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Abstract

Background: The cost and complexity of current approaches to therapeutic drug monitoring during tuberculosis
(TB) therapy limits widespread use in areas of greatest need. We sought to determine whether urine colorimetry
could have a novel application as a form of therapeutic drug monitoring during anti-TB therapy.

Methods: Among healthy volunteers, we evaluated 3 dose sizes of rifampin (150 mg, 300 mg, and 600 mg), performed
intensive pharmacokinetic sampling, and collected a timed urine void at 4 h post-dosing. The absorbance peak at
475 nm was measured after rifamycin extraction. The optimal cutoff was evaluated in a study of 39 HIV/TB patients

undergoing TB treatment in Botswana.

Results: In the derivation study, a urine colorimetric assay value of 40 x 1072 Abs, using a timed void 4 h after dosing,
demonstrated a sensitivity of 92 % and specificity of 60 % to detect a peak rifampin concentration (C,,5,) under 8 mg/L,
with an area under the ROC curve of 0.92. In the validation study, this cutoff was specific (100 %) but insensitive (28 %).
We observed similar test characteristics for a target Cpoy target of 6.6 mg/L, and a target area under the drug
concentration-versus-time curve (AUCq_g) target of 24.1 mg-hour/L.

Conclusions: The urine colorimetric assay was specific but insensitive to detect low rifampin serum concentrations
among HIV/TB patients. In future work we will attempt to optimize sampling times and assay performance, with the goal
of delivering a method that can translate into a point-of-care assessment of rifampin exposure during anti-TB therapy.
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Standardized anti-tuberculosis (TB) drug regimens that
include rifampin, isoniazid, pyrazinamide, and etham-
butol are the foundation of the global public health
response to the TB epidemic [1]. Yet there is wide
variability in absorption and metabolism of the anti-TB
drugs, and low drug concentrations in blood are associ-
ated with inferior TB treatment outcomes, including
treatment failure and relapse [2-5]. Pharmacokinetic
variability has been identified as a key mediator of the
rate of sterilizing effect and the emergence of new drug
resistance mutations during anti-TB therapy [6, 7].
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The TB clinician must consider the totality of the
clinical information when making therapeutic decisions
regarding dose adjustment. When therapeutic drug
monitoring is performed, the result (a concentration
above or below a threshold value) would support a
clinical decision to increase the dose size of one or more
of the drugs. The impact of this decision is evaluated
during the clinical course, sometimes with repeated
monitoring to ensure that the therapeutic target has
been reached [8]. While the output from therapeutic
drug monitoring provides a continuous measure of drug
concentration, the practical use of that information is to
classify the patient as having adequate or inadequate
drug exposure.

In resource-rich settings, therapeutic drug monitoring
can be performed during anti-TB therapy by measuring
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plasma or serum drug concentrations. The clinical
decision to perform therapeutic drug monitoring may be
motivated by factors such as a slow treatment response,
the need for second-line drugs during the treatment of
multi-drug resistant infection, or the presence of co-
morbidities associated with inferior treatment outcomes
(HIV co-infection, diabetes mellitus) [9]. The perform-
ance of therapeutic drug monitoring requires specialty
laboratory capabilities, such as high performance liquid
chromatography (HPLC) or gas chromatography (GC).
Technical expertise is also required to collect, process,
and ship samples to the specialty laboratory.

In many high-burden settings, the complexity and cost
of these laboratory methods may seem to preclude the use
of therapeutic drug monitoring in the clinical care of TB
patients. Consequently, patients with inadequate drug ex-
posure cannot be identified early during anti-TB therapy,
at a time when dosing adjustments could be expected to
improve treatment outcomes. Although dried blood spots
have been proposed as a means to facilitate sample collec-
tion in the field [10], the measurement of drug concentra-
tions in whole blood using dried blood spot techniques
requires the same laboratory capabilities as traditional
methods, and the interpretation of drug concentrations in
whole blood (versus serum or plasma) is uncertain [11].

