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Abstract

Background: HIV is primarily transmitted by sexual intercourse and predominantly infects people in Third World
countries. Here an important medical need is self-protection for women, particularly in societies where condoms
are not widely accepted. Therefore, availability of antiviral microbicides may significantly reduce sexual HIV transmission
in such environments.

Methods: Here, we investigated structural characteristics and the antiviral activity of the polypurine tract (PPT)-specific
ODN A, a 54-mer oligodeoxynucleotide (ODN) that has been previously shown to trigger the destruction of viral
RNA genomes by prematurely activating the retroviral RNase H. The stability of ODN A and mutants thereof was
tested at various storage conditions. Furthermore, antiviral effects of ODN A were analyzed in various tissue
culture HIV-1 infection models. Finally, circular dichroism spectroscopy was employed to gain insight into the
structure of ODN A.

Results: We show here that ODN A is a powerful tool to abolish HIV-1 particle infectivity, as required for a candidate
compound in vaginal microbicide applications. We demonstrate that ODN A is not only capable to prematurely
activate the retroviral RNase H, but also prevents HIV-1 from entering host cells. ODN A also exhibited extraordinary
stability lasting several weeks. Notably, ODN A is biologically active under various storage conditions, as well

as in the presence of carboxymethylcellulose CMC (K-Y Jelly), a potential carrier for application as a vaginal
microbicide. ODN A’s remarkable thermostability is apparently due to its specific, guanosine-rich sequence.
Interestingly, these residues can form G-quadruplexes and may lead to G-based DNA hyperstructures. Importantly,
the pronounced antiviral activity of ODN A is maintained in the presence of human semen or semen-derived
enhancer of virus infection (SEVI; i.e. amyloid fibrils), both known to enhance HIV infectivity and reduce the
efficacy of some antiviral microbicides.

Conclusions: Since ODN A efficiently inactivates HIV-1 and also displays high stability and resistance against semen,
it combines unique and promising features for its further development as a vaginal microbicide against HIV.
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Background

Infection with HIV-1 is a global pandemic that particularly
affects Third World countries. HIV is transmitted primar-
ily by sexual intercourse and in 2013 more than 35 million
people globally were living with HIV. Over 70 % of
infected subjects reside in Sub-Saharan Africa, with enor-
mous medical and socioeconomic consequences for these
societies. Although access to antiretroviral therapy (ART)
in low- and middle-income countries is increasing, still
too many people are beyond the reach of antiretroviral
treatment. Moreover, use of condoms is frequently not
accepted by men in some of these societies. Thus, devel-
opment of novel microbicides is not only of urgent med-
ical need, but would also empower women with a means
for self-protection.

Eleven clinical microbicide studies, representing six
candidate products, have failed over the last 20 years and
not a single microbicide is currently publicly available.
First generation microbicides acted as surfactants to
disrupt viral membranes, block non-specific HIV entry, or
inactivate HIV by decreasing the pH in the vagina [1-4].
Recently, more specific antiretroviral agents have been
included in microbicide development, either blocking viral
entry by interacting with the HIV-1 gp120 surface protein,
or interfering with viral reverse transcriptase or integrase
activity. For example, Tenofovir, a nucleoside-analogue
reverse transcriptase inhibitor (NRTI), showed contradict-
ory results in clinical testing [4—8]. Another microbicide
candidate drug, the non-nucleoside reverse transcriptase
inhibitor (NNRTI) Dapivirine, is currently undergoing
phase III clinical testing, where the drug is delivered using
an intravaginal ring [9, 10]. However, targeting the reverse
transcriptase alone may not be sufficient for efficient HIV
inhibition. Therefore, it may be beneficial for advanced
antiretroviral microbicide development to simultaneously
address various steps in the viral life cycle, possibly by
using agents that possess multiple antiviral activities.

We previously described ODN A, a novel oligonucleotide-
based HIV-1 inhibitor that targets the highly-conserved
extended polypurine tract (PPT) of HIV-1 for subsequent
RNase H-dependent degradation of the viral RNA genome
in cell-free HIV-1 particles [11-13]. By specifically recogniz-
ing the PPT sequence, ODN A mimics the RNA-DNA
hybrid that normally occurs during reverse transcription in-
side cells, which in turn triggers premature activation of the
viral RT/RNase H heterodimer [14]. Consequently, ODN A
drives the HIV genome into self-destruction. A series of
previous studies demonstrated that ODN A is non-toxic,
and moreover that it shows high antiviral potency in cell
culture infection assays, and efficacy in several animal
models [11-13, 15-17].

Besides its antiviral potency, the stability of an antiviral
compound is of highest importance for developing a suc-
cessful microbicide. Usage and storage of microbicides
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must be as easy as possible to achieve high acceptance
and adherence, especially in Third World countries. More
worryingly, it was recently discovered that human semen,
particularly semen-derived amyloid fibrils, can enhance
HIV infectivity while impairing antiviral efficacy of micro-
bicides [18-21].

Here we focused on investigating the stability and
structure of ODN A, and analyzing its antiviral activity,
particularly in the presence of amyloid SEVI fibrils and
human semen samples. Our physical analyses demon-
strated that ODN A forms G-based DNA hyperstruc-
tures, also referred to as “DNA frayed wires” [22-26] of
very high stability and solubility. Furthermore, ODN A
revealed high antiviral potency in cell culture, even in
the presence of synthetic SEVI, natural human semen,
or an approved lubricant for human use. Together these
data suggest that based on its antiviral potency and
physical characteristics, ODN A may be a valuable com-
ponent of future vaginal microbicides.

