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airports for pandemic spread over the world
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Abstract

Background: Massive growth in human mobility has dramatically increased the risk and rate of pandemic spread.
Macro-level descriptors of the topology of the World Airline Network (WAN) explains middle and late stage dynamics
of pandemic spread mediated by this network, but necessarily regard early stage variation as stochastic. We propose
that much of this early stage variation can be explained by appropriately characterizing the local network topology
surrounding an outbreak’s debut location.

Methods: Based on a model of the WAN derived from public data, we measure for each airport the expected force of
infection (AEF) which a pandemic originating at that airport would generate, assuming an epidemic process which
transmits from airport to airport via scheduled commercial flights. We observe, for a subset of world airports, the
minimum transmission rate at which a disease becomes pandemically competent at each airport. We also observe, for
a larger subset, the time until a pandemically competent outbreak achieves pandemic status given its debut location.
Observations are generated using a highly sophisticated metapopulation reaction-diffusion simulator under a disease
model known to well replicate the 2009 influenza pandemic. The robustness of the AEF measure to model
misspecification is examined by degrading the underlying model WAN.

Results: AEF powerfully explains pandemic risk, showing correlation of 0.90 to the transmission level needed to give
a disease pandemic competence, and correlation of 0.85 to the delay until an outbreak becomes a pandemic. The AEF
is robust to model misspecification. For 97 % of airports, removing 15 % of airports from the model changes their AEF
metric by less than 1 %.

Conclusions: Appropriately summarizing the size, shape, and diversity of an airport’s local neighborhood in the WAN
accurately explains much of the macro-level stochasticity in pandemic outcomes.
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Background

The world airline network (WAN) has massively increased
the speed and scope of human mobility. This boon for
humanity has also created an efficient global transport
network for infectious disease [1, 2]. Pandemics can now
occur more easily and more quickly than ever before. The
accelerating emergence of novel pathogens exacerbates
the situation [3]. Better understanding of global disper-
sal dynamics is a major challenge of our century [4].
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Rapid assessment of an emerging outbreak’s dissemina-
tion potential is critical to response planning [5]. We do
not know where the next pandemic threat might emerge.
Mexico was not a prime candidate for an influenza out-
break, nor West Africa for Ebola. Preemptively mapping
the pandemic influence of individual airports could con-
tribute substantially to monitoring and response plans.

While exact relationships between the WAN and pan-
demic spread are difficult to model [2], simulation studies
suggests that topological descriptors which describe epi-
demic outcomes on network models also have explanatory
power for relationships between the topology of the WAN
and pandemic spread [6, 7].
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Observational studies of influenza [4, 8], malaria [9],
and dengue fever [10] support this conclusion. Given
the topology of a network, the minimal disease trans-
mission rate which allows epidemics is given by the
inverse of the spectral radius of a network’s adjacency
matrix [11], and the typical outcome [12] and time course
[13] of an epidemic follow a closed-form solution gov-
erned by the degree distribution of the network. The
WAN’s topological structure is well characterized. It is a
small-world, scale-free network with strong community
structure, imposed partly by spatial constraints [14]. The
majority of airports (70 %) serve as bridges which connect
a densely interconnected core of 73 major transport hubs
(2%) to regional population centers and peripheral air-
ports (28 %) [15]. Nodes which connect communities can
be distinct from high-degree nodes within communities
[16]. Since the WAN is designed to optimize passenger
flow, the network’s temporal structure has little effect at
time scales relevant for pandemic spread [17].

Topological descriptors of epidemic dynamics, however,
can only describe typical outcomes. They do not describe
the structure of the variation around the typical outcome,
which is dismissed as stochastic when mentioned at all.
Even within the constraints of a simple branching process
model, empirical estimates of the probability of epidemic
show substantial variation around the analytically derived
solution. For example, the probability of a major out-
break in a discrete time Reed-Frost branching process
with finite population is in theory the smallest solution to
x = e R0(=%) yet empirically observed probabilities from
simulations of this same model can fall far from the theo-
retical value. Additional file 1: Figure S1 plots empirical vs
theoretical values for this model.

Actual outcomes of emergent infectious diseases are
crucially shaped by chance events in the early phases of
their emergence [18]. Clear understanding of how seed
location influences global outcomes would substantially
improve public health planning [5].

