the effect of spe-
cific interventions [1, 2]. These analyses are primarily
based on demographic information, since for a variety of
reasons the risk factor information is not supplied for all
cases. However, the value of complete information on
cases has been demonstrated by a sentinel site study in
the Manawatu region of New Zealand, which has made
a special effort to complete risk factor reporting, along-
side microbial subtyping [3].
In an effort to enhance the value of information from

campylobacteriosis notifications in New Zealand, we
have explored the use of models to fill risk factor data
gaps. As a test case, we examined overseas travel as a
risk factor for campylobacteriosis. Identifying the pro-
portion of cases of campylobacteriosis where infection
was acquired overseas is important to properly under-
stand and measure domestic risk factors and the success
of any risk management interventions [4]. International
travel as a risk factor is important, as the rate of overseas
travel by New Zealanders is high (e. g. 46 trips per 100
per year as compared to the international average of 14
per 100 in 2008) [5, 6]. However, whether (or not) cases
had travelled overseas as a potential risk factor is re-
ported for less than half of the notified cases of campylo-
bacteriosis, and the reporting of this factor varies
considerably across the 20 District Health Boards
(DHBs) in New Zealand. One approach to adjusting for
this lack of data, as currently used in annual surveillance
reports, is to apply the proportion travel related from
the campylobacteriosis cases for which the information
is available to those cases lacking travel information.

This approach estimates that approximately 7 % of cam-
pylobacteriosis notifications nationally over the period
2000 to 2010 were acquired overseas. However this in-
formation may be biased and does not fully reflect re-
gional variation. As an alternative, we applied Multiple
Imputation (MI) [7] and Bayesian Specification (BAS)
[8] models, seeking to adjust rates of travel associated ill-
ness and fill data gaps using covariates derived from
demographic characteristics and travel rates in the gen-
eral New Zealand population.

Methods
Empirical data
Campylobacteriosis notifications
Campylobacteriosis notification records were obtained
from the EpiSurv database [9]. All case notifications
were completely anonymized to conceal the identity of
individuals. The database registers a number of demo-
graphic and risk factor characteristics of the cases in
addition to clinical features. Regional information is
available per DHB in the campylobacteriosis notification
data.
There were 121,764 notifications of campylobacteriosis

in New Zealand reported between 2000 and 2010. Of
these, most were culture confirmed (‘Confirmed’) or epi-
demiologically linked to confirmed cases or outbreak
sources (‘Probable’) (Table 1). As there are no definitive
results for the cases with a case status of ‘Under investi-
gation’ and ‘Unknown’, we excluded them from the ana-
lysis resulting 119,375 cases for the primary dataset
(sum of the first two columns in Table 1). Among
119,375 cases, 44,285 (37.1 %) had complete information
for the travel section of the EpiSurv questionnaire, and
3107 (7 %) of cases with information for this section had
completed short term international travel. Since 0.6 % of
Age and 1.6 % of Sex observations were missing in the
primary dataset, the associated records were excluded
making the total number of cases available for analysis
to become 116,721. The dependent variable used for our
regression model was overseas travel status of the noti-
fied cases.

Table 1 Total number of campylobacteriosis notification in New
Zealand residents categorized by information on overseas travel
(2000–2010)

Travel status Campylobacteriosis status

Confirmed Probable Under
investigation

Unknown Total

No 41617 60 52 416 42145

Unknown 74481 110 222 1653 76466

Yes 3100 7 7 39 3153

Total 119198 177 281 2108 121764
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Explanatory variables
A number of explanatory variables was derived from the
EpiSurv and Statistics New Zealand databases to con-
struct a regression models for predicting missing travel
status of notified campylobacteriosis cases. A complete
list of predictor variables extracted from the notification
and travelers’ database is shown in Table 2 and a de-
tailed description is given in Additional file 1. While
Deprivation index, Urban (population under urban influ-
ence) and Travel Rate are variables at a District Health
Board (=DHB) level; Age, Sex, Season and Intervention
(whether the case was recorded before or after 2006) are
case specific variables.

