
RESEARCH ARTICLE Open Access

Time series analysis of reported cases of
hand, foot, and mouth disease from 2010
to 2013 in Wuhan, China
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Abstract

Background: Hand, foot, and mouth disease (HFMD) is an infectious disease caused by a group of enteroviruses,
including Coxsackievirus A16 (CVA16) and Enterovirus A71 (EV-A71). In recent decades, Asian countries have
experienced frequent and widespread HFMD outbreaks, with deaths predominantly among children. In several Asian
countries, epidemics usually peak in the late spring/early summer, with a second small peak in late autumn/early
winter. We investigated the possible underlying association between the seasonality of HFMD epidemics and
meteorological variables, which could improve our ability to predict HFMD epidemics.

Methods: We used a time series analysis composed of a spectral analysis based on the maximum entropy method
(MEM) in the frequency domain and the nonlinear least squares method in the time domain. The time series analysis
was applied to three kinds of monthly time series data collected in Wuhan, China, where high-quality surveillance data
for HFMD have been collected: (i) reported cases of HFMD, (ii) reported cases of EV-A71 and CVA16 detected in HFMD
patients, and (iii) meteorological variables.

Results: In the power spectral densities for HFMD and EV-A71, the dominant spectral lines were observed
at frequency positions corresponding to 1-year and 6-month cycles. The optimum least squares fitting
(LSF) curves calculated for the 1-year and 6-month cycles reproduced the bimodal cycles that were clearly
observed in the HFMD and EV-A71 data. The peak months on the LSF curves for the HFMD data were
consistent with those for the EV-A71 data. The risk of infection was relatively high at 10 °C ≤ t < 15 °C
(t, temperature [°C]) and 15 °C ≤ t < 20 °C, and peaked at 20 °C ≤ t < 25 °C.

Conclusion: In this study, the HFMD infections occurring in Wuhan showed two seasonal peaks, in summer
(June) and winter (November or December). The results obtained with a time series analysis suggest that the
bimodal seasonal peaks in HFMD epidemics are attributable to EV-A71 epidemics. Our results suggest that
controlling the spread of
EV-A71 infections when the temperature is approximately 20–25 °C should be considered to prevent HFMD
infections in Wuhan, China.
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analysis
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Background
Hand, foot, and mouth disease (HFMD) is an infectious
disease that typically presents as vesicular exanthema of
the oral mucosa and peripheral extremities. Enteroviruses,
such as Coxsackievirus A16 (CVA16) and Enterovirus
A71 (EV-A71), are most commonly isolated from HFMD
patients [1]. Over the past decade, Asian countries have
experienced enormous large-scale HFMD outbreaks, with
deaths predominantly among children [2–6]. The epi-
demics in China have been particularly serious and HFMD
has become one of the leading causes of child death in
China and a public health priority [7]. In 2008–2012,
7,200,092 cases of HFMD, including 2457 fatal cases, were
reported by the Chinese Center for Disease Control and
Prevention [8]. However, no vaccine or effective curative
treatment is currently available. The incidence of HFMD
will be also significantly affected by the continued
mutation of the virus and increasing climate change.
Therefore, HFMD remains an important public health
problem in China.
Many studies have reported the seasonality of HFMD

epidemics in China, and understanding the seasonality
of these epidemics may identify potentially modifiable
risk factors. Epidemics in several regions of China peak
in late spring/early summer, with a second smaller peak
in late autumn/early winter [9–13]. Researchers have
interpreted the seasonality of HFMD cases in terms of
climate variables in specific regions. Meteorological pa-
rameters, such as temperature and relative humidity,
may affect the transmission and frequency of HFMD.
However, the effects of climate variables are not consist-
ent across published studies, and these discrepancies
could arise from various local climatic conditions, differ-
ences in socioeconomic status, and the demographic

characteristics of different regions. Therefore, our under-
standing of the impact of seasonal and meteorological
variables on disease transmission remains limited. Fur-
ther research is required into the effects of climate varia-
tions on the incidence of HFMD.
Wuhan in Hubei Province is the largest mega-city in

