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Abstract

Background: Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to
autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage
capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was
analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptinCor.

Methods: Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from
different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for
these M types were also predicted and compared based on the emm-cluster classification.

Results: The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and,
consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types
were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates,
indicating a diverse profile of circulating strains comparable to other countries under development. A similar
proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the
strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of
StreptinCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of
94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid
sequence of the emm-types included here.

Conclusions: This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities
in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity
analysis. Our results enabled evaluation of StreptinCor candidate vaccine coverage capacity against diverse
M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains
worldwide.
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Background

Streptococcus pyogenes, or Group A Streptococcus (GAS),
is an exclusively human pathogen responsible for a broad
variety of clinical manifestations ranging from pharyngitis
and impetigo to invasive diseases, such as necrotizing fas-
ciitis and toxic shock syndrome. Some strains can also
trigger autoimmune diseases, such as acute rheumatic
fever, rheumatic heart disease and glomerulonephritis [1].
GAS infections are the major cause of morbidity and mor-
tality worldwide. The prevalence of severe GAS diseases is
at least 18.1 million cases, which cause approximately
517,000 deaths per year [2].

M protein is a surface component of GAS and one of
the main virulence factors due to its anti-phagocytic prop-
erties [3]. This protein contains a hyper variable amino
terminal end that serves as substrate for gold standard
emm-typing for strain identification. More than 220 differ-
ent emm-types have been described [4]. Systematic epi-
demiological reviews clearly highlight significant differences
in emm-type distribution across different regions of the
world. Relatively limited numbers of emm-type are recov-
ered from high-income settings, while a much higher diver-
sity of strains circulates in low-income settings [5, 6]. A
complementary typing system, emm-pattern typing, is
based on the presence and arrangement of emm and emm-
like genes located in the mga locus within the S.pyogenes
genome. This classification is correlated with tissue
tropism as follows: A-C emm-pattern isolates are usu-
ally recovered from the throat infections, D emm-pat-
tern strains are wusually isolated from the skin
(impetigo), and E emm-patterns are recovered from
both biological sites [7, 8].

Sanderson-Smith et al. recently proposed a func-
tional classification of the emm-types in clusters ac-
cording to the phylogenetic origin and microbiological
characteristics of the strain. The cluster classification
enabled comparison between strains and serves as a
tool for vaccine development [9].

GAS contains numerous genes encoding virulence fac-
tors, such as streptococcal pyrogenic exotoxins (Spe pro-
teins). These proteins constitute a family of bacterial
toxins with powerful mitogenic effects on T cells express-
ing a particular VP domain of the T cell receptor molecule,
inducing non-specific polyclonal activation of the immune
system by binding directly to class II MHC molecules
[10]. Several studies have reported that Spe exotoxin con-
tent is correlated with emm-types and associated with
clinical manifestations [11-13]. Spe exotoxins most likely
contribute to the severity of GAS infections. However, the
exact molecular mechanism involved in specific patholo-
gies is still not understood [14].

To date, no anti-streptococcal A vaccine is available;
however, several candidates based on both N- and C-
terminal portions of the M protein are in different stages
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of development [15]. Briefly, the 30-valent is based on the
highly variable amino-terminal region of the M protein
[16], and the J8 candidate vaccine a construction of min-
imal B-cell epitope from the C-repeat region [17].

StreptInCor candidate vaccine is based on amino acid
sequences of the conserved region of the M5 protein.
This candidate vaccine, in contrast to the others, con-
tains both B and T cell epitopes to provide a strong pro-
tective immune response [18].

Although GAS infections are common in several re-
gions of Brazil, only a few studies on the prevalence,
emm-type profiles and virulence factors of the strains
are available [19-21]. Here, we described the emm-type
and superantigen profile of the most prevalent strains in
Sao Paulo and assessed the theoretical coverage vaccine.

Methods

S.pyogenes strain collection

GAS isolates were obtained from patients treated at
the Clinical Hospital, School of Medicine, University
of Sao Paulo, Sao Paulo, and the Special Clinical
Microbiology Laboratory (LEMC), Federal University
of Sao Paulo, Sao Paulo, Brazil, between 2001 and
2008. The bacterial samples were defined according
to their isolation sites (skin, throat and other invasive
sites).

