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Abstract

Background: The rapid global spread of multi-resistant bacteria and loss of antibiotic effectiveness increases the risk of
initial inappropriate antibiotic therapy (IAT) and poses a serious threat to patient safety. We conducted a systematic
review and meta-analysis of published studies to summarize the effect of appropriate antibiotic therapy (AAT) or IAT
against gram-negative bacterial infections in the hospital setting.

Methods: MEDLINE, EMBASE, and Cochrane CENTRAL databases were searched until May 2014 to identify
English-language studies examining use of AAT or IAT in hospitalized patients with Gram-negative pathogens.
Outcomes of interest included mortality, clinical cure, cost, and length of stay. Citations and eligible full-text articles
were screened in duplicate. Random effect models meta-analysis was used.

Results: Fifty-seven studies in 60 publications were eligible. AAT was associated with lower risk of mortality (unadjusted
summary odds ratio [OR] 0.38, 95 % confidence interval [CI] 0.30-0.47, 39 studies, 5809 patients) and treatment failure (OR
0.22, 95 % CI 0.14–0.35; 3 studies, 283 patients). Conversely, IAT increased risk of mortality (unadjusted summary OR 2.66,
95 % CI 2.12–3.35; 39 studies, 5809 patients). In meta-analyses of adjusted data, AAT was associated with lower
risk of mortality (adjusted summary OR 0.43, 95 % CI 0.23–0.83; 6 studies, 1409 patients). Conversely, IAT increased
risk of mortality (adjusted summary OR 3.30, 95 % CI 2.42–4.49; 16 studies, 2493 patients). A limited number of
studies suggested higher cost and longer hospital stay with IAT. There was considerable heterogeneity in the
definition of AAT or IAT, pathogens studied, and outcomes assessed.

Discussion: Using a large set of studies we found that IAT is associated with a number of serious
consequences,including an increased risk of hospital mortality. Infections caused by drug-resistant, Gram-negative
organisms represent a considerable financial burden to healthcare systems due to the increased costs associated
with the resources required to manage the infection, particularly longer hospital stays. However, there were
insufficient data that evaluated AAT for the outcome of costs among patients with nosocomialGram-negative
infections.
(Continued on next page)
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Conclusions: IAT in hospitalized patients with Gram-negative infections is associated with adverse outcomes.
Technological advances for rapid diagnostics to facilitate AAT along with antimicrobial stewardship, surveillance,
infection control, and prevention is needed.

Keywords: Appropriate initial antibiotic therapy, Inappropriate initial antibiotic therapy, Hospital-acquired,
Healthcare-associated, Gram-negative, Systematic review

Background
In 2011, there were approximately two million cases
of hospital-acquired infections in the United States,
more than 75,000 of which were fatal [1]. Gram-
negative bacteria cause the four most frequent types
of hospital-acquired infection: pneumonia, intra-
abdominal infection, urinary tract infection (UTI),
and bloodstream infection. In the US from 2009 to
2010, 43 % of healthcare-associated infections, 65 %
of catheter-associated UTIs, 65 % of pneumonia, and
22 % of central line-associated bloodstream infections
were attributed to Gram-negative pathogens [2]. The
most important Gram-negative pathogens in the hospital
setting include Escherichia coli, Klebsiella pneumoniae,
and Pseudomonas aeruginosa, which account for 27 %
of all pathogens and 70 % of all Gram-negative patho-
gens causing healthcare-associated infections [2]. Gram-
negative bacteria develop resistance to commonly pre-
scribed antibiotics through mutation and gene acquisition.
The incidence of multidrug-resistant, Gram-negative
pathogens is on the rise and these organisms represent
an urgent threat due to the limited availability of viable
therapeutic options [3, 4]
Antibiotic treatment guidelines consistently recom-

mended empiric therapy upon patient presentation with
symptoms suggestive of bacterial infection. The potential
for resistance must be considered when selecting empiric/
initial antibiotic therapy because failure to cover the infec-
tious pathogen (s) is associated with negative outcomes
among patients with critical conditions [3]. Although it
is well-known that appropriate initial antibiotic therapy
(AAT) is associated with favorable outcomes among
patients with Gram-negative bacteria, there is a need for
an in-depth, comparative analysis of the contemporary
literature reporting on outcomes associated with AAT
or inappropriate initial antibiotic therapy (IAT). While
a number of recent systematic reviews examined the
role of resistant pathogens on mortality, as compared
with susceptible pathogens, in general, there is a scar-
city of information on the role of the timeliness and
appropriateness of initial antibiotic therapy in these re-
views [5, 6]. In addition, there is considerable lack of infor-
mation if the effect of AAT as compared with IAT in
gram-negative bacterial infections varied by the type of in-
fecting pathogen.