The development of sophisticated, parameter-rich epi-
demic simulators provides powerful tools for explor-
ing relationships between seed location and epidemic
outcomes [19]. Common frameworks encompass demo-
graphic and mobility characteristics via either metapop-
ulation [8, 20] or agent-based assumptions [21]. Careful
tuning of these models has produced results which well
match the spread of the 2009 influenza epidemic [19, 22].
Yet the complex interactions between model struc-
ture, input parameters, and estimation methods makes
interpretation of model-based results challenging [18],
especially when attempting to generalized to future out-
breaks for which epidemic parameters are fundamentally
unknowable. If, however, two radically different model-
ing approaches result in such high agreement both with
each other and with reality [22] then the principal driver
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of outcomes should be expressible with a small parameter
set [4]. Evidence suggests that simple probabilistic models
incorporating local incidence, travel rates, and basic trans-
mission parameters are sufficient to predict outcomes of
complex metapopulation based simulations [23].

Recent theoretical work suggests that the apparent
stochasticity in the early phases of a network-mediated
epidemic process can be explained by the expectation
of the force of infection of epidemic processes seeded
from that node [24]. The aim of this study is to eval-
uate if this finding generalizes to realistic scenarios of
WAN-mediated pandemic disease spread.

Methods

Defining and measuring airport expected force

Our model of the WAN is based on the 2014 release of the
Open Flights database [25]. We selected all airports ser-
viced by regularly scheduled commercial flights, resulting
in a list of 3458 airports connected by 68,820 routes served
by 171 different aircraft types. We simplify the network
by replacing multiple routes between airports by a single
edge whose weight is the sum of the available seats on all
routes connecting the two airports, under the assumption
that the aircraft type reflects the airline’s best judgment of
the importance of the route. Aircraft seating capacity was
estimated based on aircraft descriptions on worldtrad-
ing.net and airliners.net, using airlinecodes.co.uk to trans-
late the International Air Transport Association (IATA)
aircraft codes into aircraft type.

The expected force of a network node is defined as the
expectation of the force of infection (Fol) generated by
an epidemic process seeded from the node into an oth-
erwise fully susceptible network, after two transmission
events and no recovery [24]. In a network model of dis-
ease spread, the Fol at any given time point is defined as
the current number of edges between infected and sus-
ceptible nodes scaled by the base transmission rate of the
disease; the standard generalization to weighted networks
includes edge weights in the scaling. It is possible to enu-
merate all ways that two transmissions could occur from a
single source node, and measure the Fol arising from each
transmission pattern (up to the disease dependent scaling
factor). The expected value of the Fol after two transmis-
sion events is the entropy of the distribution of possible
Fol values. The definition extends to weighted networks,
such as our model of the WAN, by including the influ-
ence of edge weights on the probability of observing a
given pattern. Figure 1 illustrates the concept, which can
be expressed mathematically as

J
AEF() = =Y _ djlog(d))
j=1
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Fig. 1 Computing AEF for a single airport. In the sample network show here, an epidemic can spread from the seed airport “S” (red) in the following
ways: (S — a,5S — b), (S — b,S — a) as shown in panel (a), both resulting in onward transmission strength of 1 +9 = 10; (S — b,S — ¢) shown
in panel (b), resulting in onward transmission strength of 1 +3 +9 = 13; (S — b,5 — d) panel (c), resulting in onward transmission strength of

(6 % 1) + 3 = 9. Transmission strength along a given edge is shown by the number beside the edge. The transmission S — a occurs with
probability 1/3, after which S — b 'is the only remaining option. Transmission S — b occurs with probability 2/3; implying pattern (S — b,S — a)
has overall probability 2/3 % 1/11 = 2/33, (S — b,S — ¢) has overall probability 2/3 % 1/11 = 2/33, (S — b,S — d) has overall probability
2/3%9/11 = 18/33. The distribution of Fol values scaled by their probability is thus: 10 % 1/3,10 % 2/33,13 % 2/33,9 % 18/33, and the AEF of airport

where AEF(i) is Airport i's Expected Force, / enumer-
ates all possible ways to observe two transmissions seeded
from i, d; is the weighted degree of the j%* transmission
pattern multiplied by the probability that this pattern is
observed given J, and Jj = dj/ Z{q:l dy is the normal-
ization of dj. We here further normalize AEF values to
the range [ 0,100]. All computed AEF values are given in
Additional file 2 and Additional file 1: Figure S2 shows
their histogram.