Methods

Oligodeoxynucleotides and non-denaturing
polyacrylamide gel electorphoresis (PAGE)

The ODNs (Integrated DNA Technologies, USA and
Sigma-Aldrich Corporation, USA) comprise a 25-mer
antisense and a 25-mer passenger strand, linked by four
thymidines (Fig. 1). The ODN A sequence is partially
complementary to the extended HIV-1 polypurine tract
(PPT), ODN Co targets a region downstream of the PPT
and, compared to ODN A, ODN G contains some nu-
cleotide exchanges in the antisense strand to prevent
binding to the HIV-1 PPT, whereas the passenger strand
is identical (Fig. 1). ODN A: 5'- TTTTCTTTTGGGGG
GTTTGGTTGGGTTTTCCCTTCCAGTCCCCCCTTT
TCTTTT-3'; ODN Co: 5'-CCTCCAAATAAGAAGTT
AAGCTCCCTTTTGGGTACTTGTCTTCTTTG GGA
GTGA-3’; and ODN G: 5- TTTTCTTTTGGGGG
GTTTGGTTGGGTTTTCCCTTCC AGTCCCCCCTT
TTCTTTT-3". To increase their stability, all ODNs
carry phosphorothioate modifications at three terminal
and four central nucleotides [16]. The stability and for-
mation of high molecular structures of the various
ODNs were analyzed by non-denaturing 10 % PAGE
followed by SYBR Green II staining.

Cell culture and production of viral particles

HEK293T cells (ATCC; cat # CRL-3216) were cultured
at 37 °C and 5 % CO, in Dulbecco’s modified Eagle
medium (DMEM, Biochrom, Germany) containing 10 %
fetal calf serum (FCS, Biochrom, Germany). Jurkat 1G5
T cells (NIH AIDS Research & Reference Reagent Pro-
gram; cat # 1819) were cultured in RPMI medium 1640
containing 10 % FCS (PAN-Biotech GmbH, Germany).
Cellular assays were performed with Jurkat 1G5 T cells,
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Fig. 1 Antiviral mechanism of ODN sequences. a Schematic representation of reverse transcription of HIV and mechanism of ODN A action. The
HIV-1 extended polypurine tract (PPT) is indicated as black box with the RT/RNase H cleavage side depicted in white. ODN A interacts with the highly
conserved PPT, mimicking the natural replication intermediate RNA-DNA hybrid, which results in premature activation of reverse transcriptase (RT)/
RNase H hydroloysis of the viral RNA genome. b Sequences of the ODNs used. All ODNs form hairpin-like structures with an antisense (lower) and
passenger (upper) strand linked by four thymidines. Watson-Crick bonds are shown as vertical bars. Phosphorothioate-modified nucleotides are shown
in bold and marked by a star. The ODN A sequence is complementary to the extended PPT, and ODN Co targets an HIV-1 RNA region outside of the
PPT. ODN G serves as a further control, with a similar passenger strand sequence compared to ODN A but a non-complementary HIV-1 PPT sequence.
c Sequence of the extended polypurine tract of HIV-1 recognized by the viral RNase H, whose specific cleavage site is indicated by an arrow

which contain a stably integrated HIV-1 long terminal
repeat (LTR)-firefly luciferase construct that is responsive
to the HIV-1 Tat trams-activator protein. Replication-
competent HIV-1 was produced by transfecting 3 x 10°
HEK293T cells with 10 pg of the pNL4-3mCherry plasmid
using polyethylenimine (PEI) as a transfection reagent
according to the manufacturer’s protocol (Polysciences,
Inc., USA). The pNL4-3mCherry construct is a variant
of the X4-tropic strain HIV-1y14.3 [27], in which the
nef gene was replaced by a sequence (711 bp) encoding
the autofluorescent protein mCherry. At day 3 post
transfection, virus-containing supernatants were passed

through 0.2 um pore size filters to ensure removal of
any viral aggregates and kept at —-80 °C. Titers of viral
particles were determined by HIV-1 p24 antigen
enzyme-linked immunosorbent assay (ELISA) as previ-
ously described [28].

