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Abstract

Background: Leptospirosis is a water-borne and widespread spirochetal zoonosis caused by pathogenic bacteria
called leptospires. Human leptospirosis is an important zoonotic infectious disease with frequent outbreaks in recent
years in China. Leptospirosis's emergence has been linked to many environmental and ecological drivers of disease
transmission. In this paper, we identified the environmental and socioeconomic factors associated with leptospirosis in
China, and predict potential risk area of leptospirosis using predictive models.

Methods: Leptospirosis incidence data were derived from the database of China's web-based infectious disease
reporting system, a national surveillance network maintained by Chinese Center for Disease Control and Prevention.

We built statistical relationship between occurrence of leptospirosis and nine environmental and socioeconomic risk
factors using logistic regression model and Maxent model.

Results: Both logistic regression model and Maxent model have high performance in predicting the occurrence of
leptospirosis, with AUC value of 0.95 and 0.96, respectively. Annual mean temperature (Biol) and annual total
precipitation (Bio12) are two most important variables governing the geographic distribution of leptospirosis in
China. The geographic distributions of areas at risk of leptospirosis predicted from both models show high agreement.
The risk areas are located mainly in seven provinces of China: Sichuan Province, Chongqging Municipality, Hunan
Province, Jiangxi Province, Guangdong Province, Guangxi Province, and Hainan Province, where surveillance and
control programs are urgently needed. Logistic regression model and Maxent model predicted that 403 and 464
counties are at very high risk of leptospirosis, respectively.

Conclusions: Our results highlight the importance of socioeconomic and environmental variables and predictive

models in identifying risk areas for leptospirosis in China. The values of Geographic Information System and
predictive models were demonstrated for investigating the geographic distribution, estimating socioeconomic
and environmental risk factors, and enhancing our understanding of leptospirosis in China.
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Background

Human leptospirosis is a waterborne infectious disease
caused by pathogenic bacteria called leptospira. Cur-
rently, it is one of the most common widespread spiro-
chetal zoonosis and a growing worldwide public health
concern [1]. Leptospirosis can be transmitted directly or
indirectly from animals to humans, human-to-human
transmission occurs very rarely [2]. In recent years,
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leptospirosis has gained increased attention because of
many outbreaks of leptospirosis around the world [3].
Those outbreaks pose a great burden on health systems
and cause significant economic and social disruption [4].
The WHO has identified leptospirosis as a neglected
tropical disease of global importance, requiring further
research to understand its epidemiology, ecology and the
disease burden that it causes around the world [2].

In China, a total of 176,450 cases were confirmed in
29 out of the 34 provinces and municipalities from 1991
to 2010, resulting in an average annual incidence rate of
0.70 cases per 100,000 people [5]. Human leptospirosis,

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-016-1653-5&domain=pdf
http://orcid.org/0000-0002-6672-2247
mailto:dingfan@chinacdc.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhao et al. BMC Infectious Diseases (2016) 16:343

therefore, is still an important zoonotic infectious dis-
ease in China because of ongoing frequent outbreaks.
However, seldom researches have been done to investi-
gate the risk factors of leptospirosis and the geographic
distribution pattern in China, which play a fundamental
role in controlling this infectious disease.

The emergence of leptospirosis has been linked to
many environmental and ecological drivers of disease
transmission [6] such as heavy rainfall, consequent
floods, temperature, exposure to animals, etc. The ecol-
ogy of leptospirosis involves very complex interactions
among humans, animal reservoirs, leptospires and their
surrounding environments [7]. Risk factors for human
infection include occupational exposure, recreational ac-
tivities, cultural factors and socioeconomic circum-
stances [8]. Geographic information systems (GIS),
remote sensing (RS) and ecological niche modeling have
been used for investigating a range of infectious diseases
related to environmental and ecological drivers [9-11].
GIS can offer an efficient and practical way to directly
visualize the dynamics of infectious disease transmission
and identify the geographic distribution and risk factors
of epidemic outbreaks [12]. GIS has been used in asses-
sing spatial patterns of relationships between local
hydrological factors and human leptospirosis occurrence
[3], and identifying risk areas for leptospirosis in Ameri-
can Samoa [6]. These maps are critical for guiding allo-
cation of scarce public health resources.

In this paper, we aim to identify the environmental
and socioeconomic factors associated with risk of
leptospirosis infection, and predict potential risk
areas of leptospirosis in China using ecological niche
modeling.