Simulation framework

Epidemic outcomes are generated using the GLEAMviz
simulator [8, 20]. GLEAMyviz integrates real-world global
population and mobility data with an individual based
stochastic mathematical model of the infection dynam-
ics to produce realistic simulations of the global spread
of infectious diseases. Spread within a local region fol-
lows user defined compartment models, while percola-
tion between regions is modeled as a random processes
based on real world airline and commuter data. Our basic
experimental setup is to simulate the same disease model
over a range of seed cities. The structure and param-
eters of the disease models are based on those which
match the 2009 Influenza pandemic as reported in [8]
and validated in [19], specifically, a Susceptible-Exposed-
Infected-Recoverd (SEIR) model with transmission rate 8
specified below, latency rate ¢ = 1/1.1 and recovery rate
u = 1/2.5. Rates are expressed in units of days. The model
further divides the infected compartment into three cat-
egories: asymptomatic, symptomatic travelers, and symp-
tomatic non-travelers. When an individual moves from
the exposed to infected compartment, they are placed
in one of these three categories with equal likelihood.
Non-symptomatic individuals have half the transmission
rate of infected individuals. Symptomatic non-travelers
contribute to local spread, but do not contribute to per-
colation between regions. Remaining parameters are left

at their default values (occupancy rate: 90 %, time spend
at destination: 8 h, commuting model: “data’; flight time
aggregation: “month”).

The initial population distribution is 10% of the seed
city infected (symptomatic travelers) and the remainder
of the (world) population susceptible. Seasonality effects
are not included, since their influence varies both by time
and geographic latitude, masking variability attributable
to seed location.

GLEAMyviz divides the world into sixteen regions. An
outbreak is declared a pandemic on the day prevalence
in at least three regions is greater than one per 100,000
inhabitants. The pattern of the results is invariant to
thresholds in the range [ 0.1, 100] per 100,000 inhabitants
and to replacing the “three regions” criteria with “100
cities” Results for each airport are reported in terms of
the median over 20 runs (the maximum number sup-
ported by the public GLEAMviz client). If the threshold
is not passed after 365 days (the maximum length sup-
ported by the public GLEAMviz client), we declare that no
pandemic occurred.

Defining and measuring epidemic stochasticity

For an outbreak to become a pandemic, its basic reproduc-
tive number Ry must surpass the basic epidemic threshold
Ro > 1 needed to establish a disease in a local pop-
ulation by a sufficient amount to also overcome finite
subpopulation size effects and diffusion rates to neighbor-
ing populations. A branching process approximation sug-
gests that invasion thresholds in metapopulation models
depend on the outbreak’s Ry value, the variance of the net-
work’s degree distribution, and the mobility rate between
subpopulations [7]. The GLEAMviz model specifies the
last two values, reducing invasion thresholds to a func-
tion of Ry. However, even a pure branching process shows
substantial variability around the theoretical probability
of achieving a large outbreak. For pandemics mediated
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by the WAN, the question of interest is how the invasion
threshold varies for different seed airports. We empiri-
cally observe invasion thresholds on the WAN as follows.
Ten seed airports are selected, one from each decile of
the range of AEF values, see Table 1. Since our purpose
here is to explore relationships between AEF and the min-
imal invasion threshold, we simplify the model in [8] by
removing the subdivisions of the “infected” compartment.
Including the asymptotic subcompartment would compli-
cate the relationship between 8 and Ry [19], and including
the non-traveler subcompartment would affect the mobil-
ity rate between subpopulations, which would impact Ry
[19] and the invasion threshold [7]. Under this simplified
model, the basic reproductive number is Ry = S/, the
transmission to recovery ratio. Keeping u fixed, we vary g
over the range [0.4, 0.5] and observe which seeds trigger a
pandemic at each value under the simulation framework
described above. The lower threshold § < 0.4 corre-
sponds to Ry = 1, the minimal level for a pandemic to
occur. All simulations result in a pandemic for § > 0.475
(Ro = 1.19). Power analysis suggests that observations
from 10 seed locations are sufficient to detect correla-
tions between AEF and invasion thresholds of p = 0.77
at a significance level of 0.05 with power of 0.80. Power
calculations are based on the Z transformation of the cor-
relation coefficient. They were made by specifying the
number of samples and the indicated significance and
power levels, assuming a two-sided test.