Synthetic RNA production and RT/RNase H cleavage assay
A plasmid containing a T7 promoter and the HIV-1
PPT sequence (synthesized by GeneArt AG, Germany)
served as a template for producing synthetic PPT-
containing RNA2 using the T7-Megashortscript Kit
(Life Technologies GmbH, USA). The RNA2 sequence
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5-CTCGAGTAATACGACTCACTATAGGGAGAGGG
AGGCAGCTGTAGATCTTAGCCACTTTTAAAAGAA
AAGGGGGGACTGGAAGGGCTAATTCACTCCCAAA
GAAGACAAGTACCCGGGATCGGTTAACGTCACAC
GTGCATGCGATATCGAATTC-3" contains the binding
site of ODN A (bold letters) and of ODN Co (underlined
letters). Subsequently, the RNA2 in vitro transcript was
dephosphorylated and radioactively 5'-labeled with y-32-
ATP (Hartmann Analytics, Germany) using the Kinase
Max Kit (Life Technologies, USA). Afterwards, RNA2
transcripts were purified by 8 M UREA/10 % PAGE and
gel elution for 16 h at 37 °C in elution buffer (0.5 M
Ammonium Acid, 1 mM EDTA). For annealing, purified
RNA2 transcripts were mixed with 50 nM of ODNs in
hybridization buffer (50 mM NaCl, 10 mM MgCl,, 1 mM
DTT, 04 mM spermine hydrochloride, 25 mM Tris-
acetate, pH 6.8), heat-treated for 3 min at 90 °C, cooled,
and incubated at 37 °C for 30 min. After annealing, sam-
ples were incubated with 0.05 units/pl of HIV RT/RNase
H (Worthington, USA) for a further 30 min at 37 °C. The
cleavage reaction was stopped by adding formamide RNA
loading dye (New England Biolabs GmbH, USA), followed
by incubation for 5 min at 90 °C. Cleavage was analyzed
by denaturing 8 M UREA/10 % PAGE.

Transmission electron microscopy of semen-derived
enhancer of infection (SEVI)

Synthetic peptides corresponding to prostatic acid phos-
phatase (PAP) (European Molecular Biology Laboratory,
AAB60640) amino acid residues 248-286 (PAPy4g_o36)
were obtained from Davids Biotechnologie, Germany
and Bachem, Switzerland. Lyophilized peptides were re-
suspended in PBS at a stock concentration of 10 mg/mL,
and aliquots were stored at —20 °C. Fibril formation by
dissolved peptide (1 or 5 mg/mL) was initiated by
agitation at 37 °C for 72 h by using an Eppendorf ther-
momixer. Negative staining of the fibrils was performed
with 1 % Uranylacetat (Merck, Germany) on 400 mesh
copper grids (Electron Microscopy Sciences, USA).
Images were acquired with an OSIS Veleta CCD Camera
attached to a FEI Technai G 20 Twin transmission
electron microscope (FEI, Netherlands) at 80 kV.

Semen samples

Human semen samples were donated by healthy volun-
teers, diluted 1:2 with PBS containing 100 units/mL peni-
cillin, 100 pg/mL streptomycin, and 50 pg/mL gentamycin
(Gibco), and stored at —20 °C.

Infection of cells and viral load measurements

Prior to infection, 1 x 10° HIV-1virions were pre-incubated
with 250 nM of ODNSs or buffer (1 mM sodium phosphate
pH 8.0, 10 uM EDTA) in 100 pl RPMI + 10 % FCS for 6 h
at 37 °C. 5x 10° cells were spinoculated at 230 x g in a
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sterile 15 mL falcon tube, supernatant was removed and
the pellet was dissolved in virus/ODN mixture for 16 h in
the presence of 2 pg/mL polybrene (Sigma-Aldrich
Corporation, USA) (MOI 200). Next, cells were resus-
pended in 24-well plates using fresh RPMI+ 10 % FCS
medium containing 250 nM of ODNs or buffer. Every 3 to
4 days, supernatant was collected, fresh medium was
supplemented with 250 nM ODNs or with buffer and cell
numbers were determined. HIV-1 p24 antigen levels in the
respective supernatants were determined by ELISA using a
Versa Max Microplate Reader, Molecular Devices (USA).
For cellular infection assays (containing SEVI or human
semen samples), 5x 10° HIV-1 viral particles were pre-
incubated with 250 nM of ODNs or buffer (1 mM sodium
phosphate pH 8.0, 10 uM EDTA) and 100 pg/mL SEVI or
human semen for 6 h at 37 °C. Human semen was thawed
and 12.5 pl aliquots were diluted 1:16 in RPMI + 10 % FCS
prior to infection. 5 x 10° Jurkat 1G5 T cells were infected
with the mixture as described before.

In vitro HIV-1 fusion assay

HEK293T cells were transfected (TransIT, Mirus Bio
LLC, USA) with HIV-1 Env and Tat expression vectors.
Eight hours later, 5 x 10° cells were transferred into 24-
well plates and cultured overnight. Subsequently, 1 x 10°
Jurkat 1G5 T cells were incubated in RPMI + 10 % FCS
supplemented with ODNs or buffer for 1 h at 37 °C.
Afterwards, the medium of the transfected HEK293T
cells was removed and Jurkat 1G5 T cells in medium
supplemented with ODNs or buffer were added to the
HEK293T cells. Twenty-four hours later, cells were lysed
and luciferase activity was measured as relative light
units per second (RLU/s) according to manufacturer’s
protocol (Promega Corporation, USA) using a Centro
LB960 (Berthold Technologies, Germany) reader.

Statistical analysis

Statistical analysis was performed using Prism version
5.03 software (Graph Pad). The statistical significance
was assessed by one-way or two-way analysis of variance
(ANOVA) followed by a Dunnett’s Multiple Comparison
Test or Bonferroni’s posttest. A result of p<0.05 was
considered to be statistically significant.