Statistical methods
Logistic regression
Since our response variable (overseas travel status) is a
binary variable (1 = yes, 0 = No), a logistic regression
model was applied to the data. The generalized form of
the logistic regression model is shown in eq. (1).

log
p Y ¼ 1ð Þ

1−p Y ¼ 1ð Þ
� �

¼ β0 þ
X

j¼1

k
βjxj ð1Þ

Where p(Y = 1) is the probability that a case made
short term overseas travel and β’s are the regression co-
efficients, k = number of covariates (x’s). See Table 2 and
Additional file 1 for the detail description of the
covariates.

Missing At Random Assumption (MAR) There are
three types of missing data mechanisms, namely Missing
Completely At Random (MCAR), Missing At Random
(MAR) and Missing Not At Random (MNAR) [10].
MCAR occurs when the missingness is completely at
random and results obtained from only completely ob-
served cases can be used for inference, whereas MNAR
indicates a systematic missingness in the data and re-
quires explicit model for the missing data mechanism.
The MAR scenario on the other hand also requires a
model but can use measured covariates. MAR assumes
that the probability of missingness only depends on the
covariates in the data. In the MCAR and MAR situa-
tions, the missing data mechanism is frequently referred
to as ignorable, i.e., we do not need a separate model for
the missing data mechanism. In our case, the covariates
obtained from Statistics New Zealand and the Episurv
were used to construct the model. Most missing data
methods including MI require this assumption to be ful-
filled for a valid inference. While the MAR assumption,
as such, is not statistically testable, it can be supported
by demonstrating association of predictors with the
missingness. We investigated this by fitting a logistic re-
gression with dependent variable missingness of overseas
travel (1 =missing, 0 = otherwise) on covariates. A statis-
tically significant association indicates that the missing-
ness can be explained by the covariates (i.e., the MAR
assumption can hold.) A detailed description of types of
missing data can be found in the literature [10, 11].

Multiple imputation
Multiple Imputation is a principled way of handling in-
complete data where missing observations are replaced
by draws from the predictive distribution of the missing
data given the observed data [12, 13]. According to
Rubin (1996), MI is a three-step process. First, sets of
plausible values for missing observations are created.
Each of these sets of values ‘fill-in’ the missing values
(assuming MAR) and create multiple ‘complete’ datasets,
so called ‘multiply’ datasets. Simulation studies have
shown that as few as 3 ‘multiply’ datasets are adequate
for a dataset with 20 % missing values [14]. Other stud-
ies have shown that 5–10 ‘multiply’ datasets are usually
optimum depending on the proportion missing [7]. Sec-
ond, each of these ‘multiply’ datasets can be analyzed
using standard complete data methods. Finally, the re-
sults are pooled using Rubin’s rule, which allows the un-
certainty regarding the imputation to be taken into
account [15]. The R package MICE (Multiple Imputation
using Chained Equations) was used for performing MI
[7]. In this study, we have used 20 multiply datasets. We
used the pooled regression coefficients to construct a lo-
gistic regression equation for predicting the probability
of overseas travel.

Table 2 Description of variables in the New Zealand
campylobacteriosis notification and short term international
travelers’ datasets (2000–2010)

Variables Details

Deprivation
index

Categorical, 1–10 scale (1 = least deprived, 10 =most
deprived)

Urban Numeric, Proportion of DHB population under urban
influence

DHB Categorical, Residence District Health Board

Travel rate Numeric, Residence DHB’s rate of short term
international travel

Report date Year of campylobacteriosis notification, 2000-2010

Age Four categories; <5, 5–19, 20–65 and 65+ Years

Sex Two categories; Male and Female

Season Four categories; Spring (Sep-Nov), Summer (Dec-Feb),
Autumn (Mar-May) & Winter (Jun-Aug)

Overseas travel Three categories; Yes, No, Unknown (62 % of the cases
did not have travel information.)

Intervention A binary indicator variable to identify before and after
the 2006 poultry intervention period.