Often, diseases of concern are known to be competent
of invading the network. Here, the outcome of interest is
not if a pandemic occurs, but rather how long until an out-
break reaches pandemic status. We measure relationships
between AEF and time to pandemic status as follows. One
hundred world airports were chosen such that they evenly
cover the range of measured AEF values.

Table 1 Seed locations
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To better replicate a real pandemic, we use the three
category infected compartment model as per [8], also set-
ting the base transmission rate to § = 0.8383 as in that
publication. Translating this rate into an Ry value requires
accounting for the reduced transmissibility of the asymp-
totic compartment, Ry = B/ [ rgpa+(1—ps)], whererg is
the reduction in infectivity for the asymptomatic compart-
ment and p, is the probability that an infectious person is
asymptomatic [19]. This implies our simulations are based
on Ry = 1.75, well above the minimal invasion threshold
of Ry &~ 1.19 determined empirically above.

For each seed location, we observe both the number
of days until pandemic status is reached and the number
of days until peak global incidence. Both outcomes are
highly correlated, since once pandemic status is achieved
further disease development is determined by network
topology. The purpose of measuring peak global incidence
is that this measure is unambiguous, while any definition
of “first day of pandemic status” is somewhat arbitrary. A
Shapiro-Wilks test of the observed times to peak global
incidence suggests that this data is approximately nor-
mally distributed (p = 0.69 under the null hypothesis
that the data is normally distributed), while the distri-
bution of observations of first day of pandemic status is
right-skewed (p = 0.04).

Relationships between outcomes and AEF are measured
by Pearson correlation. We additionally test correlations
to weighted and unweighted versions of each airport’s
betweenness, degree, and eigenvalue centralities, and also
to Verma et al’s t-core, a variant of the k-core which counts
triangles [15].

These well-known centrality indices can be briefly
defined as follows. Betweenness considers all shortest
paths which connect all possible pairs of nodes in the net-
work, and counts how many of these pass through the

Airport City Country Pand. B AEF t-core Deg. w. Deg. Eigen. w. Eigen.
SMK St. Michael USA 286 045 3 1 2 4 0.00 0.00
YFS Fort Simpson Canada 287 045 16 0 1 2 0.00 0.00
GTE Groote Eylandt Australia 300 045 27 3 3 4 0.00 0.00
SBH Gustavia France 346 042 31 7 6 9 0.01 0.00
PVH Porto Velho Brazil 295 045 40 4 8 19 0.00 0.00
BIS Bismarck USA 360 042 51 5 4 5 0.01 0.00
BES Brest France 284 042 62 24 9 15 0.05 0.00
XRY Jerez Spain 294 042 70 88 17 22 0.13 0.02
NRT Tokyo Japan 22 0.40 85 354 98 264 0.36 0.88
IST Istanbul Turkey 172 041 98 387 203 314 0.74 0.64

The following airports, shown by their IATA code, were selected as seed locations for testing relationships between AEF and invasion risk. The table additionally reports the
number of days for an outbreak to reach pandemic status (“Pand.”) at the minimal observed transmission rate (8) for which a pandemic occured, along with each airport’s

AEF, t-core, (un)weighted degree, and (un)weighted eigenvalue centralities
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node of interest. Degree counts the number of edges con-
nected to a node. Eigenvalue centrality counts the number
of infinitely long paths originating from a given node.
Core-based algorithms recursively strip off nodes from
the periphery of the network based on some criteria which
is re-evaluated on each round; a node’s core centrality
indicates the round at which is removed. The t-core uses
the count of how many network triangles a node con-
tributes to as its removal criteria; a node which does not
participate in any triangles would be removed on the first
round, then all nodes which participate in only one tri-
angles, etc. For completeness, Additional file 1: Figures
S§3-S6 show plots of AEF against betweenness, degree,
eigenvalue, and t-core.