Methods
We conducted a systematic review and meta-analysis of
existing studies on the effectiveness of AAT and IAT for
Gram-negative bacterial infections in the hospital setting
on clinical and economic outcomes, including cost,
length of hospital stay, mortality, and bacterial eradication.
This review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) Statement [7].

Data sources and study selection
Initial comprehensive literature searches were conducted
in MEDLINE, Cochrane CENTRAL, and EMBASE data-
bases from inception through May 2014 for English-
language articles published on the use of appropriate or
inappropriate empiric/initial antibiotics in patients with
hospital-acquired or healthcare-associated Gram-negative
bacteria. The searches combined terms for Gram-negative
bacteria, appropriate or inappropriate initial antimicrobial
therapy, nosocomial or hospital-acquired or healthcare-
associated bacterial acquisition, and infections of desired
sites such as UTI, intra-abdominal infections, bloodstream
infection, and pneumonia. Additional studies were identi-
fied by perusing reference lists of systematic reviews and
economic reviews or obtained from experts. The results of
the literature searches were screened in duplicate using
study eligibility criteria; discrepancies were resolved by
consensus in group conference. Most publications identi-
fied by our initial search examined the effect of use of
AAT or IAT on mortality. Therefore, searches were
expanded to include community-acquired Gram-negative
infections to identify additional articles relevant to eco-
nomic outcomes of length of stay or cost.

Study inclusion criteria
We included studies of adult patients with susceptible,
resistant, or multidrug-resistant Gram-negative infec-
tions of the following sites: respiratory, intra-abdominal,
bloodstream, and urinary tract. While studies with noso-
comial, hospital-acquired, or healthcare-associated infec-
tions were included for all outcomes, studies with
community-acquired Gram-negative infections were in-
cluded only for the outcomes of length of stay and cost.
Patients had to have been given empiric antibiotic therapy
prior to the identification of culture results. Individual
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study definitions of AAT or IAT were accepted. Add-
itional study inclusion criteria included sample size of at
least 10 patients per comparison group (AAT versus IAT)
evaluating at least one of the following outcomes: mortal-
ity, clinical success, microbiologic eradication, length of
stay (hospital and intensive care unit [ICU]), or cost. For
studies with multiple publications on the same Gram-
negative organism, we included those with the longest
recruitment period or longest follow-up, largest sample
size, or both. Unpublished literature was not included, and
no authors were directly contacted for unpublished data.

Study exclusion criteria
We excluded narrative reviews, cross-sectional studies, case
reports, editorials, letters, comments, and non–English-
language articles. Studies that included patients with
Gram-positive bacteria, fungi, or polymicrobial infection
that did not stratify results by Gram-negative bacteria
were excluded. Studies where all patients (100 %) received
either AAT or IAT were excluded.

Data extraction and quality assessment
Each article was screened by one of three investigators and
confirmed by at least one other. Included studies were then
extracted independently, and results were confirmed by
one of the other investigators. The extracted data included
study design; participant characteristics; comorbidity score;
comorbidities; site of infection; primary cause of infection;
history of antibiotic use; history of hospitalization; inclu-
sion criteria; exclusion criteria; definitions of AAT or IAT;
percentage of patients receiving AAT; percentage of pa-
tients receiving IAT; and unadjusted or adjusted analyses
comparing outcomes of interest in patients who received
AAT or IAT.

