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Abstract

children despite high vaccination coverage.

Background: Measles cases may cluster in densely populated urban centers in sub-Saharan Africa as susceptible
individuals share spatially dependent risk factors and may cluster among human immunodeficiency virus (HIV)-infected

Methods: Children hospitalized with measles at the University Teaching Hospital (UTH) in Lusaka, Zambia were
enrolled in the study. The township of residence was recorded on the questionnaire and mapped; SaTScan software
was used for cluster detection. A spatial-temporal scan statistic was used to investigate clustering of measles in children
hospitalized during an endemic period (1998 to 2002) and during the 2010 measles outbreak in Lusaka, Zambia.

Results: Three sequential and spatially contiguous clusters of measles cases were identified during the 2010 outbreak
but no clustering among HIV-infected children was identified. In contrast, a space-time cluster among HIV-infected
children was identified during the endemic period. This cluster occurred prior to the introduction of intensive measles
control efforts and during a period between seasonal peaks in measles incidence.

Conclusions: Prediction and early identification of spatial clusters of measles will be critical to achieving measles
elimination. HIV infection may contribute to spatial clustering of measles cases in some epidemiological settings.
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Background

Despite a 74% decline in global measles deaths between
2000 and 2010 [1,2], measles remains a significant cause
of mortality in children younger than five years of age.
In the African region, there were an estimated 139300
measles deaths in 2010 [2]. The Measles and Rubella Ini-
tiative developed a joint strategic plan to reduce measles
deaths by strengthening routine immunization, provid-
ing a second dose of measles vaccine through supple-
mental immunization activities (SIAs) in the form of
mass vaccination campaigns, enhanced surveillance with
laboratory confirmation of suspected cases, and appro-
priate case management [3]. However, measles elimin-
ation remains challenging in sub-Saharan Africa where
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obstacles to achieving high coverage with two doses of
measles vaccine include weak routine immunization ser-
vices, high force of infection in densely populated urban
settings, conflict and civil unrest, and limited financial
resources [4,5].

Infectious diseases such as measles tend to cluster geo-
graphically where susceptible individuals reside in close
proximity. As a result, spatial analyses are important to
detect and predict the spatial and temporal patterns of
infectious diseases [6-9]. For pathogens directly trans-
mitted from person-to-person, such as measles virus,
disease outbreaks may cluster in urban areas where the
susceptible population is large and dense [10]. High vac-
cination coverage may interrupt these processes over
large geographical areas [11].

Potentially impacting the spatial clustering of measles
are regions of high human immunodeficiency virus (HIV)
prevalence, particularly in urban areas. Recent measles
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outbreaks in South Africa were reported to be associated
with HIV infection [6]. There are several reasons HIV-
infected children may play a role in maintaining measles
virus transmission [12-15]. HIV-infected mothers may have
defective transfer of IgG antibody across the placenta,
resulting in lower levels of protective antibodies in the in-
fant and enlarging the period of susceptibility to measles
virus infection prior to routine immunization [16,17]. HIV-
infected children may not have an adequate primary
response to measles immunization and may lose immu-
nity with progressive immunosuppression, thus remaining
susceptible to measles virus despite immunization [18],
with immunity not restored by antiretroviral therapy [19].
Children with defective cell-mediated immunity may not
develop the characteristic measles rash so infection may
go unrecognized [18,20]. And HIV-infected children may
have prolonged shedding of measles virus increasing the
period of infectivity and the spread of measles virus to sec-
ondary contacts [21].

Clustering of measles in both space and time has been
identified at the country and regional levels in South
Africa and Niger [6,22,23], but no studies have examined
clustering in an urban setting of sub-Saharan Africa.
Spatial-temporal clustering of measles was investigated
during the 2010 outbreak in Lusaka, Zambia, and specif-
ically whether HIV-infected children with measles were
spatially clustered during the outbreak. Spatial-temporal
clustering of measles cases among HIV-infected chil-
dren was further explored during an endemic period
(1998-2002) prior to national SIAs.

Methods

Study site

The University Teaching Hospital (UTH) is the largest pub-
lic hospital in Lusaka, Zambia with a 415-bed Paediatrics
and Child Health wing. Zambia has one of the highest HIV
prevalence rates in sub-Saharan Africa and was prone to
seasonal outbreaks of measles prior to the first national
mass vaccination campaign in 2003 [4]. In Zambia, 111
measles cases were reported in 2008 and only 26 cases in
2009. However, an outbreak resulting in 15736 reported
cases occurred in 2010 [13,22]. Measles SIAs were con-
ducted in 2007 and 2010.