Circular dichroism (CD) spectra

Five micrometre ODN A in buffer (Tris—HCI, 10 mM,
pH 7.8 or pH 4.5 supplemented with annotated salts) was
heated to 95 °C for 5 min and cooled slowly to RT. A CD
spectrum was recorded with a Jasco J-815 CD spectrom-
eter at 20 °C between 220 and 320 nm with data points
every 0.5 nm. Scanning speed was set to 500 nm/min;
bandwidth was 1 nm. The spectrum was measured five
times and the mean was calculated for each wavelength.
For melting CD spectra, 5 uM ODN A in buffer (Tris—HCl
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pH 7.5 supplemented with annotated salts) was heated to
100 °C for 5 min in the CD spectrometer. A spectrum from
220 to 320 nm was recorded as described before for every
5 °C decrease, from 100 to 20 °C. Spectra were depicted
with MATLAB (The MathWorks, Inc, USA) software.

Results

ODN A is highly stabile at 37 °C and forms higher order
molecular structures

Previously, we described a novel mechanism of viral
RNA genome cleavage mediated by the viral RT/RNase
H in cell-free viral particles. The active compound, the
oligodeoxynucleotide (ODN) A, targets the sequence of
the extended polypurine tract (PPT) of HIV-1, leading to
premature activation of the retroviral RT/RNase H and
hydrolysis of the HIV RNA genome (Fig. 1a) [11, 13, 29].
The sequence of the various ODNs analyzed here are
depicted in Fig. 1b. ODN A comprises a 25-mer anti-
sense strand targeted to the HIV-1 PPT and a 25-mer
passenger strand connected by four thymidines. These
thymidine residues (T4 linker) and the first three nucle-
otides at each terminus of the respective ODN are also
modified with phosphorothioates to enhance stability.
Due to partial complementarity of the antisense and
passenger strand, the ODNs create a hairpin-like struc-
ture. However, ODN A directly targets the extended
PPT, whereas the negative control, ODN Co, binds to
sequences downstream of the extended PPT. The
sequence of another control, ODN G, is identical to
ODN A in the passenger strand with some nucleotide
exchanges in the antisense strand to avoid binding to
the viral RNA genome (see Fig. 1b). The extended HIV-1
PPT is characterized by two non-purines next to which
the RNase H cuts in a highly specific manner, indicated
with an arrow (Fig. 1c).

The antiviral effect of ODN A has already been exten-
sively investigated in vitro and in vivo [11-13, 15, 16,
29]. These data suggested that ODN A might indeed be
a valuable component of future vaginal antiviral micro-
bicides. However, further successful microbicide devel-
opment requires that the antiviral agent possesses
outstanding drug stability. To test such properties, we
kept ODN A for extended time periods in phosphate-
buffered saline (PBS) (Fig. 2a) or in water (H,O) (Fig. 2b)
at 37 °C and subsequently analyzed the samples by na-
tive PAGE and SYBR Green II staining. Surprisingly,
ODN A formed a prominent high molecular structure as
visualized by non-denaturing polyacrylamide gel electro-
phoresis, and no degradation products of ODN A multi-
mers or monomers were observed over the entire period
of up to 102 days in PBS at 37 °C (Fig. 2a). In water, the
ODN A complex displayed compound stability for up
to ~2 months, although subsequently some degradation
was observed (Fig. 2b), indicating that the ionic PBS
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components play an important role in stabilizing the high
molecular structures of ODN A. Obviously, in water,
the high-ordered structures are dissolved over time and
additional signals appeared with higher electrophoretic
mobility. Nevertheless, even after 88 days of incubation,
some of the ODN A complex was still detectable.

After demonstrating high stability of the ODN A
hyperstructure, we next investigated the effect of ODN A
on RNase H after long-term storage. First, we analyzed
ODN A-mediated cleavage by RNase H using synthetic
radioactive 5" end-labeled in vitro transcribed HIV-1 RNA
containing the extended PPT. Freshly thawed ODN A
(positive control), as well as ODN A stored for 73 or
102 days in PBS cleaved the PPT RNA template almost
entirely, resulting in defined fragments (Fig. 2c). Inter-
estingly, ODN A stored in H,O was comparably active
in this in vitro assay. It is noted that a fragment with
lower mobility appears in the ODN Co-specific reaction.
This reflects the fact that ODN Co binds to sequences
downstream of the PPT.

Next, to analyze the antiviral activity of ODN A, HIV-
1 particles were pre-incubated for 6 h together with
sample buffer, 250 nM of ODN A or ODN Co at 37 °C,
followed by overnight infection of Jurkat 1G5 T cells
(see experimental design outlined in Fig. 2d). Sixteen
hours later, culture supernatants were replaced with
fresh medium that was supplemented with the respective
ODNs. Every 3—4 days, supernatants were collected to
monitor HIV-1 particle release by HIV-1 p24 antigen
ELISA. Cells were reseeded into fresh cell culture
medium, again supplemented with the respective ODN:S.
Uninfected cells were included as a negative control,
whereas ODN Co and the sample without ODN (Buffer)
served as positive controls. No HIV-1 particles were de-
tected in the supernatant of cells infected in the pres-
ence of freshly thawed ODN A (green points), nor in the
presence of long-term stored ODN A (red points)
(Fig. 2d). In contrast, the amount of p24 HIV-1 in the
supernatant increased over time in the samples without
ODN (Buffer, grey points) or in the presence of ODN
Co (black points), indicating successful infection of the
1G5 Jurkat T cells (Fig. 2d). Thus, despite storage for
several months at 37 °C, ODN A showed efficient RNase
H-assisted cleavage of in vitro transcribed PPT-
containing RNA as well as high antiviral activity in cell
culture infection experiments.