A simple, inexpensive test to classify TB patients based
on an estimate of drug exposure, available at the point-of-
care at the time of the patient encounter, could supplement
other clinical information in support of treatment
decisions. Urine colorimetry was first evaluated in the
1970’s as a method to assess the bioequivalence of different
fixed-dose combinations of anti-TB drugs [12-14]. More
recently, a urine colorimetric approach to detect isoniazid
in urine (the “Arkansas method”) has been commercialized
as a tool to monitor isoniazid adherence (IsoScreen, GFC
Diagnostics LTD, Oxfordshire, UK) [15]. Potential advan-
tages of urine colorimetric methods include a non-invasive
sampling approach, improved patient acceptability, and the
low cost and stability of chemical reagents.

We sought to determine whether urine colorimetry
could have a novel application as a measure of systemic
rifampin exposure during anti-TB therapy, as defined by
the maximum serum concentration (C,,,) or the area
under the concentration-versus-time curve (AUC,_g). Our
approach was first to develop the urine colorimetric assay
among healthy volunteers, and then to validate the assay
among HIV/TB patients from a high-burden setting.

Methods

Derivation study

Study design

We performed a non-randomized, open-label, cross-over
study of the first-line anti-TB drugs (rifampin, isoniazid,
ethambutol, pyrazinamide) in 6 healthy volunteers. We
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sequentially evaluated 3 dose sizes in separate study
visits, with rifampin dosed at 150 mg, 300 mg, and
600 mg. Each study visit was separated by a wash-out
period of at least 1 week. Blood samples were collected
prior to oral administration of the study drugs, and then
at 1, 2, 4, 6, and 8 h following oral administration of the
study drugs. Frozen samples were shipped to the
Infectious Disease Pharmacokinetics Laboratory at the
University of Florida for measurement of serum drug
concentrations. All urine was collected during the study
visit, and the volume and time of collection were noted.
Timed voids were obtained at 4 h and 8 h post-dosing.
Urine was aliquoted into single-use 3 mL conical vials
and stored at -70C until ready for analysis.

Urine colorimetric assay

We followed the Sunahara method to extract total
rifamycins from urine samples [16]. In brief, 50 ul of
100 mM phosphate buffer (pH 7) was added to 100 pl of
urine sample followed by 100 ul of isoamylalcohol. Each
sample was mixed by vortexing for 20 s at max speed.
Samples were centrifuged at 14,000 rpms for 5 min at
room temperature. The aqueous phase (upper) was
carefully removed and transferred to a clear 96-well
plate and optical density was measured at 475 nm in a
Multiskan™ GO Microplate Spectrophotometer (Thermo
Fisher Scientific). A calibration curve was determined
for 10 serial dilutions (1:2) starting at 1000 mg/L of pure
rifampin (Sigma Aldrich) that had been extracted with
isoamylalcohol.

Statistical analysis
The goal of the statistical analysis for the development
cohort was to define the accuracy of the urine colorimetric
assay to detect low rifampin serum C,,,, or AUC,_g, across
a range of possible cutoff values, and to identify the
optimal cutoff value for subsequent evaluation in the
validation cohort. The area under the receiver-operating-
characteristic (ROC) curve provides a summary measure
of the ability of the diagnostic test to distinguish between
adequate and inadequate rifampin exposure. An area under
the ROC curve equal to 1 demonstrates perfect discrimin-
ation, whereas an area of 0.5 demonstrates that the
diagnostic test performs no better than chance alone [17].
For our primary analysis, we evaluated the ROC curve
for the urine colorimetric assay corresponding to a
serum rifampin C,, target of 8 mg/L, which is the
standard-of-care target for therapeutic drug monitoring
during anti-TB treatment [8]. The 95 % confidence
interval for the area under the ROC curve was calculated
using 2000 bootstrap replicates [18]. In an a priori
decision, we defined the optimal cutoff for the urine
colorimetric assay as the value corresponding to 90 %
sensitivity for each drug exposure target. Statistical
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significance was declared for p-values less than 0.05. All
statistical analysis was performed in R, with non-
compartmental pharmacokinetic (PK) analysis performed
using the PK package, and ROC analysis performed using
the pROC package [19].