As noted above, outcomes are based on the median daily
prevalence over 20 runs. The public GLEAMviz client
also indicates the 95 % confidence interval of daily preva-
lence. This allows us to estimate confidence bounds on
the the time until an outbreak achieves pandemic sta-
tus, since our definition of pandemic status is derived
from prevalence levels. Analysis of these interval pro-
vides further insight into the robustness of the correlation
results. Further, the size of the interval can be con-
sidered as an additional form of epidemic stochasticity.
Accordingly, we also compute relationship between AEF
and this observation. Since the date of peak global inci-
dence is somewhat independent of the magnitude of the
peak, the GLEAMyviz output does not easily lead to a
meaningful way to determine confidence bounds for this
outcome.

Robustness of AEF to sampling error

The robustness of AEF values is examined by observ-
ing their relative change while progressively degrading
the model WAN from which they are derived. The net-
work is degraded by removing from one to 15 percent of
U.S. airports from the network along with their associated
edges. The AEF of all remaining world airports is com-
puted. Community-based analysis of the WAN suggest
that US airports form one large community [15, 16].
The AEF is derived from the local neighborhood of the
airport. Restricting degradation to a single network com-
munity lets us evaluate both regional and global effects of
degradation on the AEF. Three different random removal
schemes were used: uniform over all airports, selection
weighted by airport degree (here defined in terms of the
seating capacity on all outbound routes from that airport),
selection weighted by AEF. The resulting AEF values are
compared with the original AEF values. We record the
number of airports whose degraded AEF departs from its
original AEF by more than 1% and by more than 5%.
Reported results are the averaged over ten runs, and show
the amount of degradation for both U.S. and non-U.S.
airports.
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Results

The AEF of the seed location is strongly predictive of
an outbreak’s invasive threshold as shown in Fig. 2 and
Table 1. The correlation between AEF and the minimal
observed transmission rate at which it first became pan-
demically competent was 0.90 (95 % confidence interval:
0.98,0.62). Tokyo was a notable outlier, achieving pan-
demic competence earlier than predicted from its AEF
value.

AEF was also strongly correlated with the delay until
an outbreak became a pandemic. Correlation was 0.84 +
0.058 to the day pandemic status was achieved, and 0.85 %
0.056 to the day of peak global incidence, see Fig. 3.
AEF is significantly and more strongly correlated to either
epidemic outcome than any of the comparison network
centrality measures, see Table 2 and Fig. 4.

The confidence values surrounding the median time
to pandemic showed an interesting pattern. In every
case the value at the low end of the interval was equiv-
alent to the median value. This indicates that most
runs showed no variation, and that variation, when it
occurred, was always in the form of slower spread.
Correlation between AEF and the size of the interval
was 0.84 £ 0.060. This indicates that AEF explains not
only the power with which an airport can seed a pan-
demic, but also the variation in that power over multiple
seeding events. Typical sizes of the confidence intervals
ranged from one to three days for airports with high
AEF to circa 80 days for airports with low AEF, see
Fig. 3.

The AEF proved robust to incomplete sampling. Degra-
dation was most severe when airports were preferentially
removed based on degree. Still, only three percent of
non-U.S. airports showed more than 1% change in their
computed ExF values when applying this scheme at the
highest noise level. Even within the United States, only
22 % of AEF values changed by more than 5 %. See Fig. 5.

Discussion

In all cases, AEF explains much of the variation in epi-
demic outcomes, suggesting that the early development
of a pandemic is not stochastic, but rather strongly struc-
tured by the local connectivity of the seed location.
The ability of the AEF to summarize this connectiv-
ity contributes substantially to our understanding of the
role of individual airports in pandemic diffusion. These
results are in harmony with other recent work claiming
that relative arrival times of WAN-mediated pandemics
are independent of disease-specific parameters [4] and
that a simple branching process model is as capable of



Lawyer BMC Infectious Diseases (2016) 16:70

Page 6 of 10

300 4

200

B atinvasion
.
Days to pandemic prevalence

100 4

\

.
\\ NRT

® IST

® BES
XRY

PVH
\YFS

e

@ BIS

S$BH
. SMK

‘f GTE Airport

3 ® SMK
® YFs
® GTE
. ® SBH

TN N ® PVH
O N\ @ 8IS
N\ ® BES
N ® XRY

NRT
. ® IST

75 100 0.400

AEF

also Table 1

Fig. 2 AEF and invasion threshold. Higher AEF is associated with a lower transmission rate needed to trigger pandemics (panel a), as well as shorter
delay until the outbreak reaches pandemic status (panel b). In panel (b), the large dots mark the lowest transmission rate for which a pandemic
occurred, for each city, and correspond to the points used to generate the regression line in panel (a). Cities are listed in order of increasing AEF. See

0425 0.450 0475 0.500

Transmission rate

describing early developments as complex metapopula-
tion simulations [23].