The lubricant K-Y Jelly does not influence the stability or
antiviral activity of ODN A

Next, we analyzed whether a potential carrier for microbi-
cide application in humans, such as the established lubri-
cant carboxymethylcellulose CMC (K-Y Jelly) [15, 30-33],
affects ODN A’s stability or antiviral activity. As before,
ODN A was stored for extended periods of time in
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Fig. 2 ODN A is active in vitro and in cell culture infection assays after long-term storage at 37 °C. a ODN A (8 uM) was stored for the indicated
duration in PBS or (b) in H,O at 37 °C. Samples were analyzed by non-denaturing 10 % PAGE. ¢ ODN A (50 nM), either freshly thawed or stored
for the indicated time periods at 37 °C in PBS or H,O was hybridized to 50 nM in vitro transcribed y-32-ATP 5-labeled PPT-containing RNA in
the presence of HIV-1 RT/RNase H. The cleavage products were analyzed by denaturing polyacrylamide/8 M urea gel electrophoresis and are
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sequences downstream of the PPT, served as a control. d Following the experimental procedure shown at the top: Freshly thawed ODN A or
ODN Co (250 nM), or ODN A stored for 102 days at 37 °C in PBS were incubated with replication-competent HIV-1 particles (1 x 10%) at 37 °C for
6 h in cell culture medium. Jurkat 1G5 T cells were infected with the mixtures overnight and HIV-1 p24 antigen in the supernatant was detected
at 3-14 days post infection. Two-way ANOVA followed by Bonferroni posttest was used for statistical evaluation. ODN A-mediated inhibition

(as compared to buffer alone) was highly significant (p < 0.001) at day 7—

“
Day 14

14 post infection

25 % K-Y Jelly/PBS at 37 °C. Subsequent analyses re-
vealed that the presence of K-Y Jelly did not negatively
affect ODN A degradation (Fig. 3a), nor RNase H-
mediated PPT RNA cleavage and the antiviral activity
of ODN A (Fig. 3b and c¢). Moreover, ODN A exposed

to 25 % K-Y Jelly for up to 57 days did not lose its pro-
nounced anti-HIV-1 activity (Fig. 3c). Thus, personal
water-based lubricants used in microbicide formulas,
such as K-Y Jelly, apparently do not interfere with ODN
A activity.
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by HIV-1 p24 antigen ELISA of culture supernatants at day 3-14 post infection. Two-way ANOVA followed by Bonferroni posttest was used for
statistical evaluation. ODN A-mediated inhibition (as compared to buffer alone) was significant (day 7, p < 0.05; day 10 and 14, p < 0.001)

The significant thermostability of ODN A depends on it
forming G-quadruplex-based DNA structures

The nature of the observed ODN A-specific high molecular
weight structures was particularly interesting. It is known
that oligonucleotides containing several guanosines can
form four-stranded, non-canonical DNA structures, called
G-quadruplexes [34, 35]. Within a quadruplex, tetrads of
guanosines form by interacting via additional hydrogen
bonds, known as Hoogsteen base pairing [22, 24]. A unique
feature of quadruplex structures is selectively increased
stability in the presence of potassium ions that are com-
plexed by the guanosine tetrads. Since the passenger
strand of ODN A indeed contains multiple guanosines
(Fig. 1b), we hypothesized that these residues account for
the observed high ordered structures [36].

We analyzed the secondary structure of ODN A in
different buffer conditions by CD spectroscopy (Fig. 4b).
In buffer lacking potassium the spectra reassembled the
expected spectra of B-DNA in a hairpin structure [37].

In contrast, in potassium-containing buffer ODN A pro-
duced a strong absorption maximum at 270 nm and a
minimum at 240 nm. The fact that potassium stabilizes
G-quadruplexes and these CD data resemble classical
spectra of parallel G-quadruplexes provides strong evi-
dence for quadruplex formation of ODN A. Interestingly,
pH 4.5 did not influence the formation of the aggregates
(Fig. 4a and b).

These spectra, together with the data obtained by non-
denaturing PAGE suggest that ODN A forms high mo-
lecular weight complexes, most likely so-called DNA
“frayed wires” [22, 23, 25]. Frayed wires are apparently
formed intermolecularly by deoxyoligonucleotides com-
prising elongated stretches of guanosines in combination
with adenosine or thymidine-rich sequences. The multi-
meric DNA complex is then mediated by intermolecular
G-quadruplex formation, resulting in a G-core with sin-
gle-stranded adenosine-/thymidine-rich sequences pro-
truding from the stem [22, 23, 37].
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G-based high ordered structures are frequently character-
ized by increased solubility and high thermostability [25, 37].
To investigate this we performed thermal denaturation CD
spectroscopy between 20 and 100 °C in different buffer con-
ditions (Fig. 4c). Interestingly, ODN A formed aggregates

that were stable up to 100 °C. Increasing potassium concen-
trations dramatically stabilized these structures (Fig. 4c).