Validation study

Setting and participants

The validation study was nested within a prospective
cohort study of anti-TB drug PK in HIV/TB patients
at 22 public clinics and Princess Marina Hospital in
Gaborone, Botswana. HIV-infected adults (21 years of
age and older) were eligible for enrollment in the par-
ent study if they were citizens of Botswana, naive to
antiretroviral therapy (ART), and newly diagnosed
with pulmonary TB. Patients must have been initiated
on a standard first-line TB treatment regimen, follow-
ing WHO guidelines for weight-based dosing bands.
The diagnosis of pulmonary TB must have been
established by either a positive sputum smear, a posi-
tive GeneXpert MTB/RIF assay (Cepheid, Sunnyvale,
CA, USA), or the presence of WHO criteria for
smear-negative pulmonary TB. Exclusion criteria
included pregnancy, renal insufficiency (defined as a
creatinine clearance less than 50 mL/min, and hepatic
dysfunction (defined as either an alanine transaminase
or aspartate transaminase greater than 3 times the
upper limit of normal).

Procedures

The PK study visit was scheduled prior to the com-
pletion of the intensive phase of anti-TB therapy. All
PK visits were conducted at the Infectious Disease
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Care Clinic at Princess Marina Hospital. Oral doses
of the anti-TB drugs were obtained from the
Gaborone City Clinic and directly administered to the
participant on the morning of the PK visit. A baseline
blood sample was drawn prior to dosing, and then at
0.3, 0.9, 2.2, 4.5, and 8 h post-dosing. These sampling
times were selected based on the objectives of the
parent study to evaluate the population PK of isoniazid.
At each time point, 10 mL of blood was drawn and trans-
ported to the Botswana Harvard Partnership Laboratory.
After centrifugation, serum was stored at -70C. Serum
drug concentrations were measured at the Gumbo
Laboratory at the Baylor Research Institute (Dallas, TX)
using liquid chromatography-tandem mass spectrometry
methods. For the performance of the urine colorimetric
assay, a single urine sample was obtained 4 h after dosing,
based on the diagnostic accuracy of this time point to
identify healthy subjects with C,,, less than 8 mg/L in the
derivation study. Urine samples were frozen and shipped
to the Infectious Disease Clinical Research Laboratory at
Drexel University College of Medicine (Philadelphia, PA).
The urine assay steps were performed as described for the
healthy volunteers.

Statistical analysis

We evaluated the overall distribution of the urine colori-
metric assay in the validation sample, along with poten-
tially relevant covariates (age, body weight, renal function).
We plotted individual rifampin concentration-versus-time
profiles for each patient, and identified the corresponding
rifampin Cp,,« for each patient. Non-compartmental
analysis was performed to estimate rifampin AUC,_g for
each patient that completed the study visit.
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Fig. 2 Correlation between urine colorimetric assay and serum rifampin C,. among healthy volunteers

Validation of the urine colorimetric assay was per-
formed for 3 separate targets. In the primary analysis,
we validated the optimal cutoff previously identified
from the healthy subjects to detect C., less than
8 mg/L [8]. In secondary analyses, we evaluated two
additional drug exposure targets. A Cp,. target of
6.6 mg/L was recently shown to predict delayed
sputum conversion in a South African cohort [3].
Based on pre-clinical rifampin pharmacodynamic data, we

also evaluated a rifampin AUC,_g target of 24.1 mgehour/L
[20]. For each target, bootstrapping (2000 replicates) was
performed to estimate the 95 % confidence interval for the
area under the ROC curve [18]. We assessed sensitivity,
specificity, positive and negative predictive values, and
positive and negative likelihood ratios at the cutoff identified
in the derivation study. We also calculated 90 % confidence
intervals for sensitivity and specificity with 2000 bootstrap
replicates [18].
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Fig. 3 ROC analysis for urine colorimetric assay to detect rifampin Cpax less than 8 mg/L
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Table 1 Clinical and demographic characteristics of HIV/TB patients
in the validation cohort

Characteristic HIV/TB patients in the

validation cohort (n=39)

Median age (IQR) 32 years (28-44)

Sex

Male 21 (54 %)

Female 18 (46 %)
Median weight (IQR) 55 kg (50-60)
Median creatinine clearance (IQR) 102 mL/min (91-114)
Past history of pulmonary TB 6 (15 %)
Past history of IPT 5(13 %)
Past history of any Ol 2 (5 %)

Results

Derivation study

Calibration of the urine colorimetric assay with known
standards is shown in Fig. 1. The extraction of rifampin
via Sunahara method demonstrated a linear relationship
between the absorbance peak at 475 nm and standard
rifampin concentrations in a range from 2.0 to
1000 mg/L (R* greater than 0.99), which is similar to
the original report.