Institutional Review Board (IRB) approval was obtained
from the Heart Institute Ethics Committee (CAPPesq; ap-
proval number-0646/07) at the University of Sao Paulo.
Patient informed consent was waived because this study is
a retrospective analysis of strains from a microbiology
collection.

The GAS diagnostic criteria were based on beta
hemolysis in blood agar and sensitivity to bacitracin.
Then, the specimens were cultured on sheep blood agar
(Vetec, Brazil), followed by growth in Todd-Hewitt broth
(Himedia, India) until ODggyq of 0.4 and stored at —80 °C.

DNA isolation, emm-typing, patterning and emm-cluster
distribution

The genomic DNA extraction, emm-gene PCR ampli-
fication and sequencing and emm-type identification were
performed according to the protocol described by the CDC
(http://www.cdc.gov/ncidod/biotech/strep/strepblast.html)
using the primers MF2 and MR1 for amplification
and sequencing, respectively, as previously described
[19]. The emm-pattern for each emm-type was de-
duced using the table of correspondence provided by
a recent multi-center study [4]. The emm-cluster clas-
sification of the strains identified in this study was
based on the new functional classification recently
proposed by Sanderson-Smith et al. [9].
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Superantigen profile

To identify the superantigens each gene carried by
strain, PCR reactions were performed using specific
primers and singleplex PCR as previously described for
speA, speC, speG, speH, spel, spe], ssa [13] and smeZ
[12]. speB (cysteine protease) was used as a positive con-
trol in our PCR reaction.

Statistical analysis

The Simpson Reciprocal Index (1/D) of 1 corresponds
to a theoretical situation in which only one emm-type/
cluster is recovered, representing the lowest diversity
possible. The maximum Simpson Reciprocal Index cor-
responds to the total number of emm-type/cluster recov-
ered in one area. Higher values indicate greater diversity.
A Simpson Index was calculated using the following for-
mula: D=3 (n/N) 2, where “n” is the total number of
isolates of a given emm-type or belonging to a given clus-
ter and “N” is the total number of isolates of all the emm-
types/clusters recovered in an area [22, 23]. Confidence
intervals were calculated as previously described [24].

M protein sequence analyses

M proteins complete sequences and C repeat annotation
from each emm-type included in this study were derived
from previous study [4]. Multiple proteic alignments
were obtained using Muscle software as implemented in
Geneious® version R8.

Results

emm-types

The distribution of emm-types among the 229 GAS iso-
lates is described in Table 1. The clinical origin was known
for 214 isolates. Most samples were associated with inva-
sive infection (n =123, 57 %), whereas the remaining sam-
ples were recovered from throat (n=57, 27 %) and skin
infections (n =34, 16% ). Forty-eight different emm-types
were identified. The most frequent emm-types were
emml (22 %), emm87 (8 %), emm22 (7 %), emml2 (7 %),
emm77 (6 % ), emm6 (6 % ), emm89 (5 %), emm33 (3 %),
emm75 (3 %) and emm3 (3 %) (Fig. 1). Taken together,
these emm-types accounted for 69 % of the GAS isolates.
To better understand the strain diversity present in our
study, and its likely consequence for multivalent vaccine
coverage, we have calculated the reciprocal Simpson index
of diversity which results was 12.7 (95 % CI, 10.1-17.0).

emm-pattern and emm-cluster distribution

We inferred the emm-pattern for 213 of 214 emm-types,
except for emm127 (previously named st223). Pattern E
and A-C emm-types were present at similar proportions
(43 and 38 %), whereas pattern D strains were less fre-
quent (18 %).
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The strains were classified according to the emm-clus-
ters, and the strains fit into 12 of 19 different emm-clus-
ters. Most strains belonged to emm-cluster A-C3 (21 %),
followed by E4 (20 %), E3 (13 %), D4 (12 %), single protein
cluster clade Y (9 %), A-C4 and E6 (7 %), A-C5 and E1
and E2 (3 %), D2 and D5 (1 %) (Table 2).