Central China, and has experienced a relatively high
prevalence of HFMD in recent years. A better under-
standing of the temporal pattern of HFMD incidence
might allow the appropriate allocation of health-care re-
sources for better disease control and prevention. No
study has yet examined the effects of meteorological var-
iables on the occurrence of HFMD in Wuhan.
In this study, we investigated the association be-

tween the incidence of HFMD and its pathogens and
several meteorological variables (including monthly
average temperature, maximum temperature, mini-
mum temperature, relative humidity, total rainfall, and
wind velocity) in Wuhan, China, where high-quality sur-
veillance data for HFMD have been collected. We used
the time series analysis method “MemCalc” (Suwa-Trast,
Tokyo, Japan) [14–16], which has been successfully used
to investigate associations between the occurrence of
infectious diseases, pathogens, and meteorological vari-
ables, including rotavirus in India [15], cholera in
Bangladesh [17], and chickenpox in Japan [18]. Based on
the result for the seasonality of HFMD, we conducted a
prediction analysis for HFMD epidemics.

Methods
Study area
Figure 1 shows the location of Wuhan, China. Wuhan,
the capital city of Hubei Province in central China, has a
total area of 8494 km2 and a population of 10.3 million.

Fig. 1 Location of Wuhan in China. Source: revised from “Chinese latitude and longitude map” (http://www.baidu.com)
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Wuhan is situated at a latitude of 30°34′N and a lon-
gitude of 114°16′E, in an area with a subtropical wet
monsoonal climate, where the four seasons are very
clearly defined. Based on the assumption that the sea-
sons coincide with the weather and temperature pat-
terns in Wuhan, the seasons were defined as spring
(April), summer (May–September), autumn (October),
and winter (November–March). The monsoon occurs
in Wuhan from the middle of June to the middle of
July (summer) every year.

Data
HFMD data
A probable case of HFMD is defined as a patient with
papular or vesicular rash on the hands, feet, mouth, or
buttocks, with or without fever. A confirmed case is de-
fined as a probable case with laboratory evidence of en-
teroviral infection (including EV-A71, CVA16, or other
non-EV-A71 or non-CVA16 enteroviruses) detected
with reverse transcription—polymerase chain reaction
(RT-PCR), real-time RT-PCR, or viral isolation [19].
Probable and confirmed cases are reported on-line to
the China Information System for Disease Control and
Prevention (CISDCP, http://www.cdpc.chinacdc.cn) by
all the hospitals in Wuhan, using a standardized form.
In this study, we analyzed the daily number of cases of
HFMD reported in Wuhan between January 1, 2010 and
December 31, 2014 (1825 data points). The data are
available from the CISDCP website through the Wuhan
Centers for Disease Control and Prevention. First, we in-
vestigated the associations between the incidence of
HFMD and its pathogens and meteorological variables,
using the HFMD data from between January 2010 and
June 2013 (1276 data points), and then we conducted a
prediction analysis using the HFMD data from between
July 2013 and December 2014 (549 data points).

Pathogen data
According to the national guidelines [20], the samples
were collected from the first five probable cases who
presented to hospital outpatient departments each
month in each of the 13 districts of Wuhan. The appro-
priate clinical specimens, including throat swabs, rectal
swabs, fecal samples, vesicular fluid, and/or cerebro-
spinal fluid, were collected. The samples were identified
with real-time PCR in biosafety level 2 facilities in the
Wuhan Center for Disease Control and Prevention. The
test results were classified into four categories: entero-
virus negative, EV-A71 positive, CVA16 positive, or posi-
tive for another enterovirus without further serotype
identification. All pathogen data were uploaded to
CISDCP and were downloaded as monthly data. We
accessed the relevant pathogen data for the study period

from January 2010 and June 2013 (42 data points) from
the CISDCP website and the case data for HFMD.

Meteorological data
Daily meteorological data, including average temperature,
maximum temperature, minimum temperature, relative
humidity, total rainfall, and wind velocity, were collected
in the study region by the Meteorological Department,
Wuhan, which received and managed real-time data from
116 meteorological surveillance sites widely distributed in
Wuhan. The daily data were gathered for 1276 days from
January 2010 to June 2013 (1276 data points).
The descriptive statistics for the monthly meteorological

data are shown in Table 1. The mean monthly average
values in Wuhan were: temperature 16.5 °C, maximum
temperature 21.4 °C, minimum temperature 12.6 °C, rela-
tive humidity 78.2 %, total rainfall 111.3 mm, and wind
velocity 2.1 m/s.

Time series analysis
The series of analyses used in the present study was
composed of spectral analyses based on the maximum
entropy method (MEM) in the frequency domain and
the nonlinear least squares method (LSM) in the time
domain. This method of analysis can be used for predic-
tion analysis [21, 22].