We enrolled 6 healthy volunteers in the derivation
study, and each volunteer completed all study visits.
Delayed oral absorption of rifampin is a common
phenomenon [8], and in 3 of 6 healthy volunteers the
time to C,,, was greater than 2 h. We observed a
reasonable correlation between C.,, and the urine
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colorimetric assay (r =0.83), as shown in Fig. 2. For the
Chnax target of 8 mg/L, the area under the ROC curve
(Fig. 3) was 0.92 (95 % CI 0.74—1.0). A cutoff of 4 x 107>
absorbance units (AU) had a sensitivity of 92 % (90 % CI
77-100 %) and specificity of 60 % (90 % CI 20-100 %)
to detect rifampin serum C,,, less than 8 mg/L.

Validation study

Thirty-nine HIV/TB patients completed the intensive
PK study and provided a 4-h urine sample for analysis,
and all of these patients were included in the validation
sample. Baseline demographic and clinical characteristics
for these 39 patients are shown in Table 1. Following
WHO weight-based dosing guidelines, a single patient
was dosed with 300 mg of rifampin, 18 patients were
dosed with 450 mg, 17 patients were dosed with
600 mg, and 3 patients were dosed with 750 mg. Individ-
ual serum rifampin concentrations versus time are
shown in Fig. 4. Based on the observed concentration
data, rifampin C,,, concentrations were below the
target of 8 mg/L in 25 of 39 patients (64 %).

The urine colorimetric assay was poorly correlated
with serum C,,,, in the validation cohort (»=0.24). The
distribution of the urine colorimetric assay grouped
according to serum target attainment is shown in Fig. 5.
For the C,,, target of 8 mg/L (Fig. 5a), the difference in
urine colorimetric assay values between groups did not
reach statistical significance (p =0.18 by Kruskal-Wallis
test). The difference in urine colorimetric assay values
between groups was statistically significant (p = 0.049)
for the secondary C,,,, target of 6.6 mg/L (Fig. 5b), and
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Fig. 4 Individual rifampin serum concentration versus time among HIV/TB patients in the validation cohort
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also reached statistical significance (p=0.02) for the
AUC,_g target of 24.1 mgehour/L (Fig. 5c).

The value for the urine colorimetric assay was below
the cutoff of 4.0 x 1072 Abs in 7 of 39 patients (18 %),
identified among healthy volunteers as predictive of
Cinax less than 8 mg/L. The 2 x 2 table corresponding to
this cutoff among HIV/TB patients is shown in Table 2,
and the ROC curve is shown in Fig. 6. This cutoff was
100 % specific but poorly sensitive (28 %, 90 % CI
16-44 %). Given that the prevalence of rifampin C, .
less than 8 mg/L was 64 % in the validation cohort,
these diagnostic test characteristics correspond to a
positive predictive value of 100 % and a negative pre-
dictive value of 44 %. Overall, the urine colorimetric
assay demonstrated low diagnostic accuracy for the
detection of rifampin C,. less than 8 mg/L in the
validation sample, with an area under the ROC curve
of 0.63 (95 % CI 0.45-0.82).

In secondary analyses, a urine colorimetric assay cutoff
of 4.0 x 1072 Abs was 28 % sensitive (90 % CI 11-44 %)
and 90 % specific (90 % CI 81-100 %) for identifying
patients with a rifampin C,,, less than 6.6 mg/L, which
was the threshold identified as predictive of delayed
sputum sterilization among South African TB patients
[3]. The area under the ROC curve (Fig. 7) was 0.69
(95 % CI 0.52-0.86). At the optimal threshold identified

Table 2 Classification table for HIV/TB patients, based on the
assay cutoff identified in healthy volunteers

Rifampin Cpax
less than 8 mg/L

Rifampin Ciax
greater than 8 mg/L

Urine assay less than 7 0
40 x 107% Abs

Urine assay greater than 18 14
40 x 1072 Abs

by Youden'’s | statistic, a cutoff of 11.1 x 10~ Abs identi-
fied patients with rifampin C,, less than 6.6 mg/L with
94 % sensitivity (90 % CI 83-100 %) and 43 % specificity
(90 % CI 24-62 %).