Notes: Deprivation index, Urban, DHB and Travel Rate are DHB level variables,
whereas Report Date, Age, Season, Overseas Travel and Intervention are
measured at an individual case level
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All potential predictors available in our dataset were
incorporated into the imputation model. Including all
covariates predictive of overseas travel will help the
MAR assumption to be increasingly plausible, in
addition to producing unbiased results [16, 17]. This is
because subjects with missing data based on (other)
known characteristics, i.e. MAR- are by definition a ran-
dom subset from the sample given these known charac-
teristics (Table 1).

Bayesian Specification (BAS)
The Bayesian method allows to jointly use information
coming from the observed data and from prior informa-
tion on unknown parameters to derive inferences about
missing data and parameters using Markov Chain-
Monte Carlo (MCMC) algorithm [18]. While MI was de-
rived from within a Bayesian framework (sampling from
the posterior distribution of missing values, conditional
on observed values), Bayesian approaches have been ap-
plied more generally [19]. Bayesian modelling provides a
flexible method for incorporating different assumptions

about the missing data mechanism and accommodating
different patterns of missing data in the model [20]. For
example, we can specify a separate model for the miss-
ing data mechanism if the information for estimating the
missingness obtained (i.e., in the case of so called ‘in-
formative missing response’) [21]. In our case, however,
the data contain no information regarding the mechan-
ism by which missing data were introduced and there-
fore we assume the missing data mechanism to be
ignorable. In this case, the BAS treats missing data as
additional unknown parameters and automatically gen-
erates values from its posterior predictive distribution
for filling the missing data.
We used the JAGS 3.4.0. program (Just Another Gibbs

Sampler) for Bayesian analysis, which is called into the R
environment through rjags package [22]. The use of a
Bayesian method requires that the priors of unknown pa-
rameters to be specified properly [23]. This is a way of in-
corporating uncertainty about the parameters into the
model. For our analysis, all regression coefficients and the
intercept were assigned uninformative priors (a normal

Fig. 1 Distribution of campylobacteriosis notification categorized by the status of overseas travel (upper panel) and the annual proportion of
short term international travels (lower panel), in DHBs of New Zealand (2000 – 2010). Notes: Upper panel: campylobacteriosis notification in 1000s
is the sum of all cases notified between 2000 and 2010 in a given District Health Board; lower panel: Total travels/total population: the average
number of outbound travels per year divided by the average population size per year between 2000 and 2010 for a given District Health Board
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distribution with mean 0 and standard deviation of 100,
i.e. each with an inverse variance of 10−4) (Additional
file 2) [8]. For computational reasons, Bayesian models
in JAGS require the variance to be specified in terms of
the precision (inverse of the variance). The models
were run for 30,000 iterations with the first 3000 itera-
tions discarded as burn-ins. All models were initialized
with two chains. For realistic starting values, we set the
initial values for each chain obtained from the fitted re-
gression coefficients (see Additional file 2). As Bayesian
inference relies on MCMC algorithm to draw samples
from the posterior distribution, convergence of the al-
gorithm has to be assessed, i.e., whether the Markov
chains have reached a stable equilibrium distribution.
Convergence indicates that the samples from the
MCMC process are, in fact, drawn from the actual joint
posterior distribution of the parameters. This was done

through visually evaluating density plots, autocorrel-
ation and the Brooks-Gelman-Rubin (BGR) statistic of
the parameters in the models. The BGR statistic is a
convergence diagnostic that compares the within and
between chain variances where a value around 1 indi-
cates convergence [23].

Data analysis
Model development
First, we fit a multiple logistic regression model (Eq. 2) to
the dataset containing Complete Cases (CC) (n = 44,285)
using Frequentist and Bayesian frameworks. The CC ana-
lysis refers to analysis restricted to campylobacteriosis noti-
fications with fully reported travel status (i.e., disregarding
missing values). This subset of the original dataset included
38 % (44,285) of all notifications reported between 2000
and 2010. The remaining 62 % (72,436) lack travel

Fig. 2 Annual short term international travel and campylobacteriosis notification of New Zealand residents (2000–2010). *Total notified cases:
total number of campylobacteriosis cases notified between 2000 and 2010. **Observed travel associated cases: campylobacteriosis cases that had
confirmed overseas travel during the incubation period of the disease. ***Total travels: total number of short term international travels between
2000 and 2010. Short term international travel is defined as international departures of New Zealand residents for an intended period of less than
12 months (Statistics New Zealand [www.stats.govt.nz])