Data synthesis and analysis
We considered the following outcomes for inclusion in the
meta-analysis: all-cause mortality in hospital, infection-
related mortality, length of stay, hospital costs (as defined
by study authors as direct and indirect costs incurred dur-
ing an inpatient stay, or as hospital accounting costs), and
clinical cure or microbiological clearance. Meta-analysis
was conducted using the random effects model; results are
reported as summary odds ratio (OR) [8]. The random
effects meta-analyses assessed any potential differential
impact of AAT or IAT on the outcomes of interest using
unadjusted and adjusted data, when feasible. The propor-
tion of IAT and the proportion of AAT add up to 100 % for
unadjusted mortality data and results data were rounded
to two decimal places. Cochran’s Q chi-square test was
used to test for between-study heterogeneity and quanti-
fied with I2 [9]. Additional subgroup analyses were con-
ducted by outcome time points, site of infection, pathogen
and definition of AAT. For meta-analyses with at least 10

studies, we evaluated the potential for publication bias with
funnel plots and Egger’s tests for small study effects [10].
We looked for differences across studies using stratified
analyses to explain heterogeneity in association results. To
assess study quality, we applied quality questions from the
Newcastle–Ottawa Quality Assessment Scale for case-
control and observational studies [11]. When feasible, sen-
sitivity analyses were conducted by excluding studies that
were rated as having high risk of bias. All analyses were
performed in Stata version 13 (StataCorp, College Station,
Texas).
This review evaluated data from published studies and

was exempt from ethics committee approval. This review
did not involve any direct research on patients, and no
informed consent was required.

Results
The literature search identified a total of 2391 abstracts,
of which we screened 294 in full text and added seven
articles from existing systematic reviews and by experts.
A total of 57 studies in 60 publications were included
(Fig. 1). In addition, the figure includes the reasons why
the 241 full-text articles were excluded.
Appropriate use of antibiotic therapy was defined het-

erogeneously among 68 % of included studies using both
susceptibility and timeliness. About 20 % of studies
reported susceptibility to at least one empiric antibiotic
therapy by subsequent culture examination as the defin-
ition of AAT. The administration of empiric antibiotics
within a specified number of hours of index infection
site culture was reported as the only definition in 8 % of
studies. The specified number of hours varied between
24 and 72 h. There were no definitions reported for
AAT in 4 % of studies.
Only one-half of the eligible studies adjusted for con-

founders in their analyses for outcomes of interest.
Seven studies (12 %) included only resistant pathogens
and the remaining studies included both resistant and
susceptible pathogens. Patients with resistant pathogens
differed in sex distribution, associated co-morbid condi-
tions, had central venous catheter or urinary catheter, or
had an ICU stay, as compared with those with suscep-
tible pathogens.
Of the five outcomes examined, mortality was the only

endpoint for which a meta-analysis was feasible. For the
other four outcomes, a meta-analysis was not possible
due to insufficient data or heterogeneity of data. For the
mortality analysis, we were able to stratify by reported
outcome time point, the type of pathogen, definition of
AAT, and ICU-related infection.

Mortality outcomes
Thirty-nine studies in 41 publications representing a
total of 5809 patients examined the outcome of mortality
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[12–53] (see Additional file 1: Table S1). Of these, five
were prospective observational studies and 34 were retro-
spective (see Additional file 2: Table S2). Most retrospect-
ive studies identified eligible patients from hospital
administration databases, and four studies examined pa-
tients admitted to the ICU [12, 18, 27, 48]. All studies
were conducted in academic hospitals or tertiary care cen-
ters and most were single-center studies, except for two
multicenter studies [42, 47].
Included studies were conducted in the US (five studies),

Europe (17 studies), Asia (14 studies), and South America
(three studies). The average age of patients among included
studies ranged between 41 and 76 years. The proportion of
men included in studies ranged from 49 to 81 %. The ma-
jority of infections examined were bloodstream infections;
only five studies evaluated patients with hospital-acquired
pneumonia. Mortality was reported within 14 days (12
studies) and 30 days (22 studies) with two studies reporting
at both time points [19, 43]; the mortality time point was
not documented in seven studies. Only four studies re-
ported data on infection-related mortality [14, 22, 24, 53].