1998-2002 endemic period

During the endemic period between 1998 and 2002, a pro-
spective observational study of measles in HIV-infected
and uninfected children hospitalized was conducted at the
UTH [24]. Clinical and demographic data were collected
at enrollment and included date of hospitalization and the
township in which the child resided. Plasma was tested for
antibodies to HIV by enzyme immunoassay (Organon
Tecknika, Boxtel, The Netherlands). Plasma levels of HIV
RNA were quantified by reverse transcriptase polymerase
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chain reaction assay (Amplicor HIV-1 Monitor v 1.5,
Roche Molecular Systems, Branchburg, NJ) in children
with antibodies to HIV. Children were classified as HIV-
infected if HIV-1 RNA was detected in plasma. Measles
virus infection was confirmed by detection of measles
virus-specific IgM in plasma by EIA (Wampole Laborator-
ies, Cranbury, NJ). Written informed consent was ob-
tained from parents or guardians of study children. The
study protocol was approved by institutional review
boards at the Johns Hopkins University Bloomberg School
of Public Health and the University Teaching Hospital,
Lusaka, Zambia.

2010 measles outbreak

Clinical and epidemiological characteristics were retro-
spectively extracted from available patient records for all
children younger than 16 years of age admitted to the
UTH with a diagnosis of measles between January and
December 2010. A detailed case assessment question-
naire was used to extract patient data, including date of
hospitalization, measles vaccination history, township of
residence and HIV infection status. For children older
than 18 months of age, two independent enzyme immu-
noassays (an Abbott Determine rapid test kit [Alere
Determine™ HIV-1/2 Ag/Ab Combo, Orgenics Ltd,
Yavne Israel] followed by a confirmatory test with Genie
II [Uni-Gold™ HIV, Trinity Biotech, Ireland] for positive
rapid tests) were used to establish HIV infection. For in-
fants younger than 18 months of age, HIV infection was
confirmed by detection of HIV DNA by polymerase
chain reaction (PCR) (Amplicor HIV-1 Monitor v 1.5,
Roche Molecular Systems, Branchburg, NJ). HIV sero-
positive children younger than 18 months of age for
whom HIV DNA testing was not performed were con-
sidered HIV exposed. Children with unknown HIV in-
fection status were excluded from spatial analyses (N =
88, 7.5%). Measles was diagnosed clinically and was con-
firmed by detection of IgM antibodies to measles virus
by EIA (Wampole Laboratories, Cranbury, NJ). Date of
hospitalization was used as a proxy for date of illness.
Ethical approval was obtained by the University of
Zambia (UNZA) Research Ethics Committee. The au-
thors assert that all procedures contributing to this work
comply with the ethical standards of the relevant na-
tional and institutional committees on human experi-
mentation and with the Helsinki Declaration of 1975, as
revised in 2008.

Spatial analysis

Hospitalized children with clinical or laboratory confirmed
measles, known HIV infection or seropositive status, and
who resided within Lusaka were included in the spatial
analysis. An ArcGIS map of the townships of Lusaka was
obtained from the Central Office of Statistics, Lusaka,
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Zambia for 2000 and for 2010. For 2010, incidence was
calculated as the number of measles virus-infected chil-
dren per township divided by the total population for that
township obtained from the Central Statistics Office on
the assumption that few measles cases occurred in adults.
Cases were reported per day but were aggregated to the
weekly level for analysis. A map was created showing the
population density of Lusaka townships as persons per
square kilometer. Three separate space-time cluster detec-
tion analyses were performed. The first compared HIV-
infected to HIV-uninfected children to measure clustering
of measles cases among HIV-infected children. This was
conducted for both the 1998-2002 endemic and 2010
epidemic periods. The third space-time cluster detec-
tion analysis was conducted using all reported measles
cases (independent of HIV infection status) to describe
spatial clustering of measles cases during the 2010 epi-
demic period.

Case and control files, consisting of a unique identifi-
cation number for the township of each child and the
date of hospitalization, were constructed for HIV-
infected (cases) and uninfected (controls) children hospi-
talized with measles. Children in whom HIV infection
was not laboratory-confirmed were considered unin-
fected. The space-time cluster detection analyses were
performed using SaTScan version 5.1 [25]. SaTScan is a
method for spatial, temporal and space-time cluster de-
tection analysis that has been used in a wide variety of
applications [9,26,27]. For the current application, case
and control information were aggregated to the spatial
township level and clusters were sought using a 7-day
temporal scale. The expected number of cases was based
on the distribution of all hospitalized measles cases. Stat-
istical significance for identified clusters was based on
Monte Carlo simulation using the Bernoulli probability
model option in SaTScan, which is most appropriate for
case—control data, adjusting for township population
density [25]. Significance for the 2010 outbreak analyses
employed a permutation scheme within SaTScan as tem-
poral changes in township population would be negli-
gible over the one-year time frame [25,28].