Amene et al. BMC Infectious Diseases  (2016) 16:475 Page 5 of 12

http://www.stats.govt.nz


information. The reason for performing this restricted ana-
lysis was to select the best prediction model based on cases
with complete data.

log
p Y ¼ 1ð Þ

1−p Y ¼ 1ð Þ
� �

¼ β0 þ β1 � URBANþ β2 � DEPRIVATION

þ β3 � TRAVELþ β4 � AGE
þ β5 � SEASONþ β6 � SEX
þ β7 � INTERVENTION

ð2Þ

Next, we investigated the performance of MI and BAS
for different rates of artificially introduced missing data
to the CC (10 %, 50 %, 65 % and 80 % missingness on
overseas travel status was introduced). In order to
achieve the required percentage of missing values, we
stratified the data into a cross tabulation based on two
strata of the variable SEX and four artificial strata of the
variable URBAN (i.e., ≤ 0.6 = 1, 0.6-0.8 = 2, 0.8-0.9 = 3,
>0.9 = 4). The SEX and URBAN variables were chosen
for convenience. Then, we deleted the stratum (or strata)
from the cross tabulation where the counts sum up to
the desired proportion of missingness. Deleting specific
strata from the dataset will ensure that the resulting
missing data are MAR. We generated one sample per
each category of artificially introduced missing data.
Then, for every category, we fit a separate logistic

regression model (Eq. 2) and summarized the outputs in
Fig. 4. Finally, based on the models’ performance param-
eters on missing data prediction, we selected the best
model and applied it for predicting overseas travel status
in the original dataset.

Model evaluation and performance
We evaluated the performance of our models by com-
paring Percent Bias (PB) and Brier Score (BS) of regres-
sion coefficients and predictions, respectively. The PB
indicates the percent deviation of the regression coeffi-
cients of models fitted to the missing data as compared
to those estimated by the fully observed dataset (i.e.
Complete Cases) (Eq. 3). Note that, the description of
bias used here is slightly different to the usual definition
(the expectation of difference between parameter esti-
mates) [21].

PB ¼ βm−βf
� �

=βf

�
� 100 ð3Þ

where βf is the regression coefficient estimated from the
models fitted to the complete cases, and βm is the re-
gression coefficient estimated from the other models (i.e.
using data including missing values). The BS, on the
other hand, is an overall measure of predictive perform-
ance, i.e. a combination of discrimination and calibration

Fig. 3 The proportion of campylobacteriosis notifications in New Zealand with known status of overseas travel information (2000–2010)
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[24] (Eq. 4). The BS, or average prediction error is de-
fined as follows:

BS ¼ 1
N

XN
i¼1

f i−Oið Þ2

i ¼ 1;…;N

ð4Þ

where fi are predicted probabilities by the model, Oi is
the observed outcome (0 or 1), and N is the total num-
ber of observations. A BS value close to 0 indicates the
model performs well, whereas larger scores indicate
poorly fitting models [25].
Additionally, we evaluated our models using the area

under the receiver operating characteristic (ROC) curve.
The ROC is often used to summarize and compare the
discriminatory accuracy of a diagnostic test or modality,
and to evaluate the predictive power of statistical models
for binary outcomes [26]. We used the ROC curve ana-
lysis to evaluate how accurate our logistic regression

models were in predicting overseas travel. Accordingly,
we selected the BAS approach as a method of choice to
apply to the original dataset.