Superantigen profile

The superantigen gene encoding profile was analyzed
in 219/229 isolates (96 %). The chromosomally lo-
cated superantigens genes smeZ, speG, and spe] were
present in 219 (95.6 %), 201 (88 %) and 79 (35 %)
isolates, respectively. The speG and smeZ genes were
present at high frequencies in all strains, whereas spe/
was absent or uncommon in diverse emm-types and
presented a higher frequency only in emml, emm33
and emm87 (n="72, 86 %). Among the phage-encoded
genes, speC was the most prevalent (n=109, 48 %),
followed by ssa (n=61, 27 %), speA (n=43, 19 %),
speH (n=37, 16 %), and spel (n=31, 14 %). Among
the most prevalent emm-types, speA was present in
emm3 (100 %) and emml (62 %) but in only one
sample of emm6. The emm-type speC was associated
with all strains but was less frequent in emm]l, emm3,
emml183 and emm75 (n=12, 33 %) and more fre-
quent in the remaining strains (n=38, 93 %). Add-
itionally, spel was absent or less frequent in most
samples, except for emm12 and emm183 (53 % and 60 %,
respectively). Finally, speH was also absent or uncommon
in most emm-types and occurred at a higher frequency
only in emm183, emm12 and emm78 (n =40, 72 %), and
ssa was absent in only one isolate, with a frequency range
of 7-86 % (Table 3).

Vaccine coverage

Theoretical vaccine coverage capacity of StreptInCor
candidate vaccine was accessed considering the amino
acid sequence alignment with the M protein C-terminal
region for the 46 emm-types identified here (the
complete M protein sequence was missing for both
emm]127 and emm99). The identities ranged from 94.5 %
to 59.7 % (mean of 71 %). Some emm-types presented
with an insertion of 7 amino acid residues in their se-
quences, as previously described (Fig. 2).

Discussion

Streptococcus pyogenes is an important human pathogen
responsible for several invasive and non-invasive dis-
eases in Brazil and worldwide. In this study, we charac-
terized 229 invasive and non-invasive Streptococcus
pyogenes samples from patients treated at the Clinical
Hospital in Sao Paulo, Brazil. Great diversity of emm-
types was observed. Forty-eight emm-types were ob-
served in the 229 samples, with the 10 most frequent
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Table 1 Distribution of emm-types among 229 GAS isolates obtained during the 2004-2008

emm types N/% of each strain per year N/% among total
2001 2002 2003 2004 2005 2006 2007 2008 Unknown
1 3/188 5/22.7 11/256 6/40 6/15.0 1/34 6/16.7 4/40.0 8/44.4 50/21.8
87 1/6.3 5/11.6 1/6.7 1/2.5 3/103 5/139 1/10.0 1/5.6 18/7.8
22 5/31.3 2/9.0 2/47 1/6.7 1/25 1/34 3/300 2/11.1 17/74
12 2/47 2/134 6/15 1/34 4/11. 15/6.5
77 2/9.0 4/9.3 3/7.5 1734 2/5.6 1/10.0 1/5.6 14/6.1
6 1/2.3 4/10.0 6/20.7 2/56 13/5.7
89 1/2.3 3/103 3/83 1/10.0 3/16.7 11/4.8
75 2/125 1/4.5 1723 3 7/3.0
33 0 3/75 2/69 1/2.8 1/56 7/30
3 1/4.5 2/47 3/103 6/2.6
183 0 4/10.0 1734 5/2.1
78 1/4.5 4/9.3 5/2.1
53 0 3/83 1/56 4/17
64 1/4.5 0 1725 1728 3/13
92 1/4.5 1/2.3 1/2.5 3/13
108 2/90 1/2.8 313
95 3/83 3/13
41 1/6.3 1/6.7 2/09
4 1/6.3 1/34 2/09
44 1/2.5 1728 2/09
49 1/23 1/2.5 2/09
58 2/9.0 0 2/ 09
59 0 1/2.3 1725 2/09
73 1/45 0 1/2.5 2/09
80 1/2.3 1/34 2/09
101 0 1/2.5 1/5.6 2/09
102 1/23 1/34 2/09
115 2/69 2/09
127 1725 1728 2/09
99 1/4.5 1/2.5 2/09
Other® 3/1838 2/9.0 5/11.6 1/6.7 3 2/69 3/8 19/83
Total/year 16/100 22/100 43/100 15/100 40/100 29/100 36/100 10/100 18/100 229/100