Theoretical background [21]
We assumed that the time series data x(t) (where t = time)
were composed of systematic and fluctuating parts [23]:

x tð Þ ¼ systematic part þ fluctuating part: ð1Þ

The systematic part in Eq. (1) is regarded as the under-
lying variation in the original time series, and the fluctu-
ating part, including undeterministic components such
as noise, was obtained as the residual time series when
the underlying part was subtracted from the original
time series. The estimation of the underlying variation is
a key point.

Table 1 Summary statistics for the monthly meteorological
conditions in Wuhan, China

Variable Minimum Median Mean Maximum SD

T{A} (°C) 1.6 16.9 16.5 30.0 9.1

T{M} (°C) 6.3 22.4 21.4 34.2 8.9

T{m} (°C) −1.9 12.8 12.6 26.9 9.2

RH (%) 64.0 79.2 78.2 85.9 6.1

RF (mm) 7.2 90.2 111.3 384.4 99.1

WV (m/s) 1.3 2.0 2.1 2.9 0.3
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The underlying variation in the original time series
data x(t) is assumed to be described by the function X
(t), as follows:

X tð Þ ¼ A0 þ
XNp

n¼1

An cos 2πf n t þ θnð Þf g; ð2Þ

which is calculated using the LSM for x(t) with unknown
parameters fn, A0, and An (n = 1, 2, 3, …, N), where fn
(=1/Tn; Tn is the period) is the frequency of the nth
component; A0 is a constant that indicates the average
value of the time series data; An and θn are the ampli-
tude and the phase of the nth component, respectively;
and Np is the total number of components. The LSM
using Eq. (2) must be nonlinear. Linearization of this non-
linearity is required to obtain the unique optimum values
of these parameters. In the present study, linearization
was achieved using the value of fn estimated with the
MEM spectral analysis.
An outline of the analysis procedure is described as

follows. The details of the procedure for the method are
described in our previous work [14, 22].

(1)Setting up the time series data for analysis. The
sampling intervals for the HFMD and
meteorological data (daily) and pathogen data
(monthly) differed. To analyze these three kinds of
data together, it was necessary to choose equal
sampling time intervals. Therefore, we calculated the
monthly data for the HFMD cases and
meteorological variables (42 data points) from the
original daily data to conform to the monthly
pathogen data. All the meteorological parameters
studied and the values used for testing the
associations are summarized in Additional file 1. For
example, the monthly average maximum
temperature was calculated by averaging the daily
maximum temperature for a month, and the total
rainfall was calculated by summing the amount of
rainfall measured for the whole month. The monthly
meteorological variables are described as follows:
T{A}, average temperature (°C); T{M}, maximum
temperature (°C); T{m}, minimum temperature (°C);
RH, relative humidity (%); RF, total rainfall (mm);
and WV, wind velocity (m/s).

(2)Determination of Tn (spectral analysis). The value of
Tn was determined from the positions of the peaks
in the MEM power spectral density (MEM-PSD).
The MEM spectral analysis has a high degree of
resolution and is useful for clarifying periodicities
within short time series, such as the time series
data examined in this study [21]. The MEM
spectral analysis produces a power spectral
density (PSD). The formulation of the MEM-PSD

is described in an additional file (see Additional
file 2).

(3)Determination of Np (assignment of the dominant
periodic modes). The contribution of the dominant
periodic modes to the underlying variation can be
estimated easily from the trend in the standard
deviations (SD) of the residual time series xR(t)
(= x(t) – X(t)). The value of Np is then determined.

(4)Determination of A0, An, and θn (least-squares
analysis). The optimum values for parameters A0,
An, and θn (n = 1, 2, 3, …, Np), in Eq. (2), but not Np,
were determined exactly from the optimum least
squares fitting (LSF) curve calculated using the
periodic function (Eq. (2)) with the MEM-estimated
periods (Tn).

(5)Prediction analysis. The optimum LSF curve X(t)
was extrapolated to predict the original time series
because the optimum LSF curve is regarded as the
predictable part [24]. For the HFMD data, we
extended X(t) from the analysis range (January
2010–June 2013) to the prediction range
(July 2013–December 2014).