In conclusion, ODN A forms potassium-dependent,
multimeric hyperstructured complexes that are pH-
independent and characterized by high thermostability.
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The G-quadruplex-based structure of ODN A contributes
to its antiviral activity

It has been previously shown that the strong antiviral ac-
tivity of ODN A is due to its activation of the viral
RNase H [11-13, 15, 16, 29]. However, the finding that
ODN A forms G-based hyperstructures raised the ques-
tion of whether these structures can interfere with HIV
infectivity [38—41]. Therefore, we now included ODN G
in our experimental set-up. Compared to ODN A, ODN
G has nucleotide exchanges specifically in its antisense
strand (Fig. 1b), which allows formation of DNA hyper-
structures without binding to the HIV-1 PPT.

Complex formation was visualized by native PAGE.
Whereas ODN Co migrated as a monomer, ODN A and
ODN G formed comparable high molecular structures
(Fig. 5a). When HIV-1 particles were pre-incubated with
ODNs as before, ODN A again demonstrated complete
inhibition of de novo infection, whereas ODN G-
treatment resulted in delayed accumulation of viral
particles in the culture supernatants, characterized by
high viremia towards the end of this experiment (day
17-21) (Fig. 5b). More rapid development of viremia
was clearly observed in the absence of ODNs (Buffer),
somewhat declining towards the end of the experimen-
tal timeframe (day 17-21). This presumably reflects
the fact that early and strong virus replication may
cause pathogenic effects in this cell culture.

Guanosine-based hyperstructures have been reported
to decrease the binding of HIV-1 to host cell membranes
[39, 40]. Therefore we next employed an established cell
culture-based fusion assay system [42] to test ODN A’s
or ODN G’s capacity to block the interaction of HIV-1
Env with the cellular CD4 surface molecule. HEK293T
cells were cotransfected with vectors expressing HIV-1
Tat and Env, or with the parental pcDNA plasmid as a
negative control. At 24 h post transfection, Jurkat 1G5 T
cells, which were pre-incubated in buffer (additional
control) or in 500 nM of ODNSs, were added to the
HEK293T cultures for a further 24 h. Note that Jurkat
1G5 T cells contain a firefly luciferase expression cas-
sette under the control of an HIV-1 LTR promoter; thus,
Env-CD4 interaction and subsequent cell fusion enables
Tat-mediated luciferase expression (schematically depicted
in Fig. 5c, left panel). As expected, this assay clearly
revealed that both ODN A and ODN G diminished the
interaction of membrane-bound viral Env and cellular
CD4 molecules (Fig. 5c¢, right panel), confirming that
G-based structures can per se interfere with HIV infec-
tivity [38-41].

To further evaluate the antiviral potency of ODN A
and ODN G we next defined the ECs, values for both
agents. Jurkat 1G5 T cells were infected overnight with
HIV-1, which was pre-incubated for 6 h at 37 °C in dif-
ferent concentrations of ODN A or ODN G. At 7 days
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post infection, amounts of viral particles in the super-
natant were determined by HIV-1 p24 antigen ELISA
and the signal obtained in the sample without ODNs
was arbitrarily set to 100 %. ODN A displayed an ECs,
value of 48.43 nM, whereas ODN G had an ECs, value
of 138.6 nM (Fig. 5d). Clearly, the increased antiviral
potency of ODN A can be explained by its dual function,
not only interfering with virus uptake via its G-tetrads
and possibly DNA frayed wire structure, but also trigger-
ing viral genome cleavage by prematurely activating the
viral RT/RNase H.

ODN A activity in the presence of human semen and
semen-derived amyloid fibrils

Despite high antiviral potency and pronounced thermo-
stability, antiviral compounds may fail as microbicides in
the presence of semen, which has been shown to signifi-
cantly enhance HIV infectivity by forming semen-
derived amyloid fibrils [18, 19, 43, 44]. In fact, several
polyanionic candidate microbicides have been reported
to accelerate semen-derived fibril formation [20], thereby
further enhancing HIV infection. Since ODN A is also a
polyanionic compound, we next examined its effect on
the in vitro formation of SEVI, which is formed by pep-
tides proteolytically released from prostatic acid phos-
phatase (PAP) [18]. Synthetic PAP-derived peptides
(PAP,4g.056) were incubated for 72 h at 37 °C in the
presence of high concentrations of ODN A. In turn,
formation of amyloid fibrils was visualized by negative-
stain transmission electron microscopy (TEM). No
acceleration of amyloid fibril formation was observed
in samples containing 0.5 or 5 uM ODN A when com-
pared to a sample without ODN (Fig. 6a).