Prediction of overseas travel
A Bayesian logistic regression model was fitted to the
original dataset (n = 116,721) to predict missing overseas
travel status of notified campylobacteriosis cases. The
priors for all parameters in the model were specified as
uninformative (see Additional file 2). We ran the sam-
pler for 30,000 iterations and used 2 chains and 3000 it-
eration burn-ins. Finally, we investigated model fit by
examining density plots, autocorrelation and trace plots
of a subset of parameters in the model for a visual
graphical assessment. After a convergence was achieved
(i.e., after each chain mixed well and appeared stationary
indicating that the target distribution was reached), we
extracted the predicted summary measures of probability
of overseas travel for individual cases (mean and stand-
ard deviation) from the posterior distribution. Since our
main interest was to produce average predictions per
reporting region (DHB), we summarized those individual
predictions into a pooled mean μ xið Þð Þ and SD per
reporting region (SDj). To compute these values, we
stratified the predicted probabilities by DHB, and then
we calculated the mean (expected value) and the pooled
SD per DHB, respectively, as shown in Eqs. 5 and 6
below.

E Xj
� � ¼ μ ¼ 1

n

X
i¼1

n
xi ð5Þ

where DHBj (j = 1,2,…,20) consisting of n elements
x1,..,xn denoting individual predictions.

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

xi−μð Þ þ 1
n

Xn
i¼1

σ2i

 !vuut ð6Þ

where SDj denotes the pooled SD for DHBj, xi = individ-
ual predictions, μ j =the mean prediction for DHBj, σi

2 =
the variance of individual predictions and n = number of
observations per DHB.

Table 3 Summary of logistic regression analysis for variables
predicting missing indicator (1 = missing overseas travel
information, 0 = otherwise) to test the validity of Missing At
Random assumption (n = 116721)

Coefficients Estimate Std. Error Pr(>|z|)

(Intercept) −8.757 0.089 <0.001

Urbana 2.992 0.103 <0.001

DepIndexb 0.525 0.006 <0.001

Travel Ratec 0.081 0.001 <0.001

Age (5–19) 0.154 0.027 <0.001

Age (20–59) 0.033 0.023 0.145

Age (60+) −0.142 0.027 <0.001

Summer 0.014 0.018 0.443

Autumn −0.002 0.021 0.94

Winter 0.035 0.021 0.085

Male 0.153 0.014 <0.001

Interventiond 0.345 0.016 <0.001

Keys: aProportion of DHB population under urban influence; bDeprivation index
(scale 0–10, 0 being least deprived and 10 being most deprived DHB; cShort
term international travel per 100 residents of a DHB; dA binary indicator
variable to identify pre and post 2006 intervention. Age (<5), Spring, and
Female sex are reference categories

Table 4 Comparison of Brier Score and Area Under the Curve (AUC) between Bayesian and Multiple Imputation models for the
prediction of overseas travel status of campylobacteriosis cases

Accuracy
measure

Complete dataa Missing datab

Frequentist Bayesian Multiple Imputation Bayesian

10 % 50 % 65 % 80 % 10 % 50 % 65 % 80 %

Brier Score 0.062 0.062 0.067 0.24 0.18 0.19 0.062 0.063 0.062 0.063

AUCc 0.67 0.67 0.64 0.49 0.42 0.49 0.67 0.67 0.65 0.64
an = 44,285
bFour categories of artificially introduced missing data (10 %, 50 %, 65 % and 80 % missing overseas travel status)
cArea Under the Receiver Operating Characteristic Curve
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Results
Figure 1 displays the total number of notified Campylo-
bacter cases between 2000 and 2010 which are catego-
rized by the status of overseas travel reporting and
annual rate of overseas travels per person in each DHB.
Most of the cases reported from Auckland, Waitemata,
and Counties Manukau DHBs lack travel information.
However, the majority of reported cases and more than
55 % of all travel between 2000 and 2010 originated
from residents in these DHBs [27]. As shown in Fig. 1,
more than 60 % of all cases come from six DHBs,
namely Waitemata (12.8 %), Canterbury (12.7 %),

Auckland (10.6 %), Waikato (9.3 %), Capital and Coast
(8.9 %), and Counties Manukau (8.7 %) (Fig. 1).
The number of short term international trips by New

Zealanders consistently increased between 2000 and
2010 (bottom panel in Fig. 2). As evident from Fig. 2,
total campylobacteriosis notification in New Zealand
had been increasing until 2006 except a slight decrease
in 2003–2004. After 2006, the total number of notifica-
tions declined significantly. The total number of re-
ported travel associated cases and the overall trend of
availability of information on travel status for the noti-
fied campylobacteriosis cases have declined over time