Statistical calculations
All statistical analyses were performed with SPSS 17.0 J for
Windows (SPSS Inc., Chicago, IL, USA), and Spearman’s
rank correlation (ρ) was used. A two-tailed analysis was
used for all statistical tests and a p value of ≤ 0.05 was con-
sidered the criterion for statistical significance.

Correlation between pathogen data and meteorological
data
The average occurrence of EV-A71 infections and CVA16
infections in the different domains of average temperature
(T{A}), T to T +ΔT, was calculated with the following
formula [25]:

NT Af g;j ¼

Xn
i

Ci;jf tið Þ
Xn
i

f tið Þ
; j ¼ E : EV−A71

C : CVA16

�
ð3Þ

where i is a sequence from 0 to n, ti is T{A} for the ith
month period, Ci,j is the total number of cases of patho-
gen j infection in the ith month, and f(ti) is a function
with the following values:

f tið Þ ¼ 1 when T≤ti < T þ ΔT
¼ 0 otherwise

�
ð4Þ

The numerator on the right side of Eq. (3) represents
the sum of all Ci,j comprising the 1-month average
temperature (ti) within the temperature domain of T to
T + ΔT during the data period. The denominator is the
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total number of occasions upon which T < ti < T + ΔT
during the same data period.
Similarly, the average occurrences of pathogen infec-

tions in the different variable domains for maximum
temperature (NT{M},E and NT{M},C), minimum temperature
(NT{m},E and NT{m},C), relative humidity (NRH,E and NRH,C),
total rainfall (NRF,E and NRF,C), and wind velocity (NWV,E

and NWV,C) were determined. The variables ti, T, and ΔT
for T{A} in Eq. (4) were replaced with tMi, TM, and ΔTM,
respectively, for T{M}; with tmi, Tm, and ΔTm, respect-
ively, for T{m}; with hi, H, and ΔH, respectively, for RH;
with ri, R, and ΔR, respectively, for RF; and with wi, W,
and ΔW, respectively, for WV.
In Fig. 2, we show the values for NT{A},E against

Temp (Temp; temperature [°C]) when ΔT = 1, 3, and
5 °C. When ΔT = 1 °C and 3 °C, the curve of NT{A},E

displays irregular variability, whereas when ΔT = 5 °C,
the curve of NT{A},E becomes regular in shape. There-
fore, we used ΔT = 5 °C for T{A} in the present study.
Similarly, the values for ΔTM, ΔTm, ΔH, ΔF, and ΔW
were determined as 5 °C, 5 °C, 5 %, 30 mm, and
0.1 m/s, respectively.

Results
Case description
From January 2010 to June 2013, 48,882 cases of HFMD
were reported to the CISDCP, 4.5 % (2195 HFMD cases)
of which were laboratory-confirmed. The age distribution
of the reported cases is shown in Fig. 3. The number of
reported cases varied greatly with age, with the highest
proportion in children under 5 years. This age group
contributed over 90 % of the reported cases during the
study period.

Temporal variations in HFMD data, pathogen data, and
meteorological data
The monthly time series data used in this study are illus-
trated in Fig. 4. For the HFMD data (Fig. 4a), two peaks
occurred in a 1-year cycle, one in a summer month (June
in 2010, July in 2011, and May in 2012) and the other in a
winter month (December in 2011 and 2012). This bimodal
cycle was also clearly observed in cases of EV-A71 infec-
tion in 2011 and 2012 (Fig. 4b), although it was not evi-
dent in 2010. Large peaks in the number of CVA16
infections (Fig. 4c) were observed in 2011 (November and
December) and 2012 (April). The temporal patterns of
T{A}, T{M}, and T{m} (Fig. 4d) showed large peaks in a
summer month (August) in the annual cycle. The tem-
poral pattern of RH (Fig. 4e) indicated a decreasing trend
from approximately 85 % at the beginning of 2010 to
approximately 65 % by May 2011. Thereafter, the temporal
pattern of RH increased to approximately 80 %, and then
remained relatively constant at around 80 %. The time
series data for RF (Fig. 4f) indicated a large peak in the
summer months of the annual cycle (June in 2010 and
2011, and May–July in 2012). However, as for RH (Fig. 4e),
no seasonal pattern in the data for WV (Fig. 4g) was obvi-
ous at first glance.

Spectral analysis and LSF analysis

(i) MEM spectral analysis: The MEM-PSDs for the
time series data (Fig. 4) are shown in Fig. 5. For all
PSDs, except that of CVA16 (Fig. 5c), prominent
spectral peaks were observed at f = 1.0 (= f1),
corresponding to a 1.0-year period.