Results

1998-2002 endemic period

For the endemic period between January 1998 and January
2002, 1323 hospitalized children with suspected measles
were enrolled. Of these, 1129 (85%) children were
laboratory-confirmed to have measles virus infection and
resided within one of 68 townships in Lusaka. Of the con-
firmed cases, 514 (46%) were male and the median age
was 14 months (IQR =9, 37), with a minimum of 2 and
maximum 215 months (15.5 years). Only 209 (19%) had a
history of measles vaccination, with 357 (32%) of unknown
vaccination status. HIV-infection was confirmed in 164
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children (15%) (Table 1). Temporal variation in the num-
ber of children studied was apparent in the time-series
(Figure 1), reflecting the seasonality of measles virus trans-
mission in Zambia prior to the SIA in 2003.

The space-time analysis detected a statistically signifi-
cant cluster of six contiguous townships with a com-
bined ratio of observed to expected number of measles
cases in HIV-infected children of 6.4 (P =0.03). This
cluster of measles cases among HIV-infected children
occurred between June 9, 1999 and November 2, 1999, a
period of low transmission during which a subnational
SIA was conducted in Lusaka (August 1999). During the
identified cluster, 84 children with confirmed measles
were hospitalized at UTH and enrolled, 17 of whom
were HIV-infected (20%). Within the townships forming
the spatial cluster, nine children with confirmed measles
were enrolled during the interval from May to November
1999, seven of whom were HIV-infected (Figure 2). In
contrast, thirteen children residing within the identified
cluster were enrolled six months earlier but only two were
HIV-infected, and twenty-nine children residing within
the identified cluster were enrolled six months later but
only three were HIV-infected (Figure 2). Thus, a higher
than expected proportion of measles cases occurred
among HIV-infected children in the cluster.

2010 measles outbreak
Between January and December 2010, 1614 hospitalized
children with clinical measles were admitted to the

Table 1 Characteristics of measles cases during the
endemic (1998-2002) and epidemic (2010) periods in
Zambia

1998-2002
Median (25" percentile,
75™ percentile)

2010
Median (25" percentile,
75™ percentile)

Variable

Median age in

months (IQR) 14 (9, 37) 12 (7, 29)
Male 613 (54%) 588 (52%)
Measles
vaccination status
Not 563 (50%) 618 (55%)
Vaccinated
Vaccinated 209 (19%) 221 (20%)
Unknown 357 (32%) 286 (25%)
HIV infection
status
Not infected 931 (84%) 905 (80%)
Infected 164 (15%) 41 (4%)
Exposed NA 100 (9%)
Unknown 11 (1%) 80 (7%)

Note: NA denotes “Not Applicable” in that during the 1998-2002 measles endemic
period the HIV infection status of children admitted to University Teaching Hospital,
Lusaka, Zambia was not available.
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Figure 1 Time-series of hospitalized children with measles, Lusaka, Zambia and included in the analysis of space-time clustering, 1998-2002.
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UTH. Medical records were available and abstracted for
1331 children (82%). Of these, 1134 (85%) were labora-
tory confirmed and resided within one of 77 townships
in Lusaka. Of the confirmed cases, 588 (52%) were male
and the median age was 23.9 months (interquartile
range = (7, 29), with a minimum of 0.75 and maximum
of 175 months (15 years). Only 221 (20%) had a history
of measles vaccination, with 286 (25%) of unknown mea-
sles vaccination status. One hundred children (9%) were
classified as HIV-exposed and 41 (4%) as HIV-infected
(Table 1). The highest number of hospitalized measles
cases occurred in June and July 2010 (Figure 3).

The spatial distribution of the incidence of measles
cases per 100000 persons in 2010 resembled the spatial
pattern of population density: townships with higher
population density had a higher overall reported inci-
dence of measles in 2010 (Figure 4). No statistically sig-
nificant clusters of measles cases were identified among
HIV-infected or exposed children. However, three statis-
tically significant and temporally distinct clusters of
measles cases were identified using the space-time per-
mutation, in April (P <0.0001), August (P =0.002) and
October (P=0.01) in three different geographical sec-
tions of the city (Figure 5). There were no significant dif-
ferences between the three spatial-temporal clusters with
regards to age, sex, HIV infection status or measles vaccin-
ation status among children with measles (Table 2).

Discussion

Measles cases were spatially and temporally clustered dur-
ing a large outbreak in Lusaka, Zambia in 2010, reflecting
an evolving epidemic of local transmission foci and
suggesting the potential to intervene through targeted vac-
cination efforts. Clustering of measles cases among HIV-
infected children was identified prior to the introduction
of intensive measles control efforts and during a period be-
tween seasonal peaks in measles incidence, suggesting sus-
ceptible HIV-infected children could contribute to measles
virus transmission during inter-epidemic periods. Densely
populated urban centers may pose an obstacle to measles
control and elimination because the high levels of popula-
tion immunity necessary to interrupt measles virus trans-
mission are difficult to achieve [5]. Mathematical models
of meta-populations, accounting for local communities or
patches, further confirm that heterogeneities in immunity
can lead to increased rates of infection among susceptible
individuals [29].