“emm-types with one sample only: 57, 63, 66, 67, 68, 71, 76, 83, 85, 86, 88, 90, 94, 119, 122, 184, 186, 193. N/percentage: number and percentage of each strain

per year

emm-types accounting for 69 % of all isolates. In terms
of GAS strain diversity, a Simpson Reciprocal Index of 1
corresponding to a theoretical situation where only one
emm-type/cluster has been recovered, representing the
lowest diversity possible. The maximum value of the
Simpson Reciprocal Index corresponds to the total num-
ber of emm-type/cluster recovered in one area. The
higher the value is, the greater the diversity. The recip-
rocal Simpson index of diversity found in this study was
relatively low (12.7) when compared to the index of

26.72 for Brasilia (in the central region of Brazil) [19].
On the other hand, our results were similar to those re-
ported for high incomes suburbs from Salvador, in
northeastern Brazil [20].

The distribution of the strains identified in this study
is comparable to those found in other countries, particu-
larly in high-income countries in Asia, the Middle East
and Latin America, in which emml and emmli2 were
the most common types, as reviewed by Steer [6]. Inter-
estingly, emml, emml2 and emm89 have also been
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Fig. 1 Frequency of emm-types. A total of 48 emm-types were represented in the collection. Abbreviation: GAS, group A streptococcus
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found in various studies conducted recently in several
countries in Europe and China; these types were fre-
quently correlated with invasive and/or noninvasive iso-
lates [25]. emm77 had a high frequency in the invasive
isolates found here. In addition, this strain has been associ-
ated with non-invasive diseases in Germany [26] and was
found in both invasive and non-invasive isolates in Spain
[12]. Among the 229 isolates, E and A-C emm-patterns
were found in similar proportions, whereas pattern D was
less frequent. Interestingly, studies from Brasilia, in the
Central region of Brazil [19], revealed a higher proportion
of E and D patterns (51 % and 36 %, respectively), whereas

Table 2 emm-cluster classification

emm type Number of ~ emm cluster % emm
samples cluster

1 50 A-C3 21

12,193 16 A-C4 7

3 6 A-C5 3

71 1 D2 1

33,41, 53, 64, 80, 83, 86, 101, 27 D4 12

108, 119, 186

184 1 D5 1

4,78 7 E1 3

66, 68, 76, 90, 92 7 E2 3

44, 49, 58, 87, 183 30 E3 13

22,73,77, 88,89, 102 47 E4 20

59, 63,67, 75, 85,94, 99, 115 17 E6 7

6, 57,95, 122 18 single protein 9

cluster clade Y

The emm-types obtained fit into 12 different emm-clusters: A-C3 (21 %),
E4 (20 %), E3 (13 %), D4 (12 %), single protein cluster clade Y (9 %), A-C4
and E6 (7 %), A-C5 and E1 and E2 (3 %), D2 and D5 (1 %)

A-C patterns was rarely observed (9.5 %). The data demon-
strate the variability of streptococcal strains in Brazil, which
may be related to socio-economic differences and can be
extended to other countries in which there are also social
disparities.

Other factors that play a role in the clinical manifest-
ation of S. pyogenes infection may be due to the associa-
tions between emm-types and superantigens.

In this study, the chromosomally encoded genes smeZ
and speG occurred at high frequency in nearly all iso-
lates (95.6 and 88 %, respectively); both were present in
all emm-types at high frequencies (<70 %), except speG
in emm77(43 %), in according with a variety of others
studies [12, 27-29].

The other chromosomal gene, spe/, was present in
only 35 % of isolates and was absent in diverse emm-
types, similar to others studies [12, 29, 30].

Among the phage-encoded genes, speC was the most
prevalent, detected in 48 % of the isolates, followed by
ssa (27 %), speA (19 %), speH (16 %), and spel (14 %).
The speC, ssa, speH and spel genes presented similar fre-
quencies to those found in others studies, whereas the
speA gene generally had a lower frequency in our sam-
ples [25, 30, 31]. speA was present in emm3 (100 %),
emm]l (62 %) and only one sample of emm6. The speA
genes has been commonly detected among 1 isolate in
several studies [32].