Fig. 4 Comparison of Bayesian and Multiple Imputation models regarding the mean and 95 % Credibility (Confidence) Intervals of regression
coefficients for 10 % (Fig. 4a), 50 % (Fig. 4b), 65 % (Fig. 4c) and 80 % (Fig. 4d) missing data category as compared to the complete data on
overseas travel status of campylobacteriosis cases (n = 44,285). Notes: (1) * Deprivation index (scale 1–10, 1 = least deprived and 10 =most
deprived District Health Board; **proportion of DHB population under urban influence;*** Short term international travel per 100 residents of a
DHB; ****a binary indicator variable to identify cases that were reported before or after 2006 poultry intervention period. (2) Complete cases:
regression coefficients estimated from campylobacteriosis notification data with complete information on overseas travel. (3) The error bars
indicate the 95 % confidence intervals (in Multiple Imputation models) and 95 % Credibility Intervals (in Bayesian models) of the regression
coefficients
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except a slight increase in 2010 (see the middle panel of
Fig. 2 and Fig. 3).
Table 3 shows the result of statistically examining the as-

sociation between predictors and whether or not overseas
travel was missing using the original dataset (n = 116,721).
Majority of the predictors are strongly associated with
missingness in overseas travel implying that missingness
in the data can be explained by the fully observed variables
in the model which supports the MAR assumption
(Table 3).
The outcomes of applying MI and BAS models to the

datasets with artificially induced missingness is given in
Table 4 and Fig. 4. Comparison of BS and AUC to select
the best predictive model shows that the BAS model is
more robust than MI as the rate of missingness in-
creases (Table 4). At 10 % MAR, there was no difference
between MI and BAS. However at 50 %, 65 % and 80 %
MAR cases, the BAS approach resulted in relatively
higher AUC and smaller BS than MI (Table 4). Further-
more, results of the model outputs (i.e., mean and 95 %
uncertainty bounds of the regression coefficients) for all
categories of missing data as well as the outputs from
the complete cases are presented in Fig. 4a, b, c and d.
There was no remarkable difference in the regression
coefficient estimates across the four categories of artifi-
cial missing data. However, most of the regression esti-
mates and 95 % CIs of the BAS model are closer to the
values estimated using complete cases as compared to
the estimates from the MI model (Fig. 4). This evidence
suggests that, the BAS model performs relatively better
for a dataset with a high rate of missing values. In
addition, no significant difference between the regression
coefficient estimates was observed from the Bayesian
model fit to original dataset (n = 116721) and to the CC
dataset (n = 44,285) (see Table 5).
The BAS model was applied to the original dataset to

estimate the proportion of cases due to overseas travel
in each DHB during the period 2008–2010. During this
period the number of campylobacteriosis notifications
and travel rates were relatively stable. Figure 5 shows the
total number of notified campylobacteriosis cases (upper
panel) and the estimated proportion of travel related
cases as predicted by our model (lower panel). The hori-
zontal dashed line in the bottom panel is drawn to indi-
cate the percent of reported travel associated cases (7 %)
among all cases that have provided travel information.
In many of the DHBs with a high rate of campylobac-

teriosis notification (see upper panel of Fig. 5) and high
rate of travel (see bottom panel of Fig. 1), such as Auck-
land, Counties Manukau and Waitemata, our model pre-
dicted a high proportion of campylobacteriosis cases to
be associated with overseas travel. For example, the pro-
portion of travel associated cases was higher in Counties
Manukau, Auckland and Waitemata DHBs, at 0.34 (0.12,

0.57), 0.33 (0.13, 0.55) and 0.28 (0.10, 0.49), whereas the
lowest proportions were estimated for West Coast,
Northland and Tairawhiti at 0.02 (0.01, 0.06), 0.03 (0.01,
0.08) and 0.04 (0.01, 0.08) respectively. Except for Auck-
land, Counties Manukau, West Coast and Waitemata
DHBs, the 95 % CI of the predicted proportion of travel
associated cases included the observed national propor-
tion of travel related cases (horizontal dashed line in
bottom panel of Fig. 5). Accordingly, the national esti-
mate and 95 % CI of the proportion of travel related
cases based on our model is 0.16 (0.02, 0.48).