The ROC curve corresponding to an AUC,_g target
of 24.1 mgehour/L is shown in Fig. 8. At the cutoff of
4.0 x 107% Abs, the urine colorimetric assay was 40 %
sensitive (90 % CI 20-70 %) and 89 % specific (90 % CI
78-96 %). The summary diagnostic accuracy of the urine
colorimetric assay at a target AUC, g of 24.1 mgehour/L
(area under the ROC curve of 0.71, 95 % CI 0.52-0.90) was
similar to targets of 20 mgehour/L (area under the ROC

T
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Fig. 6 ROC analysis for urine colorimetric assay to detect rifampin
Crnax less than 8 mg/L among HIV/TB patients
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curve of 0.78, 95 % CI 0.56-1.0) and 30 mgehour/L (area
under the ROC curve of 0.68, 95 % CI 0.50-0.85).

Discussion

The cost and complexity of current approaches to
therapeutic drug monitoring during TB therapy limit
widespread use in areas of greatest need, despite the
increasing recognition of the role of pharmacokinetic
variability in driving treatment outcomes such as delayed
sputum sterilization, treatment failure, and the acquisition
of new drug resistance [2—6]. The extent of tradeoff be-
tween complexity and diagnostic accuracy will determine
whether a point-of-care test to estimate anti-TB drug
exposure can be a useful addition to the tools of TB clini-
cians in high-burden settings. There could be additional
roles for non-invasive measures of anti-TB drug exposure
among pediatric TB populations, where wide pharmacoki-
netic variability is typically observed, and blood sampling
presents an even greater challenge [21].

A simple colorimetric assay of a single urine sample
collected 4 h post-dosing performed well in the derivation
study with healthy volunteers, but performed less
accurately in the validation cohort of HIV/TB patients.
The urine colorimetric assay demonstrated similar accuracy
for classifying patients based on a C,,,, target of 6.6 mg/L
and an AUC,_g target of 24.1 mgehour; the former has been
shown to be predictive of 2-month sputum conversion in TB
patients. Nevertheless, test performance characteristics still
did not reach the threshold of other commonly used diagnos-
tic tools during the treatment of TB, such as chest radiograph
or sputum smear [22, 23].

We selected urine sampling times based on previously
published urinary excretion data for rifampin, and chose
a time point for evaluation in the validation study based
on diagnostic accuracy in healthy subjects. In future
work we will employ optimal sampling theory to identify
urine sampling schemes that predict serum pharmaco-
kinetics better than a single 4-h timed void [24].

Another limitation of this study is that the development
and validation samples arose from different populations.
There is important pharmacogenetic variability related to
the metabolism and excretion of rifampin, and this vari-
ability may contribute to observed differences in the urine
assay results between the two groups [25]. Additionally,
although the healthy volunteers were dosed with the
standard combination regimen (rifampin, isoniazid, pyra-
zinamide, ethambutol), many of the HIV/TB patients also
received additional medications (e.g., cotrimoxazole,
fluconazole) as part of their HIV care. The interference of
these and other potentially co-administered medications
with the urine colorimetric assay for rifampin will require
further evaluation.

One strength of our approach was that a priori decisions
were made regarding the diagnostic criteria of the optimal
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cutoff, and the target C,. and AUC values to be
evaluated. Post-hoc analyses demonstrated that the urine
colorimetric assay performed better at lower targets of
drug exposure, as defined by C,,,,. The use of a borderline
or re-testing zone in assay development is likely to
improve the positive and negative predictive values for the
assay and will be evaluated in subsequent work [26].

The standard rifampin dosing guidelines during anti-
TB treatment are increasingly questioned, and a recent
dose-finding study of rifampin among TB patients has
confirmed the non-linear pharmacokinetics characteris-
tic of rifampin, with disproportionate increases in AUC
with increasing dose sizes [27]. The utility of any novel,
point-of-care approach will depend on its flexibility to
adapt to new evidence for the underlying relationship
between drug concentrations and treatment outcomes.

Conclusion

A urine colorimetric assay for rifampin, conducted on a
single urine sample collected 4 h post-dosing, was only
modestly accurate in the identification of HIV/TB pa-
tients with a rifampin Cmax below 8 mg/L. Future work
will focus on refinement of the approach, with the goal
of developing a simple, point-of-care, test that could be
available for therapeutic drug monitoring during anti-TB
therapy in high-burden settings.
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