(ii)Assignment of fundamental modes: To obtain the
optimum LSF curve, we assigned the fundamental

Fig. 2 Dependence of the occurrence of EV-A71 infection and average temperature (NT{A},E) on temperature interval (ΔT). Dashed line, ΔT = 1 °C;
dotted line, ΔT = 3 °C; solid line, ΔT = 5 °C
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modes constructing the underlying variation in Eq.
(1). In the present study, we investigated the
contributions of 10 MEM-estimated periods to the
LSF curve. We then calculated the SD of the residual
time series with the variation in Np. For the HFMD
data, for example in Fig. 6, the values of SD were
plotted against Np. The figure shows inflection points
at 6–8 modes. We separated the contributions of the
10 periods into two parts: the underlying variation
and the fluctuating part, as described in Eq. (1). For
the HFMD data, we determined Np = 5 and assigned
the five periods as the fundamental modes (1.63, 1.01,
0.64, 0.51, and 0.37 years), which are listed in Table 2
with the corresponding periods and intensities
(powers) of the spectral peaks. The fundamental
modes for the pathogen data and the meteorological
data were similarly assigned at Np = 5 and are shown
in Table 2. In Fig. 7, each LSF curve calculated with
the fundamental modes reproduces the original time
series data well. The good fit of each LSF curve to the
original time series data was supported by the high
values of ρ between the original data and the LSF
curve: 0.93 for HFMD, 0.95 for EV-A71, 0.90 for
CVA16, 0.99 for T{A}, T{M}, and T{m}, 0.94 for RH,
0.93 for RF, and 0.82 for WV. Thus, the fundamental
modes assigned to the results of the MEM spectral
analysis for each set of time series data (Fig. 5, Table 2)
were confirmed as appropriate.

Prediction analysis
The optimum LSF curve for HFMD, calculated with the
five fundamental modes (Table 2), was extended from the
analysis range (January 2010–June 2013) to the prediction
range (July 2013–December 2014) and the results are
shown in Fig. 8. The LSF curve in the prediction range
reproduced the position of the peak in autumn 2013 and
that in spring 2014 fairly well. The LSF curve in the
prediction range (July 2013–December 2014) lies within

the 95 % confidence interval, reproducing the underlying
variation in the original data well.

Bimodal cycles of HFMD data and pathogen data
It is noteworthy that the dominant spectral lines for
HFMD, EV-A71, and CVA16 (Fig. 5a, b, and c, respect-
ively) were observed at f = 0.5, corresponding to a 6-
month period, resulting from the bimodal cycles observed
in the HFMD and EV-A71 data in 2011 and 2012
(Fig. 4a and b, respectively) and in the CVA16 data in
2011–2012 (Fig. 4c).
The LSF curves for HFMD and EV-A71 were calcu-

lated with the 1-year and 6-month cycles, which were
clearly observed in the PSDs (Fig. 5a and b, respectively).
The LSF curves obtained were normalized in amplitude
and overlapped, as shown in Fig. 9a. The peak months
on the LSF curves for the HFMD and EV-A71 data dur-
ing 2010–2012 were mutually consistent, whereas the
peak month on the LSF curve for HFMD in 2013 (June)
was delayed by 1 month relative to that for EV-A71
(May). The value of ρ between the LSF curve for HFMD
and that for EV-A71 was high (0.90).
Similarly, the LSF curves for HFMD and CVA16 were

calculated with the 6-month cycle clearly observed in
the PSDs (Fig. 5a and c, respectively), and the results ob-
tained are shown in Fig. 9b. The peak months on the
LSF curve for HFMD in 2010 (June and December),
2011 (June), and 2013 (June) were delayed by 1 month
relative to those for CVA16. The other peak months on
both LSF curves were mutually consistent. The value of
ρ between the LSF curve for HFMD and that for CVA16
was high (0.65).