Discussion
Data gaps in notification data have been a continuous
public health challenge for identifying the source of in-
fection and preventing infectious diseases, including
campylobacteriosis. The increase of overseas travel by
New Zealanders and the established risk of overseas
travel for Campylobacter infection emphasize the need
to study travel associated illnesses.
A total of 18.3 million short term international trips

by New Zealand residents were recorded between 2000
and 2010. Most travel was to the Pacific region, East
Asia and North America, while the least travel was re-
corded for the regions of West and Central Africa and
Antarctica. This is in agreement with previous reports
that New Zealanders travel to more than 150 countries,
of which countries in the Pacific region and North

Table 5 Summary of logistic regression coefficients for the
original dataset containing missing observations (n = 116,721)
and the Complete Cases dataset (n = 44,285) using Bayesian
models

Coefficients Original dataseta Complete Casesb

Mean 95 % CI2 Mean 95 % CI

Intercept −6.503 −6.965 −6.041 −6.522 −6.978 −6.070

Urbanc 0.804 0.231 1.377 0.834 0.297 1.414

DepIndexd 0.091 0.063 0.119 0.091 0.063 0.120

Travel Ratee 0.045 0.040 0.051 0.045 0.039 0.050

Age (5–19) 0.473 0.262 0.683 0.476 0.270 0.680

Age (20–59) 1.273 1.095 1.452 1.278 1.105 1.449

Age (60+) 0.885 0.688 1.082 0.889 0.697 1.080

Summer −0.393 −0.491 −0.294 −0.393 −0.491 −0.297

Autumn −0.254 −0.364 −0.143 −0.255 −0.367 −0.145

Winter 0.128 0.027 0.230 0.128 0.026 0.229

Male 0.015 −0.060 0.090 0.015 −0.059 0.089

Interventionf 0.288 0.200 0.377 0.287 0.199 0.377
aAll campylobacteriosis notifications available for analysis (n = 116,271);
bcampylobacteriosis notifications containing information on overseas travel
status (n = 44,285). c Proportion of DHB population under urban influence;
dDeprivation index (scale 0–10, 0 = least deprived and 10 =most deprived
DHB); eShort term international travel per 100 residents of a DHB; fA binary
indicator variable to identify pre and post 2006 intervention. Age (<5), Spring,
and Female sex are reference categories
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America are the most popular destinations [6]. In the
meantime, international travel has been increasing in
New Zealand since 2004 (see Fig. 2). In contrast, a sub-
stantial reduction of incidence of notified campylobac-
teriosis cases occurred after 2006 (Fig. 2). The significant
changes in notifications post 2006 were believed to be
the result of interventions targeting poultry [2]. Despite
this overall decline in notifications of campylobacteriosis
in New Zealand, the change attributable to cases associ-
ated with overseas travel is not well understood. Al-
though the outbound travel rate of New Zealand
residents has been increasing, we noticed a decline in
notified travel associated cases throughout the study
period except a slight increase in 2010 (middle panel of
Fig. 2). This could be due to the corresponding decrease
in reporting of travel information for the cases through-
out the study period (Fig. 3) that may have confounded
conclusions on the origin of the disease.
In addition, there is a consistently low reporting rate of

detailed travel information in urban areas of New Zealand

such as in Auckland and Wellington regions. A case con-
trol study in the New Zealand regions with high notifica-
tions rates, including Auckland region, suggests that
recent overseas travel was a significant risk factor for the
occurrence of campylobacteriosis in this region [28].
The majority (62 %) of campylobacteriosis case reports

in New Zealand lack travel history during the incubation
period prior to disease. The level of completeness of
travel history for notified cases has been a challenging
task as is reported by some other studies [29–31]. It is
therefore necessary to estimate travel associated cases
based on imperfect data.
Among the total number of notifications with known

travel history, only 3107 (7 % of notifications with
known travel status) had travelled overseas during the
incubation of the disease. As New Zealanders are prolific
travelers, this proportion of cases may underestimate the
true contribution of travel as a risk factor for campylo-
bacteriosis in New Zealand. For this reason, model-
based methods such as MI and BAS can be useful to fill