Twenty-nine studies (72.5 %) reported any baseline
comorbidity score, heterogeneously, with higher base-
line scores among non-survivors (see Additional file 1:
Table S1). Coexisting conditions among included study
populations were diabetes (0.6 to 40 %), immunosup-
pression (3.5 to 100 %), kidney disease (4 to 37.6 %),
cardiovascular diseases (5 to 81 %), cerebrovascular dis-
eases (0.8 to 50 %), chronic obstructive pulmonary diseases
(7.9 to 31 %), cancers (7.5 to 100 %), hypertension (22.1 to
52.6 %), artery disease (10 to 17.2 %), liver disease/cirrhosis
(1.9 to 15.4 %), and lung disease/dysfunction (9 to 17.4 %).
All 39 studies reported unadjusted data on the associ-

ation of AAT and mortality. The meta-analysis of un-
adjusted data demonstrated a statistically significant
decreased mortality in those who received AAT com-
pared to those who received IAT (39 studies, 5809 pa-
tients, unadjusted summary OR 0.38, 95 % CI 0.30–0.47;
I2 = 64.9 %). Stratified analyses by mortality time point
concurred with the overall unadjusted mortality (Figs. 2,
3 and 4). Additional stratified meta-analyses of studies
that defined the use of AAT by timeliness of index

Fig. 1 PRISMA flow diagram
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culture and studies that examined extended-spectrum β-
lactamase E. coli and Klebsiella spp were homogeneous
(Table 1). Conversely, IAT increased risk of mortality
(unadjusted summary OR 2.66, 95 % CI 2.12–3.35; 39
studies, 5809 patients).

Twenty-two of 39 studies reported data for an
adjusted meta-analysis (Fig. 5). Adjusted data from
16 studies (2493 patients) demonstrated increased
mortality with IAT (adjusted summary OR 3.30, 95 % CI
2.42–4.49, I2 54 %) or decreased mortality in 6 studies

Fig. 3 Whisker plot of unadjusted mortality at 14 days among patients receiving AAT

Fig. 2 Whisker plot of unadjusted mortality at 30 days among patients receiving AAT
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(1409 patients) with AAT (adjusted summary OR 0.43,
95 % CI 0.23–0.83, I2 75 %).
Funnel plots of all studies reporting unadjusted and

adjusted mortality with IAT indicated no potential for
missing studies with inverse associations (RR <1.0).

Economic outcomes
Seventeen studies in 19 publications representing a total
of 3855 patients examined the economic outcomes of
cost or length of stay [17, 22, 25, 31, 38, 46, 54–66].
None were prospective, and all 17 were retrospective
observational studies (see Additional file 3 Tables S3
and S4). Included studies were conducted in the US (six
studies), Europe (four studies), Asia (six studies), and
Israel (one study). The majority of infection was blood-
stream infections (10 studies), and the remainder were
UTIs (three studies), pneumonia (two studies), and intra-
abdominal infections (two studies).
Of the 10 studies that examined cost outcomes, four

provided direct evidence of an association between IAT
and cost, the remaining six provided indirect evidence for
an association. In four studies with the direct evidence of
an association between IAT and cost, IAT was associated
with higher mean total cost (two studies), hospital costs
(two studies), or antibiotic cost (one study). In six studies
with indirect evidence, patients with resistant organisms
received more IAT than those with susceptible organisms,
and the resistant groups had higher mean total cost (two
studies), hospital costs (two studies), antibiotic cost (one
study), or per-patient cost (one study) compared with the
susceptible group.
Heterogeneity of outcomes precluded a meta-analysis

and only a small number of studies reported quantitative
data for direct evidence. IAT was associated with longer

hospital stay (five studies), but shorter ICU stay (two
studies). Receiving IAT was associated with higher hospital
cost (two studies; median = $51,977; interquartile range
[IQR] $34,644–$69,311) and longer hospital stay (five
studies; median = 21; IQR 13–21 days) as compared
with AAT (median = $40,187; IQR $25,982–$54,392;
median = 18; IQR 9–24 days, respectively).

Clinical response outcomes
Five studies reported data on clinical response including
microbiological clearance (one study) and treatment fail-
ure (four studies) [17, 67–70]. The lone study on micro-
biological clearance identified that IAT was significantly
associated with a slower initial rate of bacterial clear-
ance, as compared with AAT [67]. All four studies in un-
adjusted analyses and one study in adjusted analysis
found statistically significant decreased treatment failure
with AAT, as compared with IAT [17, 68–70]. The
meta-analysis of unadjusted data demonstrated a statisti-
cally significant decreased treatment failure with AAT
(three studies, 283 patients, OR 0.22, 95 % CI 0.14–
0.35), as compared with IAT. Only one study that mea-
sured treatment failure defined as persistence of the
presenting signs of infection 72 h after initial culture
collection [68].