Degradation of the network had, in general, limited
effect on airport AEF values. Wrong information regard-
ing a specific node could, however, produce a mislead-
ing AEF value for that airport. Epidemics seeded from
airport PBJ (Paama Island, Vanuatu) took longer than
expected to achieve pandemic status. This airport is prob-
ably mischaracterized in the Open Flights database, as
flights to this simple grass strip are not shown on the
Vanuatu airlines online booking system (http://www.
airvanuatu.com/, last visited 23 March 2015). In the
opposite direction, Narita Airport (NRT, Tokyo, Japan)
showed significantly greater pandemic risk than predicted
by its AEF. This could be due to Japan’s intense popu-
lation density combined with high local mobility, factors
captured in the GLEAMviz simulator but not the Open
Flights database.

Two outliers highlight a structural blind spot of the AEF
metric. Epidemics seeded from airports ZR] (Round Lake,
Canada) and PVH (Porto Velho, Brazil) took longer than
expected to achieve pandemic status. ZR] is part of a
small but locally dense community of airports serving first
nation communities in Canada. This community has lim-
ited connectivity to the rest of the WAN, and ZR] is three
flights distant from any airport outside this community
(Winnipeg’s James Armstrong Richardson Airport YWG,
Chicago Midway MDW, Toronto Pearson YYZ). Likewise,
PVH is two flights from any of Brazil’s international trans-
port hubs. The AEF is here derived from an airport’s
two-hop neighborhood, meaning for certain airports it is
unaware of these network community boundaries. This

limitation could perhaps be overcome by instead com-
puting AEF based on a three-hop neighborhood. Given,
however, that the WAN’s effective diameter is four hops,
and the general good performance of the AEF, it is not
clear that such an extension would substantially improve
results globally.

Airport expected force summarizes the size, density,
and diversity of each airport’s neighborhood in the WAN.
The innovation of the AEF is in defining airport influence
from epidemiological first principles rather than from
network theoretical definitions of importance. The signif-
icance of this is profound. Network theoretic measures
encode one particular assumption about how topology
reflects influence. They are only valid for networks, or
network regions, where that assumption holds [26]. In
contrast, measuring influence as the expected force of
infection gives a measure whose theoretical validity is
independent of specific network topology [24].

Airport degree is not a good descriptor of pandemic
outcomes. Guimera et al noted that high degree does
not well correlate to high centrality in the WAN [16],
because it does not incorporate neighborhood structure.
Nor does low degree correlate to an airport’s connec-
tion to the wider network, as illustrated by comparing
Sweden’s Linkoping City Airport (LPI) to Alaska’s Huslia
Airport (HSL). HSL has four outbound routes which con-
nect to other rural Alaskan airports. LPI has only one
outbound route, which connects to Amsterdam Schipol.

The classical way to account for a neighbor’s onward
connectivity is to cast centrality as an eigenvalue prob-
lem. The validity of this approach has recently come into
question, with luminaries such as Newman showing that
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eigenvalue-based centralities tend to concentrate most of
the centrality score on only a few nodes [27], and Pastor-
Satorras and Castellano showing that replacing the graph
adjacency matrix with a non-backtracking variant, the
solution proposed in [27], does not resolve the problem
[28]. While we observe these effects in our model WAN,
eigenvalue centrality still provides good fit to epidemic
outcomes for those airports with centrality high enough
to distinguish them from the large mass of low-centrality
airports (see Table 2). Similar findings have been previ-
ously reported, with one study showing that adding the
weighted mean geographic distance between the source
airport and its immediate neighbors to a weighted eigen-
value centrality yeilds a metric in qualitative agreement
with the variance in spatial position of infected agents

measured on day ten of simulations seeded from 40 major
US airports [29].