In addition to enhancing HIV infectivity, human
semen may also impair the efficacy of microbicides [21].
Therefore, the antiviral activity of ODN A in the pres-
ence of synthetic SEVI fibrils or human semen (SE)
samples was analyzed directly. HIV-1 particles were
pre-incubated at 37 °C for 4 h together with 250 nM
ODN s alone, ODNs plus 100 pg SEVI, or buffer alone
(Fig. 6b). Likewise, viral particles were pre-incubated
with combinations of ODNs and different human semen
samples (Fig. 6¢). Subsequently, 5 x 10° Jurkat 1G5 T cells
were infected with the respective mixtures. Sixteen hours
later, the cells were reseeded in fresh culture medium
(supplemented with ODNs or sample buffer only). Every
3—4 days, supernatants were collected to determine the
amount of released viral particles by HIV-1 p24 antigen
ELISA. As expected, SEVI clearly increased HIV-1 infec-
tivity as shown at day 7 and day 10 post infection (Fig. 6b).
However, ODN A displayed strong antiviral activity, even
in the presence of SEVI (Fig. 6b). Comparable results were
observed when the synthetic SEVI was replaced by human
semen (from two different donors) (Fig. 6¢).
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Fig. 5 The formation of G-based hyperstructures contributes to ODN A’s antiviral activity. a ODN A, ODN Co and ODN G (8 puM) were incubated
for 1 hin PBS and analyzed by native polyacrylamide gel electrophoresis. b ODN A, ODN Co, ODN G (250 nM) or buffer alone were incubated
together with HIV-1 particles (1 x 10°) for 6 h at 37 °C. Following infection of Jurkat 1G5 T cells, release of p24 antigen was detected over time
in the culture supernatants (day 3-21 post infection). Two-way ANOVA followed by Bonferroni posttest was used for statistical evaluation. ODN
A-mediated inhibition (as compared to buffer alone) was highly significant (p < 0.001) at day 10-21 post infection. ODN G-mediated inhibition
(as compared to buffer alone) was highly significant (p < 0.001) at day 10, 14 and 21 post infection. ¢ Following the experimental design depicted at
the left, HEK293T cells were transfected with plasmid vectors expressing HIV-1 Env and Tat, or the parental vector (pcDNA) as a negative control. At
24 h post transfection, Jurkat 1G5 reporter T cells, which were pre-incubated for 1 h in 500 nM ODN or buffer alone (negative control) were added
to the HEK293T cell cultures for another 24 h. Jurkat 1G5 T cell-derived luciferase signals were subsequently measured, indicating successful cell
fusion. One-way ANOVA followed by Dunnett’s Multiple Comparison Test was used for statistical evaluation. ODN A-and ODN G-mediated cell
fusion (as compared to buffer alone) was highly significant (p < 0.001). d Different concentrations of ODN A or ODN G were pre-incubated with
HIV-1 as before. Subsequently, Jurkat 1G5 T cells were infected and HIV-1 p24 antigen release was detected at day 7 post infection. ECsq values

were calculated using GraphPad PRISM (Graphpad Software, Inc, USA) software

In summary, these data showed that ODN A does not
accelerate amyloid fibril formation and demonstrates
high antiviral efficacy, even in presence of SEVI or
human semen.

Discussion

Novel classes of antiretroviral microbicides are consid-
ered to be important tools to halt sexual transmission of
HIV, particularly in countries where social conventions
hamper the use of condoms and access to antiretroviral
medicines is limited. Various different delivery systems
are currently used for microbicide application. In the
majority of current clinical trials, microbicides are for-
mulated as vaginal gels, vaginal tablets, intravaginal rings
or long-acting injectables [45]. Moreover, microbicidal
antiretroviral activity may be combined with contracep-
tion or with drugs targeting, for example, HSV-2 or
other sexual transmitted diseases [45-47].

Clearly, user adherence to novel microbicides, espe-
cially in the Third World, depends not only on antiviral
efficacy, but also on the easiness of application and
storage. Therefore, the main goal in this study was to
investigate the activity, and particularly the drug stabi-
lity of the antiretroviral agent ODN A. This novel and
advanced oligonucleotide-based compound has been
previously shown to target the highly conserved ex-
tended PPT of HIV-1, leading to premature activation
of the RT/RNase H complex, resulting in degradation
of the viral RNA genome [11-16, 29].

Here, we successfully demonstrated the pronounced
and unexpected stability of ODN A, without any reduc-
tion of its antiviral potency, even when stored for several
months at 37 °C. Furthermore, the lubricant K-Y Jelly
[30], a likely component of a pharmaceutical microbicide
formulation, did not affect the stability or antiviral
potency of ODN A. This suggests that the inclusion of
ODN A into a future long-acting microbicide (i.e. de-
livered by intravaginal rings, injectables or gels) will
probably not require additional drug modifications to
improve drug stability.

Another important aspect in microbicide development
is assessing the potential effects of human semen on the
efficacy of antiviral agents. The major component of
semen is a coagulum containing spermatozoa and semeno-
gelin proteins [48, 49]. These proteins are proteolytically
cleaved into smaller peptide fragments by prostate-specific
antigen (PSA), generating cationic amyloid fibrils. These
fibrils are known to facilitate HIV infection by enhan-
cing the attachment of virions to cells, and perhaps by
altering the immunological environment within the
female mucosa [18, 19, 43, 44, 50, 51]. Importantly, such
amyloid fibrils can also decrease the antiviral efficacy of
antiviral drugs, especially polyanionic agents targeting
the virus itself [21]. The exact reason for this is un-
known, but neutralization of the drugs’ negative charge,
or competitive binding to the viral envelope seems to
be involved [21, 52, 53].

Moreover, polyanionic compounds such as cellulose
sulfate, carrageenan and PRO2000, potentially acting as
HIV-1 entry inhibitors, when previously analyzed in
microbicide clinical trials, in some cases unexpectedly
resulted in increased infection rates [54, 55]. These ra-
ther sobering results were linked to enhanced formation
of semen-derived fibrils by the microbicide candidates
[20]. Fortunately, the TEM data obtained in this study
demonstrated that, although negatively charged, ODN A
does not accelerate amyloid fibril formation. More
importantly, neither synthetic amyloid fibrils (i.e. SEVI)
nor human semen negatively affected ODN A’s antiviral
activity in infection assays.