Currently, no anti-streptococcal vaccine is available in
animal models of streptococcal disease, despite extensive
efforts. Some models of anti-streptococcal vaccines are
in different stages of development. Among them, the 30-
valent contains short peptides from the highly variable
amino-terminal region of the M protein [16], and the J8
vaccine candidate comprises a 12 amino acid minimal B-
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Table 3 Superantigen profile of the most frequent emm-types identified in Sao Paulo, Brazil
emm type Number of samples Superantigens number (%)

speG smeZ speC ssa speH spel spel speA
emm] 48 45(94) 48(100) 6(12) 10(21) 1(2) 3(6) 39(81) 30(62)
emm 53 4 4(100) 3(75) 3(75) 1(25) 1(25) 1(25) 1(25) -
emm33 7 7(100) 6(86) 4(57) 5(71) 2(29) 1(14) 6(86) -
emm 22 16 14(87) 16(100) 13(81) 11(69) 2(12) 1(6) - -
emm 12 15 13(87) 15(100) 14(93) 1(7) 8(53) 8(53) - -
emm78 5 4(80) 5(100) 3(60) 1(20) 2(40) - (20) -
emm 6 12 12(100) 12(100) 83(77) 2(17) - 1(8) 1(8) 1(8)
emm 87 18 13(72) 18(100) 15(83) 13(72) - - 13(72) -
emm 77 13 6(46) 11(85) 5(38) 2(15) - - 1(8) -
emm 89 1 11(100) 11(100) 8(82) 2(18) - - 4(36) -
emm3 6 6(100) 5(83) 1017) 3(50) - - - 6(100)
emm 183 5 5(100) 5(100) 1(20) - 4(80) 3(60) - -
emm 75 6 6(100) 6(100) 2(33) 3(50) - - - -

cell epitope from the C-repeat region flanked by 16
amino acids of a yeast DNA-binding protein conjugated
to the diphtheria toxoid [17].

The vaccine candidate developed by our group, called
StreptInCor, is based on the M5 protein C-terminal re-
gion [18], specifically the C2 and C3 region that is con-
served among serotypes. Through in silico analysis with
predicted amino acid sequence alignment, StreptInCor
candidate vaccine had high sequence identity with 46 of
the 48 emm-types described here (identity ranged from
94.5 % to 59.7 %, mean of 71 %), which is an important
property for the probability of protection. In previous
data, we described the structural, chemical, and bio-
logical properties of the StreptInCor peptide and dem-
onstrated that the molecule is stable, which is an
important property for a vaccine candidate. The possibility

of the StrepInCor vaccine candidate epitope being
processed by antigen-presenting cells (APCs) generat-
ing diverse peptides has also been previously demon-
strated. The approach resulted in the observation that the
vaccine epitope could be recognized by any individual,
thus enabling a broad coverage capacity to trigger specific
immunity [33].

The efficacy of this vaccine in animal models was eval-
uated in inbred and outbred mice, and a strong humoral
response with high IgG production was observed [18].
Immunized Swiss mice challenged with the emm]1 strain
had a survival rate of 87 % at 21 days compared with
lower survival in controls (53 %) [34].

Similar results have been observed in HLA class 1II
transgenic mice, which also presented a specific and
long-lasting immune response without developing

C repeatannotation

Mtypes
StreptinCor Identity to Nbr. of isolates
StreptinCor
71 945% 1
122 «27% 1
57 T42% 1
3.12 T26% 2
6 T26% 13
115 s 2
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Fig. 2 In silico analysis of StreptinCor coverage capacity. Amino acid sequence alignment of StreptinCor candidate vaccine with the 46
emm-types identified here (the complete M protein sequence was missing for both emm127 and emm99)
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deleterious reactions after one year. These results indi-
cated that StreptInCor is a safe candidate vaccine [35].

In addition, the four most common emm-types in-
cluded here (emml, emml2, emm?22 and emm87) were
opsonized by StreptInCor-induced antibodies [36]. The
strains identified here were fit into 12 of the 19 different
emm-clusters and exhibited diverse phylogenetic origin
and consequently different mechanisms of infection and
resistance to escape the host immune system, supporting
the hypothesis that StreptInCor vaccination would likely
protect against infection caused by strains from different
emm-clusters.

Conclusions

This is the first study investigating the epidemiology of
streptococcal strains in Sao Paulo, one of the largest cities
in the world. These data enabled evaluation of the Strep-
tInCor candidate vaccine coverage capacity against diverse
M-types, indicating that the vaccine candidate would
likely induce protection against the diverse strains ob-
served worldwide.
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