Methods

Leptospirosis incidence data

Leptospirosis incidence data were derived from the data-
base of China’s web-based infectious disease reporting
system, a national surveillance network maintained by
Chinese Center for Disease Control and Prevention
(China CDC). Leptospirosis cases were recorded by local
hospitals, and disease control and prevention branches
of China CDC. Each case was confirmed by laboratory
diagnosis tests because the clinical manifestations of
leptospirosis were often untypical. According to the sur-
veillance from 2010 to 2014, a total of 2741 leptospirosis
cases were geo-coded by using detail addresses or posi-
tions of the town. The reported leptospirosis cases are
distributed broadly across the south of China (Fig. 1a).
After removing duplicated records in the each 1 km x
1 km grid cell (the resolution of environmental data
used in this study), we retained 2129 spatially unique oc-
currence points. We randomly drew 21290 pseudo-
absence points from the study area. We combined
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occurrence and pseudo-absence data to build logistic
model and Maxent model.

Risk factors analysis

Leptospirosis is a multi-factorial infectious disease that
is highly associated with both environmental and socio-
economic factors [13].

Climatic variables

Although occurs worldwide, leptospirosis is most
prevalent in tropical and subtropical areas with high
rainfall [2]. Heavy rainfall events and floods increase
the risk of leptospirosis by bringing leptospira and their
animal hosts including rat and pig into closer contact
with humans [14]. A high correlation between sero-
prevalence of infection and heavy rainfall and flood
events in China was also reported [15]. Leptospires are
able to survive for prolonged periods of time in higher
temperatures and humid environments [1, 16]. In
addition, we found that 37 % cases occurred in summer
and 50 % cases in autumn (Fig. 2) in China. Therefore,
four variables (annual mean temperature, temperature
seasonality, annual precipitation and precipitation sea-
sonality) were obtained from Worldclim database [17],
which was interpolated from weather station records
from 1950-2000.

Animal host density variable

Leptospirosis is found mainly in area where humans
come into contact with the urine of infected animals or
urine- contaminated environments [2]. Rodents and
some domestic animals such as pigs and dogs are con-
sidered to be the most dangerous for transmitting lepto-
spires to humans [18]. Leptospirosis is considered the
only epidemic-prone infection that can be transmitted to
humans directly from water, soil and food contaminated
urine from infected animal hosts [1]. We considered
only the effect of pig density on transmission of lepto-
spirosis. The pig density data was obtained from the
Food and Agriculture Organization (FAO) (available at
http://www.fao.org/ag/againfo/resources/en/glw/GLW _
dens.html).

Water reservoir variable

Pathogenic leptospires was reported to be associated
with the presence of water bodies including streams,
lakes and springs. Therefore, areas with high density of
water bodies might be at higher risk of leptospirosis oc-
currence [3]. Average river density was calculated by div-
iding the total river length in each community by the
community area.
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Land cover type

Land cover and land cover change (LUCC) have been
related to the incidence of leptospirosis [3, 8, 14]. Land
cover type data was derived from GlobCover Land
Cover version V2.3 released by European Space Agency
(available at http://www.esa.int/esaEO/SEMXB7TTGOF_
index_0.html).

Economic variable

Leptospirosis cases have been reported in a variety of
settings ranging from large urban centers after heavy
rainfall events to remote rural areas with limited access
to clean drinking water. Leptospirosis is often considered
a disease of poverty in middle and low income countries
because it affects mostly vulnerable populations [19].
Gross Domestic Product (GDP) is a measurement of the
economic performance and living standard. GDP data at
county level was obtained from National Bureau of Sta-
tistics. Human population density could serve as proxy
for the exposure to infected livestock. Gridded human
population density data was obtained from Data Sharing
Infrastructure of Earth System Science (available at
http://www.geodata.cn/Portal/metadata/viewMetadata.jsp?
id=100101-38).

Population density

National 1 km*1 km gridded population density data of
2003 in China was obtained from Data Sharing Infra-
structure of Earth System Science (available at http://
www.geodata.cn/Portal/metadata/viewMetadata.jsp?id=
100101-38).