Discussion
This systematic review of the literature demonstrates the
impact of the use of AAT or IAT on clinical and economic
outcomes among patients hospitalized with Gram-negative
infections. A meta-analysis of studies examining the impact
of use of AAT in hospital-acquired, Gram-negative infec-
tion indicates a significant decrease in risk for mortality
compared with the use of IAT. Hospital and ICU length of

Fig. 4 Whisker plot of unadjusted in-hospital mortality among patients receiving AAT
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stay was prolonged with IAT compared with AAT. There
were insufficient data that evaluated AAT for the outcome
of costs among patients with nosocomial infections.
The discovery and development of antibiotics is one of

the major health advances of the 20th century; however,
the global spread of antimicrobial resistance is rendering
many commonly-used antibiotics obsolete [71]. The
development of resistance occurs naturally over time,
but is accelerated through the overuse and/or misuse of
antibacterial therapies [72–74]. The rapid global spread
of resistant bacteria and subsequent loss of antibiotic
effectiveness increases the risk of IAT in two ways: first,
patients with resistant infections may initially be given a
drug with little or no activity due to resistance,

effectively delaying the time to treating the pathogen
and, second, the need to treat resistant infections may
lead to antibiotics with proven activity being used too
widely and too early, further promoting the spread of re-
sistance and perpetuating the cycle. Guidelines recom-
mend empiric therapy coverage against anticipated
pathogen and resistance that should be started upon pa-
tient presentation with symptoms suggestive of bacterial
infection. This should be followed by de-escalation ther-
apy once the pathogen and sensitivities are known.
IAT is associated with a number of serious conse-

quences, including an increased risk of hospital mortality.
A US single-center, retrospective cohort study assessing
the role of multidrug resistance in patients with Gram-

Table 1 Subgroup analyses of unadjusted mortality in hospitalized patients receiving AAT

Characteristics Subgroups N Studies Unadjusted OR Results: 95 % CI I2 Cochran Q

p-value

Main analysis All patients 39 0.38 0.30, 0.47 64.9 % <0.001

Non-Acinetobacter Excluding Acinetobacter spp studies 24 0.46 0.34, 0.60 61.4 % <0.001

Mortality outcome time point 14-day 12 0.40 0.29, 0.55 44 % 0.05

30-day 21 0.35 0.25, 0.48 68.5 % <0.001

In-hospital (time NR) 8 0.51 0.30, 0.85 70.6 % 0.001

Pathogen Acinetobacter 15 0.29 0.21, 0.39 51.9 % 0.01

Gram-negative 6 0.27 0.13, 0.53 81.1 % <0.001

ESBL E. coli 4 0.66 0.35, 1.22 18.7 % 0.30

Klebsiella 3 1.00 0.57, 1.78 16.6 % 0.30

pseudomonas 11 0.41 0.29, 0.60 45.0 % 0.05

Pathogen and source of infection ESBL BSI 6 0.71 0.38, 1.31 48.1 % 0.086

Klebsiella BSI 2 0.74 0.37, 1.46 0.0 % 0.453

A Pneumonia 2 0.24 0.14, 0.40 0.0 % 0.466

A BSI 13 0.30 0.21, 0.43 57.4 % 0.005

P. pneumonia 2 0.58 0.18, 1.89 77.4 % 0.036

P BSI 9 0.38 0.26, 0.56 35.6 % 0.133

Gram-negative BSI 4 0.33 0.16, 0.70 83.7 % <.0001

Gram-negative pneumonia 1 0.09 0.03, 0.30 NA NA

ICU-related infections by included subjects ≤50% 12 0.413 0.30, 0.57 40.5 % <0.001

>50% 23 0.38 0.27, 0.53 68.9 % 0.07

Not reported 4 0.27 0.11, 0.67 83.2 % <0.001

AAT timeliness with regard to initial culture ≤24 h 11 0.50 0.35, 0.71 50.1 % 0.024

≤48 h 9 0.40 0.22, 0.72 78.8 % <0.001

≤72 h 7 0.29 0.22, 0.39 0.0 % 0.73

Timeliness NR 10 0.32 0.20, 0.52 66.2 % 0.001

Definitions of AAT Timeliness and susceptibility 26 0.37 0.28, 0.49 68.3 % <0.001