Fig. 5 The total number of campylobacteriosis notification (upper panel) and the proportion of travel related cases predicted by the Bayesian
model (lower panel) for each DHB of New Zealand (2008–2010). Notes: (1) Bottom panel: proportion of travel related cases predicted by the
Bayesian model. The error bars are 95 % Credibility Intervals of the proportion of overseas travel. (2) The dashed horizontal line is the proportion
of travel related campylobacteriosis cases for which travel history is available nationally (7 %)

Amene et al. BMC Infectious Diseases  (2016) 16:475 Page 10 of 12



the data gaps, using covariates that predict overseas
travel. The use of BAS and MI methods provides a
methodology to calculate uncertainty bounds around the
estimates of travel associated cases. The degree of uncer-
tainty of the predicted proportion of travel associated
cases can be attributed to variation in the risk of travel
associated illnesses among individuals that have different
covariate values. Such variation in the risk of campylo-
bacteriosis with respect to age, sex and season is in
agreement with previous reports in literature [5, 32].
The BAS model resulted in an estimate of the national

proportion of notifications due to overseas travel of
16 %, a higher value compared to 7 % estimate using
only known values. Similar or higher rates of travel re-
lated campylobacteriosis have been reported in other de-
veloped countries such as in Canada (21.6 %) [33],
England (17 %) [29], USA (18 %) [34], Denmark (18 %)
[35] and Switzerland (46.1 %) [36].
Our model predicted a high proportion of travel asso-

ciated cases in major urban areas of New Zealand, such
as in Auckland, Counties Manukau and Waitemata
DHBs. This could be due to high rates of travel of their
residents to the Pacific Islands and South East Asia re-
gions, which is partially driven by the comparatively high
proportion of Asian ethnicity (23.8 %) and Pacific Peo-
ples (14,6 %) in the Auckland region [6, 27]. It has been
previously established that individuals traveling to these
world regions are at a higher risk of travel associated ill-
nesses, including campylobacteriosis [37]. On the other
hand, the DHBs with a smaller proportion of model-
predicted travel related cases (e.g., Northland, West
Coast and Tairawhiti) are those with a lower outbound
travel rate.
If the MAR assumption holds, which is usually diffi-

cult to achieve, our Bayesian model provides a plaus-
ible way for predicting missing overseas travel of
campylobacteriosis cases [20]. It is also important to
note that any other missing data analysis approaches
require assumptions that are just as difficult to justify
[11]. At the same time, the BAS procedure should not
be viewed as the ‘gold standard’ for filling data gaps
for every situation, although it offers a flexible ap-
proach for data augmentation. Priors can be enhanced
if data regarding association of risk factor–outcome
become available. In addition, the Bayesian model spe-
cification can be modified if the missing data mechan-
ism is non-ignorable and the missingness model can
be verifiable [38].
Better notification reporting, particularly for areas

with high outbound travel and high notification of
cases such as in highly urban areas can improve our
understanding of the epidemiology of travel associated
campylobacteriosis in New Zealand. However, reporting
completeness is limited by the resources available in

each DHB. Use of alternative data collection ap-
proaches such as web based applications, cross tabula-
tion of Customs data with EpiSurv data, and creating
awareness in the population regarding the importance
of the information for the public health databases may
improve reporting completeness. Although the em-
phasis in this report is on predicting travel information
of Campylobacter cases in New Zealand, the method
can be implemented for other diseases of public health
significance which have similar data gaps.

Conclusion
The common challenge of data gaps regarding risk fac-
tors for campylobacteriosis suggests the use of model-
based approaches for estimating missing values. Filling
data gaps is particularly important for regions with a
high rate of incomplete data. The Bayesian modelling
approach offers a flexible alternative for data augmenta-
tion particularly when the missing rate is very high.
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