Data processing

All data layers were projected in Albers coordinates and
resampled to spatial resolution of ~1 x 1 km in ArcGIS
Desktop 9.3 (Environmental Systems Research Institute,
Redlands, CA, USA) environment. We log-transformed
three variables including pig density, GDP and human
population density. The final set of predictors is listed in
Table 1. We calculated correlation matrix for all variable.
The highest correlation coefficient is between log-
transformations of pig density and human population
density (0.635) (Table 2). Therefore, there is low multi-
collinearity among predictors.

Ecological niche modeling

Ecological niche modeling (ENM) has been proved to
be an effective tool to investigate the geography and
ecology of disease transmission [6, 10]. A logistic re-
gression model and Maxent model were used in this
study to predict the potential risk of leptospirosis dis-
tribution in China.

Logistic regression model

Logistic regression is often used to determine the prob-
ability of a binary dependent variable based on one or
several independent variables. The binary dependent
variable represents presence or absence of leptospirosis
points. The independent variables are a set of environ-
mental and socioeconomic factors thought to determine
distribution of leptospirosis. The advantage of logistic re-
gression is that, through the addition of a suitable link
function to the usual linear regression model, the vari-
ables may be either continuous or discrete, or any
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Table 1 Environmental and socioeconomic variables
Risk factors Data description Type Percent Permutation
contribution importance

Environmental factors Biol Annual Mean Temperature Continuous 479 435

Bio4 Temperature Seasonality (standard deviation *100) Continuous 37 52

Bio12 Annual Precipitation Continuous 345 378

Bio15 Precipitation Seasonality (Coefficient of Variation) Continuous 0.5 15

River Density Average River Density Continuous 13 23

Log_Pig Distribution of pig density from FAO Continuous 16 0
Socioeconomic factors Landcover Land cover type GlobCover Categorical 1.7 1.7

Log_GDP Gross Domestic Product of county Continuous 0.7 32

Log_CNPOP Gridded human population density Continuous 8 4.7

combination of both types [20]. Logistic regression ana-
lysis is explained as a linear equation given below.

Y = Logit(p) = In <p>

o (1)

Y =By +BiXi + BoXa + -+ BaXn (2)

Where p is the probability that the dependent variable
(Y) is 1, p/(1 - p) is the so-called odd or frequency ratio,
B, is the intercept, and B;, B,,..., B, are coefficients,
which measure the contribution of the independent vari-
ables (X1, X2,..., Xn) to the variations in Y.

The probability of leptospirosis occurrence can be cal-
culated from 9 environmental and socioeconomic factors
(Table 1) using the logistic regression equation and coef-
ficients obtained in R.

Maxent model

Maximum entropy (Maxent) model [21] is a very popular
ecological niche model, which outputs the maximum en-
tropy distribution that satisfies the constraints determined
by a set of environmental variables. Maxent uses presence
and background points (pseudo-absence points) randomly
drew in study area to estimate probability of distribution

Table 2 Correlation matrix of risk factors

of leptospirosis. 75 % occurrence points (1597) were ran-
domly selected for training model, and the reaming 25 %
points (532) were used for assessing model performance.
A total of 21290 pseudo-absence points were randomly
sampled from provinces where no case were reported in
the period of 2010 to 2014. Nine environmental and
socio-economic variables (Table 1) were used to build
models to predict the geographic distribution of leptospir-
osis in China. To measure the relative importance of each
environmental and socio-economic variable in Maxent
model, a jackknife manipulation was performed.

Model assessment

Receiver operating characteristic (ROC) analysis was
used to evaluate the discrimination ability of the two
models, and to determine the optimal threshold to con-
vert probability of distribution of leptospirosis to binary
outputs (presence and absence of leptospirosis). The
threshold-independent indicator, AUC (area under the
Receiver Operating Characteristic curve), was used to
evaluate model performance. AUC greater than 0.7 indi-
cates an adequate predictive ability of the model [22].
The optimal threshold that equals test sensitivity and
specificity, which gives equal weight to sensitivity and

Bio1 Bio4 Bio12 Bio15 River Density Log_Pig Log_GDP Log_CNPOP
Bio1 —-0.3073 05914 —0.5531 03345 05974 03559 05918
Bio4 -0.3364 0.3409 -0.0174 —-0.0838 0.2491 -0.1070
Bio12 —0.4608 04835 0.5304 0.2342 04596
Bio15 —-04035 —0.2286 -0.0840 —0.2603
River Density 0.5345 0.3201 0.5067
Log_Pig 04422 0.6350
Log_GDP 03562

Log_CNPOP
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specificity, was selected to identify risk areas of lepto-
spirosis in China. The probability of leptospirosis pres-
ence could be converted into presence and absence
using this threshold. A set of threshold-dependent as-
sessment indices including sensitivity, specificity, Kappa,
true skill statistic, were calculated.