Verma et al propose characterizing airports based on
the number of network triangles they take part in, the
t-core [15]. The t-core is not presented as a method to
quantify epidemic spread. It is rather a variant of the
k-shell algorithm, which is designed to precipitate away
outer layers of a network in order to identify core network
groups [30]. We find that the t-core has the second high-
est correlations to epidemic outcomes after AEF. Plotting
airport t-core against epidemic outcomes shows that this
is a result of its ability to successfully segment the WAN
into core and periphery, see Fig. 4. Thus t-core and AEF
capture complementary aspects of an airport’s role in the
WAN.
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Table 2 Correlation and 95 % confidence interval between a
suite of network centrality measures (rows) and days until both
pandemic status and peak global incidence

Measure Pandemic Ci. Peak ci.

AEF -0.84 +0.06 -0.85 +0.06
t-core -0.77 +0.09 -0.79 +0.08
Degree -0.72 +0.10 -0.75 +0.09
W degree -0.69 +0.11 -0.75 +0.09
Eigenvalue -0.70 +0.11 -0.74 +0.09
W eigenvalue -0.66 +0.12 -0.69 +0.11
Betweenness -0.54 +0.14 -0.56 +0.14
W betweenness -0.17 +0.20 -0.09 +0.20
Clustering coef. 0.28 +0.19 0.24 +0.19
W Clust. coef. 0.27 +0.19 0.24 +0.19

The abbreviation “W" indicates the weighted form of the measure

The model of the WAN used to compute AEF dif-
fers from the GLEAMviz simulator mobility model. The
WAN model replicates the airline network only, and thus
regards each airport as a separate entity. GLEAMyviz
is designed instead to model human mobility patterns
between regions. Accordingly, GLEAMviz regards large
metropolitan centers such as London or New York City
as a single transport hub regardless of the number of air-
ports which serve that region, and also includes commuter
traffic over road networks. These differences impact our
analysis; we test the correlation between the AEF value
for i.e. London Heathrow airport to disease spread simu-
lated from the entire London region, which includes four
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airports. This could explain why simulated spread from
high AEF airports, which tend to be associated with major
metropolitan centers, is uniformly faster than the value
implied by the linear correlation between AEF and time
to pandemic (see Fig. 3). For example, London Heathrow
has an AEF of 92, compared to Paris’s Charle de Gaul’s 97.
Simulated pandemics seeded from London achieve max-
imum global incidence six days earlier than those seeded
from Paris. The two models also differ in how they weight
different flight routes, and perhaps even in which routes
are included. The general high accuracy of the AEF in
predicting GLEAMviz simulation results, despite these
differences, suggests that the AEF will generalize well to
the real world, which also departs in important ways from
any existing model. This suggestion is re-enforced by the
results of the robustness analysis, which show that clear
omissions in the underlying model have only minimal
effect on estimated AEF values.

The applicability of the AEF could be extended by mod-
ifying it to allow for varying transmissibility at individual
airports. Such an extension would allow it to express dif-
ferences in i.e. competent vector species populations or
health care system readiness at different world locations.
Since the AEF is the expectation of the force of infection,
such an extension merely requires modifying the calcu-
lation of each transmission pattern’s force of infection
along with the probability of that specific pattern occur-
ring. Both criteria can be met by adjusting edge weights in
the underlying network model, implying that this exten-
sion could be implemented using the same framework as
outlined in the current work. It would also be interesting
to apply the expected force framework to disease spread
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Fig. 5 Robustness of AEF values to model degradation. For non-US airports, almost all AEF values are unaffected (defined as less than 1 %/5 %
change) as US airports are removed from the model. While many US airports are affected at the 1% level, few show more than 5% change in AEF.
The network is degraded by removing airports with selection probabilities weighted uniformly, by AEF, and by degree

through the world shipping network, a major transport
system for several vector born pathogens along with their
vector species [1]. The approach could also be tested on
more local transmission network models, such as contacts
in a hospital ward [31] or city-wide mobility data acquired
from i.e. mobile phones [32, 33].

Conclusion

An outbreak’s debut location is highly influential in its
ability to become a pandemic threat. The AEF metric
succinctly captures this influence, and can help inform
monitoring and response strategies.
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figures which further explore topics raised in the main text. (PDF 878 kb)

Additional file 2: Airport AEF values. This CSV file gives the AEF of the
airports as calculated and used in the current study. Airports are indexed
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