Timeliness alone 3 0.56 0.25, 1.23 35.4 % 0.213

Susceptibility alone 8 0.36 0.23, 0.55 50.0 % 0.051

Not reported 2 0.31 0.03, 3.61 90.1 % 0.001

A Acinetobacter, AAT Appropriate initial antibacterial therapy, BSI Blood stream infection, CI Confidence Interval, E.coli Escherichia coli, ESBL Extended spectrum
beta-lactamase, hr hour, ICU Intensive care unit, OR Odds ratio, P Pseudomonas, N Number, NR Not reported

Raman et al. BMC Infectious Diseases  (2015) 15:395 Page 7 of 11



negative sepsis and septic shock found that a higher pro-
portion of patients who had a multidrug-resistant infection
or received IAT died [75]. Non-survivors were three times
more likely to receive IAT than those patients who sur-
vived their hospitalization (43.4 % vs. 14.6 %) highlighting
the fact that IAT is a key predictor of mortality in patients
with serious Gram-negative infections [75].
Infections caused by drug-resistant, Gram-negative

organisms represent a considerable financial burden to
healthcare systems due to the increased costs associ-
ated with the resources required to manage the infec-
tion, particularly longer hospital stays. In 2009, the
European Centre for Disease Prevention and Control
and the European Medicines Agency estimated that the
total healthcare cost incurred in Europe due to resistant
infections totaled at least €1.5 billion each year, with
the main portion accounted for by resistant Gram-
negative pathogens at €867 million. These costs include
additional in-hospital and outpatient care costs and the
societal costs of productivity losses due to absence from
work and death [76]. For the US, estimates are as high
as US$20 billion in extra direct healthcare costs, with
additional costs to society for lost productivity as high
as US$35 billion per year [77].

This review and meta-analysis results should be inter-
preted in light of its limitations. Our inclusion criteria
required that studies only consider hospital-acquired or
healthcare-associated infection and were published in
English for the outcome of mortality. For the evaluation
of economic outcomes, we expanded the eligibility to
community-acquired infection given the paucity of data
on economic outcomes. In addition, the limitations of
this review reflect, to a large extent, the limitations of
the data available in primary studies. There was a gen-
eral lack of adequate accounting for possible con-
founders, with little over one-half of the studies (59 %)
reporting adjusted analyses for mortality outcomes. Con-
founding factors may have influenced the outcome of
mortality in unadjusted analyses. Although the propor-
tion of IAT and the proportion of AAT add up to 100 %
for unadjusted mortality data, both data are presented
for ease of comparison. In contrast, all studies did not
report adjusted data for both groups. Finally, the litera-
ture is heterogeneous with respect to the definition of
use of IAT. As a result, we performed subgroup analyses
based on different definitions reported in studies. Given
the nature of reporting and data collection for the stud-
ies included in this meta-analysis, we were unable to

Fig. 5 Whisker plot of adjusted mortality among patients receiving AAT or IAT
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examine culture negative cases or other definitions of
appropriate therapy such as guideline-concordant. There
were fewer studies that evaluated the outcome of costs
or length of stay for nosocomial infections. These data
are likely an underestimate of the true economic impact
of IAT as they do not account for reduced resource
utilization and shorter hospital stay attributable to the
higher mortality in patients receiving IAT. Analyzing the
impact of resistance on length of stay and costs is diffi-
cult due to competing events of mortality and discharge
or time-dependent bias, which were not appropriately
addressed in most of the included studies.

Conclusions
Resistance rates are increasing among Gram-negative
pathogens that are responsible for serious nosocomial
infections, including P. aeruginosa and extended spectrum
β-lactamase–producing Enterobacteriaceae. Our study pre-
sents a review of contemporaneous literature and demon-
strates that IAT is associated with increased mortality and
prolonged hospital stays that could translate into higher
health care costs. Conversely, AAT improves patient out-
comes and could potentially lead to cost savings. These
findings underscore the need for technological advances
for rapid diagnostics as well as the “treat the right
patient with the right drug at the right time” approach
to treating serious nosocomial infections, particularly
when there is a high clinical suspicion of resistance. A
global multidisciplinary effort to combat resistance that
includes antimicrobial stewardship, infection control and
prevention, and the development of new antimicrobial
agents with activity against multidrug-resistant Gram-
negative pathogens is critical to combat this public health
threat and prolong the effectiveness of existing antibiotics.
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