ODN A has a length of 54 nucleotides and forms a
hairpin-like structure with an antisense strand binding
to the HIV-1 PPT and a partially complementary pas-
senger strand for stabilization [12, 29]. The passenger
strand contains a guanosine-rich stretch that can poten-
tially form G-quadruplex-based larger hyperstructures,
so-called G-wires or DNA frayed wires [22, 23, 25, 56].
Indeed, the CD spectra presented here displayed typical
characteristics of G-quadruplex-based structures with
parallel strand orientation indicated by a strong maximum
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alone) was highly significant (p < 0.001) at day 10 post infection

Fig. 6 ODN A does not accelerate amyloid fibril formation and maintains its antiviral activity in the presence of human semen and SEVI.

a PAP,4g.08¢ peptides were incubated at 37 °C for 72 h in the presence or absence of 0.5 or 5 uM ODN A. Afterwards, amyloid fibrils were
detected by negative-stain transmission electron microscopy. Scale bars indicate 5 um, 500 nm or 100 nm, left to right. b HIV-1 particles

(5 x 10%) were incubated for 6 h + 250 nM ODNs and + 100 pg/ml SEVI. Jurkat 1G5 T cells were infected overnight with the respective
mixtures and HIV-1 p24 antigen release into the supernatants was monitored by ELISA at the indicated days. The p24 antigen level on day
7 post infection is depicted as a bar chart on the right. Two-way ANOVA followed by Bonferroni posttest was used for statistical evaluation.
ODN A-mediated inhibition (+/- SEVI; as compared to buffer alone) was highly significant (p < 0.001) at day 14 post infection. ¢ Analysis of
HIV-1 infectivity essentially as described in panel b. Prior to de novo infection, HIV-1 particles were incubated for 6 h +250 nM ODNs and 2
different human semen samples. Statistics were evaluated as before. ODN A-mediated inhibition (+/- SE1 or SE2; as compared to buffer

at 270 nm and minimum at 240 nm, particularly in the
presence of potassium. The secondary structure of ODN
A is very thermostable and pH-independent. The spectra
together with the high-ordered structures seen on native
PAGE indicate that ODN A aggregates to DNA frayed
wires formed by deoxyoligonucleotides containing runs of
guanosines [22, 25].

Obviously, the formation of G-based quadruplexes
would explain the surprisingly high stability of ODN A-
based hyperstructures, which combined with its intrinsic
solubility, is highly advantageous for further microbicide
development. It is known that related DNA aptamers
and G-quadruplexes can diminish HIV infectivity by
interfering with the binding of viral particles to host
cells, or by inhibiting reverse transcription or HIV inte-
gration [38—41, 57]. To determine whether the passen-
ger strand contributes to ODN A’s significant antiviral
potency we used ODN G, a variant unable to recognize
the PPT. Indeed, this oligonucleotide also formed high
molecular structures, although its antiviral potency was
much lower compared to ODN A. Clearly, the mecha-
nisms of how ODN A molecules enter living cells (or
even viral particles) remains to be elucidated. However,
it was previously shown that ODNs can enter cells in
large quantities, when HIV-1 particles are present [58].

Due to its dual mode of action, ODN A appears to be
optimally positioned to act as a powerful antiviral agent.
Its target, the PPT, occurs in 69 % of primary HIV-1
isolates [59] and, consequently, several patient-derived
viruses, including antiretroviral drug-resistant viruses,
have been shown to be fully susceptible to ODN A-
mediated inhibition [12, 17]. Nonetheless, viral diversity
of some HIV subtypes or strains may negatively impact
on ODN A’s antiviral efficacy, an effect that may be
overcome by applying a mixture of ODN A variants.

ODN A not only forms G-based DNA hyperstructures,
thereby targeting viral entry, but also prematurely ac-
tivates the viral RT/RNase H complex by simulating
naturally occurring DNA-RNA hybrids, leading to
degradation of the viral RNA genome before reverse
transcription can occur. Since ODN A is an extraor-
dinary stable compound with high anti-HIV properties,
even in the presence of semen or lubricant, it represents

an ideal candidate for further development as an antiviral
microbicide. It has to be stated, however, that the in vitro
models used in the present study do not exactly reproduce
the conditions occurring in vivo (e.g. mimicking the
mucosal environment etc.). Therefore, future studies
will focus on the analysis of GMP-produced ODN A in
appropriate animal models. Particularly, these studies
will analyze the occurrence of potential drug-related
toxicities and the potential development of antiviral
resistance.

Conclusions

Globally, HIV is primarily transmitted by sexual inter-
course and predominantly infects people in developing
countries. Therefore, advanced vaginal microbicides are
highly needed to provide female-controlled methods of
HIV prevention in such environments. Here, we report
very high stability, solubility and antiviral potency of
ODN A, a 54-mer oligonucleotide that forms G-based
DNA hyperstructures. In particular, ODN A demon-
strates antiviral activity in the presence of human
semen, or an approved lubricant for human use, and
may therefore be a valuable component of future vagi-
nal microbicides.
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