HIV infection is unlikely to be randomly distributed
within urban communities, but rather concentrated in
high-risk populations. In these urban pockets, HIV-
infected children may remain susceptible to measles des-
pite vaccination and antiretroviral therapy, facilitating
measles virus transmission [6]. HIV-infected children
may contribute to measles virus transmission in urban
settings with high HIV prevalence particularly during
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inter-epidemic periods when the number of susceptible
children is depleted. No published studies have exam-
ined measles clustering among HIV-infected persons in
sub-Saharan Africa.

There are several limitations to this study. The first is the
bias of using hospitalized cases. The use of hospital-based
data may not be representative as not all children with

measles residing in Lusaka were likely hospitalized at the
UTH during either study period. A mathematical model
was used previously to estimate the probability of hos-
pitalization for measles in Lusaka, Zambia, which was 6%
for children younger than 1 year of age and 1.2% for per-
sons older than 5 years of age [14]. Although some cases
may have been referred to smaller health centers, UTH is
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Table 2 Characteristics of measles cases within and outside each space-time cluster identified during the 2010 measles

outbreak in Lusaka

Variable Time Period 1: April 6-May 5 Time period 2: Aug 4- Sept 2  Time period 3: Oct 3-Nov 1  Total
Cluster 1 Outside cluster 1 Cluster 2 Outside cluster 2  Cluster 3 Outside cluster 3 All cases 2010
Number of Cases 62 36 58 54 17 49 1,134
% Male 42% 44% 40% 54% 53% 49% 52%
Age in months (median, IQR) 13 (7,32) 24 (12,55) 9(6,57) 9 (6, 33) 12 (7,64) 13 (743) 12 (7,29
HIV infection status
Infected 2 (3%) 0 (0%) 1 (2%) 6 (11%) 3 (18%) 3 (6%) 41 (4%)
Exposed 4 (7%) 3 (8%) 10 (18%) 6 (11%) 2 (12%) 5 (10%) 100 (9%)
Not infected 51 (84%) 33 (92%) 39 (70%) 38 (72%) 11 (65%) 33 (67%) 905 (80%)
Unknown 4 (7%) 0 (0%) 6 (11%) 3 (6%) 1 (6%) 8 (16%) 80 (7%)
Measles vaccination status
Vaccinated 16 (26%) 8 (22%) 10 (18%) 8 (15%) 2 (12%) 8 (16%) 221 (20%)
Not Vaccinated 36 (58%) 21 (58%) 31 (54%) 31 (59%) 8 (47%) 25 (51%) 618 (55%)
Unknown 10 (16%) 7 (19%) 16 (28%) 14 (26%) 7 (41%) 16 (33%) 286 (25%)
the largest public hospital in Lusaka and likely received Conclusions

most of the cases requiring hospitalization. Nevertheless,
we believe these biases in the study population were un-
likely to result in the space-time clustering of measles
cases among HIV-infected children. The second is the
small proportion of cases with confirmed HIV infection in
2010. This may be because HIV infection in 2010 was
established from medical records. However, the University
Teaching Hospital Pediatrics and Child Health wing has a
well-established opt-out, routine HIV testing service [30]
for all hospitalized children. The observed small propor-
tion of confirmed HIV-infected children with measles in
2010 could be a reflection of the declining incidence of
HIV infection resulting from the programs to prevent
mother-to-child transmission introduced over the past
decade in Lusaka [31,32]. The spatial point pattern based
on the geolocation of each child’s residence could not be
analyzed as only the township was recorded, with loss of
spatial accuracy. Lastly, to calculate incidence we used the
total population per township as the denominator and not
the total number of children. If the proportion of children
within each township varied, this heterogeneity may bias
our rates. As a consequence of the case—control study de-
sign, as well as no data on the number of HIV-infected
children within each township, we were not able to meas-
ure the incidence of measles in HIV-infected and unin-
fected children.

Additional data from outbreak investigations would
help assess the magnitude of clustering and the distribu-
tion of measles clustering in cases not identified at
UTH. Mapped spatial data of HIV and measles incidence
at the township level would be useful to further quantify
the degree of clustering of measles.

We demonstrated space-time clustering of measles cases
during an outbreak in a densely populated urban center in
sub-Saharan Africa and identified a cluster of HIV co-
infected children during an earlier endemic period. Predic-
tion and early identification of spatial clusters of measles
outbreaks will be critical to achieving measles elimination
and HIV infection may contribute to spatial clustering of
measles cases in some epidemiological settings.
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