Correlations between EV-A71 infection and
meteorological variables
The values of ρ between the pathogen data (EV-A71 and
CVA16) and the meteorological variables are listed in
Table 3. EV-A71 infections were positively associated

Fig. 3 Age distribution of the reported HFMD cases at hospitals in the whole of Wuhan
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Fig. 4 Monthly time series data for reported cases of HFMD, their pathogens, and meteorological variables. a HFMD, b EV-A71, c CVA16, d T{A},
T{M}, and T{m}, e RH, f RF, and g WV
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with T{A}, T{M}, T{m}, and RF, and negatively associated
with RH and WV. Of these variables, T{A}, T{M}, T{m},
and RF showed strong mutual associations with high ρ
values ranging from 0.33 to 0.37. In contrast, RH, RF,
and WV were not significantly associated with EV-A71
infections.
Based on the results for EV-A71 shown in Table 3, we

investigated NT{A},E, NT{M},E, NT{m},E, and NRF,E (Eq. (3)).
The results obtained are shown in Fig. 10. In the case of
T{A} (Fig. 10a), the value for NT{A},E was relatively high
when 10 °C ≤ Temp < 15 °C and 15 °C ≤ Temp < 20 °C,
and peaked when 20 °C ≤ Temp < 25 °C. The value of
NT{A},E became small when 25 °C ≤ Temp < 30 °C, but
increased again when 30 °C ≤ Temp < 35 °C.
The inverse V-shaped relationship between the NT{A},E

values against Temp (Fig. 10a) was also observed for
NT{M},E, with a peak when 25 °C ≤Temp < 30 °C (Fig. 10b),
and for NT{m},E, with a peak when 15 °C ≤ Temp < 20 °C

Fig. 5 Power spectral densities of the monthly time series data. a HFMD, b EV-A71, c CVA16, d T{A}, T{M}, and T{m}, e RH, f RF, and g WV

Fig. 6 Contributions of periodic modes to the LSF curve of
HFMD data
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(Fig. 10c), corresponding to before and after the peak of
NT{A},E when 20 °C ≤Temp < 25 °C (Fig. 10a). This result
is consistent with the following two facts: (i) the time
series data for T{A}, T{M}, and T{m} (Fig. 4d) oscillate in
the same phase; and (ii) the differences between the mean
values for T{A} (16.5 °C; Table 1) and T{M} (21.4 °C;
Table 1) and between the mean values for T{A} (16.5 °C;
Table 1) and T{m} (12.5 °C) are approximately 5.0 °C.
For the total rainfall (Fig. 10d), the value for NRF,E was

relatively high when 150 mm ≤ r < 200 mm and
250 mm ≤ r < 400 mm (r, total rainfall [mm]).

Correlations between CVA16 and meteorological
variables
RH was a strongly associated with CVA16 infections
(ρ = 0.35; Table 3). Therefore, we investigated NRH,C,
and the results are shown in Fig. 10e. The pattern
shows a positive slope with respect to RH. However,
T{A}, T{M}, T{m}, RF, and WV were not significantly
associated with CVA16 infections (Table 3).

Discussion
In this study, we found that the HFMD infections occur-
ring in Wuhan showed two seasonal peaks, in summer
(June) and winter (November or December). The LSF
curves shown in Fig. 7 suggest that the bimodal seasonal
peaks in the HFMD epidemics are attributable to EV-A71
and CVA16 epidemics. The following factors may explain
the bimodal seasonal peaks in the EV-A71 and CVA16
epidemics in Wuhan (Fig. 4b): (i) the association between
EV-A71 and CVA16 infections and meteorological vari-
ables; and (ii) the environmental conditions in Wuhan.

(i) Association between EV-A71 and CVA16 infections
and meteorological variables. The results shown
in Fig. 10 support the results of Chang et al. [25],
who found that cases of HFMD were reported
in Taiwan at temperatures of 13–26 °C, the
temperature range in which the EV-A71 virus is
activated, and decreased at temperatures lower than
13 °C or higher than 26 °C. In Wuhan, where the
temperature falls below 15 °C during autumn-winter
and exceeds 25 °C in summer, the occurrence of
HFMD epidemics is bimodal (Fig. 4a). This is similar

Table 2 Characteristics of the fundamental modes of monthly
data for HFMD cases, pathogens, and meteorological variables