Results

Model assessment

Both logistic regression model and Maxent model have
high performance in predicting the occurrence of lepto-
spirosis in China, with AUC value of 0.95 and 0.96, re-
spectively. The optimal threshold that equals sensitivity
and specificity is 0.05 for logistic regression model and
0.34 for Maxent model, respectively. Five threshold-
dependent model assessment indices are shown in
Table 3. Our results show that Maxent model performs
better than logistic regression model regarding all model
assessment indices.

Main risk factors of leptospirosis

Annual mean temperature (Biol) and annual total pre-
cipitation (Biol2) are two most important variables gov-
erning the geographic distribution of leptospirosis in
China, with permutation importance of 43.5 % and
37.8 % from Maxent model, respectively (Table 1). They
produced the best predictions when used alone from
Jackknife analysis. The response curves of the two most
important variables reveal that the transmissions of
leptospirosis mainly happen in hot and relatively wet re-
gions in China. The probability of leptospirosis presence
increases as annual mean temperature increases from
12 °C to 30 °C (Fig. 3). The risk of leptospirosis outbreak
increases significantly as annual precipitation increases
from 1000 mm to 2000 mm. Compared with the linear
relationship between response variable and predictors in
logistic regression model, response curve from Maxent
model showed that Maxent can build nonlinear and
complex relationships between probability of occurrence
of leptospirosis and predictors.

Table 3 Model assessment indices

Model performance index Logistic regression Maxent
model model
AUC 0.95 0.96
Threshold 0.05 034
Sensitivity 0.98 0.99
Specificity 0.86 0.89
Proportion of correct prediction 0.90 093
True skill statistic 0.84 0.88
Kappa 0.81 0.86
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Leptospirosis risk mapping

We converted the predicted maps of probability of
leptospirosis presence from the two models to presence
and absence using the corresponding optimal thresholds.
The areas predicted to be present with leptospirosis are
considered as risk area of leptospirosis. Our results re-
vealed that there is high spatial variability of leptospir-
osis seroprevalence in China. The risk areas are located
mainly in seven provinces of China: Sichuan Province,
Chongqing Municipality, Hunan Province, Jiangxi Prov-
ince, Guangdong Province, Guangxi Province, and Hai-
nan Province, where surveillance and control programs
are urgently needed (Fig. 4). There is high agreement be-
tween the prediction maps from logistic regression
model and Maxent model. But the logistic regression
model predicted larger risk areas than Maxent model,
especially in Yunnan Province. We also calculated the
proportion of risk area in each county of all provinces
which have reported cases in the period of 2010-2014.
Based on the proportion of risk area, we classified all
counties into six risk categories: no risk (risk area =0),
very low (0 <risk area<= 0.2), low (0.2 <risk area<=
0.4), medium (0.4 <risk area<= 0.6), high (0.6 <risk
area < = 0.8), very high (0.8 <risk area<= 1.0) (Fig. 5).
The risk maps show very apparent spatial clustering of
counties at very high risk of leptospirosis in China.
There are 403 and 464 counties in very high risk cat-
egory from logistic regression model and Maxent, re-
spectively (Fig. 5). In those counties, disease survey and
monitoring program are urgently needed, especially from
August to October when most leptospirosis infections
happen.

Discussion
In this study, we compiled surveillance data of leptospir-
osis in China from 2010 to 2014, and collected a number
of environmental and socioeconomic variables thought
to determine the geographic distribution of leptospirosis.
We used ecological niche modeling approach to better
understand the relationship between occurrence of
leptospirosis and environmental and socioeconomic var-
iables, and predicted the geographic distribution of
leptospirosis in China. Because the reliable absence data
are hardly available, random selected pseudo-absence
points in provinces having no reported case was used in
logistic regression model. According to the model per-
formance assessment, both model can predict the geo-
graphic distribution of leptospirosis in China very
successfully. Maxent model has better performance
compared with logistic regression model, because it can
handle non-linear relationships between response vari-
able and predictors.