Variables f (1/year) Period (year) Power

Monthly number of HFMD cases 0.61 1.63 243468.60

0.99 1.01 200329.10

1.57 0.64 65433.80

1.95 0.51 336891.30

2.68 0.37 31004.70

Monthly number of EV-A71
identification

0.54 1.86 49.84

1.02 0.99 35.30

1.32 0.76 27.71

2.00 0.50 125.71

2.55 0.39 12.41

Monthly number of CVA16
identification

0.62 1.61 200.24

1.55 0.64 37.05

0.62 1.61 200.24

1.55 0.64 37.05

1.98 0.51 46.49

2.38 0.42 54.45

3.00 0.33 24.37

T{A} (°C) 0.97 1.03 12.89

1.05 0.96 62.21

1.65 0.61 0.18

2.02 0.50 0.34

3.04 0.33 0.39

T{M} (°C) 0.96 1.05 4.96

1.04 0.96 7.72

1.68 0.60 0.68

2.07 0.48 1.46

3.03 0.33 1.02

T{M} (°C) 0.95 1.06 5.44

1.04 0.96 7.73

1.63 0.61 0.53

2.00 0.50 0.54

3.05 0.33 0.68

RH (%) 0.32 3.12 4.89

0.60 1.66 3.59

1.03 0.97 3.45

1.35 0.74 3.00

3.00 0.33 2.05

RF (mm) 0.26 3.81 22.80

1.00 1.00 103.40

2.05 0.49 37.20

3.05 0.33 28.80

5.15 0.19 21.40

Table 2 Characteristics of the fundamental modes of monthly
data for HFMD cases, pathogens, and meteorological variables
(Continued)

WV (m/s) 0.58 1.72 0.16

0.94 1.06 0.19

2.11 0.47 0.19

2.58 0.39 0.14

3.03 0.33 0.09
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Fig. 7 Comparison of the LSF curves calculated for the fundamental modes with the original data. LSF curve, solid line; original data, dashed line.
a HFMD, b EV-A71, c CVA16, d T{A}, T{M}, and T{m}, e RH, f RF, and g WV
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to a previous finding in Guangzhou, China [12],
where the association between the incidence of
HFMD and temperature increased rapidly below
25 °C but flattened above 25 °C.

However, the results shown in Fig. 10a indicate that
the low value of NT{A},E when 25 °C ≤ Temp < 30 °C
returns to a high value when 30 °C ≤ Temp < 35 °C,
which differs from the infections recorded in Taiwan
[25] and Guangzhou, China [12]. This large value for
NT{A},E in Wuhan when 30 °C ≤ Temp < 35 °C was
recorded on only one isolated occasion in July 2010
(Fig. 4b). To understand the correlation between EV-
A71 infection and temperature in Wuhan in more detail,
further surveillance data for EV-A71 (including data on
HFMD) and other pathogens will be required. The find-
ings of this study show that when the temperature is
between 15 and 25 °C in Wuhan, public-health author-
ities should prepare fully to respond to an epidemic of
HFMD, including increasing access to health-care
resources, the distribution of scientific knowledge to
the public, medical staff and public health personnel,
the availability of essential medical equipment, active
disease surveillance, and the design of other more-
specific control measures to mitigate the risk of dis-
ease transmission.
Our finding of a positive correlation between the re-

ported cases of EV-A71 infections and rainfall (Fig. 10d)
is supported by a previous study that demonstrated that
some tropical and subtropical countries experienced

more outbreaks in the rainy season [26]. The large
values for NRF,E when 250 mm ≤ r < 400 mm (Fig. 10d)
are consistent with the peak rainfall during the mon-
soon, which brought large amounts of rain in June 2010,
June 2011, June 2012, and May–June 2013 (Fig. 4f ). The
large values of NRF,E when 150 mm ≤ r < 200 mm
correspond to the relatively high values for rainfall
before and after the monsoons in April–May and
July–August (Fig. 4f ).

(ii)Environmental conditions in Wuhan. The winter
peak in HFMD, which occurs after the first
peak in summer, is probably attributable to
disease transmission from the patients who
formed the first peak because EV-A71 persists
in the environment [27]. EV-A71 can be found
in an infected person’s feces for several weeks
after the onset of symptoms, and possibly remains
for days or weeks on materials in domestic and
institutional environments [28, 29]. The high
population density in Wuhan could also increase
the disease transmission rate and the likelihood
of outbreaks.

The strong correlation between RH and CVA16 in-
fections (Fig. 10e) may explain the fairly large num-
bers of CVA16 infections in the winter of 2011 and
the spring of 2012, with very few cases in other years
(Fig. 4c), although there has been no convincing
explanation of these annual fluctuations in CVA16

Fig. 8 Comparison of the optimum LSF curve for the HFMD data in the prediction range. LSF curve, solid line; original data, dashed line; gray
lines, 95 % confidence
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infections. The annual fluctuations in disease have
been interpreted in terms of many factors, including
meteorological factors, host susceptibility, and chan-
ging contact rates between susceptible and infectious
individuals [30]. This organizational process has been

investigated with the susceptible/exposed/infective/recov-
ered (SEIR) model, which is described with nonlinear dif-
ferential equations [31, 32], but no definite conclusions
regarding CVA16 infections have yet been drawn.
We found no statistically significant association between

WV and either EV-A71 or CVA16. This result is inconsist-
ent with a Hong Kong study [33] for the period 1981–
2010, when WV was reported to be 3.1 m/s, which was
greater than the average wind speed in Wuhan during the
present study period (2.1 m/s; Table 1). It is possible that
there is a threshold effect of wind speed, which is not
exceeded in Wuhan.
The prevalent month/week of the seasonal cycle of

HFMD incidence has attracted the attention of re-
searchers in the hope of predicting disease outbreaks
[9–13]. To investigate the seasonality of the disease
incidence, some studies have used time series analyses

Fig. 9 Normalized LSF curves. a The curves for HFMD (solid line) and EV-A71 (dashed line) calculated with the 1-year and 6-month cycles, and (b)
the curves for HFMD (solid line) and CVA16 (dashed line) calculated with the 6-month cycle

Table 3 Spearman’s correlation coefficients for monthly data on
pathogens and meteorological variables

Variables EV-A71 CVA16

T{A} (°C) 0.34* 0.19

T{M} (°C) 0.37* 0.16

T{m} (°C) 0.34* 0.20

RH (%) −0.07 0.35*

RF (mm) 0.33* 0.23

WV (m/s) −0.16 −0.03
*P < 0.05;
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[9–12]. One of the important approaches used with time
series is the autoregressive model, which is a special case
of the linear filter model, and includes sophisticated ver-
sions, such as the autoregressive moving-average model
and the seasonal autoregressive integrated moving-
average model [9, 34]. In the present study, we applied
our prediction analysis method to the HFMD data (Fig. 8).
The present method is based on the most traditional
method of prediction analysis, which uses an extrapolation
curve corresponding to the underlying variations of the
time series data, X(t) (Eq. (2)) in future. The reproducibil-
ity of the HFMD data is considered to arise because the
fundamental modes constructing X(t) (Table 2) were well
assigned by the MEM spectral analysis and reconstruct
the periodic structure of the underlying variation in the
data in the prediction range (Fig. 8). We anticipate that
the present method of time series analysis using an MEM
spectral analysis and LSM will allow the further develop-
ment of prediction analyses for HFMD epidemics.
A limitation of this study was that we used monthly

pathology data for EV-A71 and CVA16 rather than

daily or weekly data, because monthly measures are
the minimum unit of measurement released by the
CISDCP. Further studies using daily or weekly data
are required in the future. Another limitation was
that the percentage of laboratory confirmation was
low (< 5 %), because the purpose of testing samples
from HFMD cases is to determine the predominant
virus circulating in Wuhan, rather than to identify
further patients with the disease.

Conclusion
The results of our study indicate that in Wuhan, EV-
A71-based HFMD infections correlate strongly with the
average, maximum, and minimum temperatures and
total rainfall, and that CVA16-based HFMD infections
correlate strongly with relative humidity.
The Intergovernmental Panel on Climate Change Third

Assessment Report states that “changes in climate that
will affect potential transmission of infectious diseases
include temperature, humidity, altered rainfall, and sea-

Fig. 10 Occurrence of EV-A71 and CVA16 infections and meteorological variables. a–d Average EV-A71 infection occurrence (NT{A},E, NT{M},E, NT{m},E,
and NRF,E) was defined as the average number of EV-A71 infections observed during a 1-month period for a given domain of T{A}, T{M}, T{m}, and
RF. e The average CVA16 infection occurrence (NRH,C) was defined as the average number of CVA16 infections observed during a 1-month period
for a given domain of RH
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level rise” [35]. EV-A71 and CVA16 lack a thermostatic
mechanism, and their reproduction and survival rates are
strongly affected by fluctuations in temperature, as are
those of other viruses, parasites, and bacteria [36, 37].
Therefore, the effects of meteorological variables on the
epidemiology of EV-A71 and CVA16 must be investigated
to control HFMD, as in this study.
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