Pervious studies of epidemiology of leptospirosis have
highlighted the importance of socioeconomic and



Zhao et al. BMC Infectious Diseases (2016) 16:343

Page 7 of 10

Response of Leptospirosis to biol

Response of Leptospirosis to bio12

o =3

o
”

o

o

Logrstc output (probabeity of presence)
o
-

o

o
o

" " " " " A " " "

o o 0 © o ©
R R
S » O » o

|

b

o

o

3

ogrstic oulput (probability F.f[:.’ﬂ\t‘l‘_-’.l

o

a
o

0.05 1

0.00L

-20 14 [] s ] 5 1] ] 20 b~ w

Fig. 3 Response curves of two most important variables: bio1 (annual mean temperature) and bio12 (annual total precipitation)

0 400 1000 1400 2000 2500 3000 3500 4000 4500

environmental drivers [13]. Environmental variables play
a significant role in natural-focal diseases by affecting
pathogens directly, or influencing the distribution and
abundance of disease hosts and vectors [23]. Four bio-
logical meaningful climatic variables including annual
mean temperature (Biol), annual precipitation (Biol2),
temperature seasonality and precipitation seasonality,
which represent the annual trend and seasonality of
climatic condition of leptospirosis transmission, were
selected to build predictive models for leptospirosis oc-
currence. Annual mean temperature (Biol) and annual
precipitation (Biol2) are the two most important factors
determining the geographic distribution of leptospirosis
in China. Because leptospirosis is often considered as a
water-borne infectious disease, we used average river
density to quantify the impacts of water condition on
leptospirosis transmission indirectly. However, river
density variable has no significant effect on predicting
the geographic distribution of leptospirosis, possibly due
to the coarse spatial resolution variables and the river
density is high across the south of China.

Leptospirosis is highly correlated with socioeconomic
factors. Leptospirosis occurrence in developing countries
is related with intense and rapid urbanization without
adequate infrastructure, resulting in sanitation problems,
especially in poor vulnerable areas (i.e., slums) located
close to rivers or channels, prone to periodical flooding.
GDP was a meaningful variable explaining the relation-
ship between leptospirosis and local economic condition.
But the GDP data in China was calculated at county
level, not at fine spatial resolution of 1 km * 1 km like
other variables used in this study. The large number of
pigs and backyard piggeries have previously been impli-
cated in leptospirosis transmission [6]. However, we
found that no socioeconomic variable was selected as the
most important variable in determining the geographic

distribution of leptospirosis in China. Other sanitation re-
lated variables and population socioeconomic status vari-
ables might preform better than the socioeconomic
variables used in this study, but those kind of data are not
available at fine spatial resolution, and especially at na-
tional scale.

Along with the unprecedented global climate change
[24], the geographic distribution of leptospirosis would
be changed, which need further study. A study revealed
that climate change likely contributed to an increase in
rodent populations, and therefore the number of out-
breaks of leptospirosis [25]. Climate change may in-
crease the incidence rate of leptospirosis infections in
the current transmission area and cause the leptospirosis
spread to new area, especially in developing countries.
Surveillance program and control program is urgent
needed in the counties identified as high risk county or
very high risk county.

A comprehensive approach involving humans, animals
and the environment is key to developing targeted con-
trol program [26]. The China CDC and its branches are
officially required to report monthly and yearly informa-
tion on leptospirosis, including the incidence, mortality
and major animal hosts, to the Ministry of Health of
China. We successfully identified the most influential
risk factors of transmission of leptospirosis, and the risk
level of counties in China. Our results could help to im-
prove the surveillance program and control program of
leptospirosis in China. The current available prevention
and control program include improving in sanitation
and living conditions, reducing the leptospirosis infec-
tion rate in animal hosts, and targeting vaccinations to
high risk populations. Our risk maps of leptospirosis
could help to optimize the allocation of public health re-
sources, particularly in areas with limited financial and
public health resources.
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Conclusion

Ecological niche modeling approach is a great tool to en-
hance our understanding of the drivers of leptospirosis
transmission at large scale, and predict the geographic
distribution of leptospirosis in China. Our risk mapping
results highlighted the importance of socioeconomic and
environmental variables in identify risk areas for lepto-
spirosis. Future study should be aimed at including more
meaningful risk factors and using spatial-temporal mod-
eling to investigate the seasonal and interannual variabil-
ity of leptospirosis risk in China.
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