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Abstract

Background: Dose-response assessment is one step in quantitative microbial risk assessment (QMRA). Four infectious
microbes capable of causing respiratory diseases important to public health, and for which dose-response functions
have not been available are: Bordetella pertussis (whooping cough), group A Streptococcus (pharyngitis), rhinovirus
(common cold) and respiratory syncytial virus (common cold). The objective of this study was to fit dose-response
functions for these microbes to published experimental data.

Methods: Experimental infectivity data in human subjects and/or animal models were identified from the
peer-reviewed literature. The exponential and beta-Poisson dose-response functions were fitted using the
method of maximum likelihood, and models compared by Akaike’s Information Criterion.

Results: Dose-response functions were identified for each appropriate data set for the four infectious microbes.
Statistical and graphical measures of fit are presented.

Conclusions: With the fitted dose-response functions it will be possible to perform QMRA for these microbes.
The dose-response functions, however, have a number of limitations associated with the route of exposure, use
of animal hosts, and quality of fit. As a result, thoughtfulness must be used in selecting one dose-response function for
a QOMRA, and the function should be recognized as a significant source of uncertainty. Nonetheless, QMRA offers a
transparent, systematic framework within which to understand the mechanisms of disease transmission, and evaluate

interventions.
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Background

Quantitative microbial risk assessment (QMRA) is a grow-
ing and diversifying area of research for public health.
QMRA seeks to evaluate the risk of adverse health effects,
particularly infection, resulting for human exposures to
infectious microbes. Applications to water-borne and
food-borne infectious microbes are too numerous to
cite, and have enhanced public health decision making
through exploration of: scenarios that cannot be directly
observed [1], the effectiveness of interventions [2], and
causes of infectious disease outbreaks [3]. In the context
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of microbes capable of causing respiratory infections,
quantitative microbial risk assessment research has fo-
cused on influenza [4-8] and tuberculosis, often in the
context of transportation [5,9-11]. One reason for limited
application of QMRA to microbes capable of causing re-
spiratory infections may be the limited availability of dose-
response functions, which are complicated by uncertainty
about mechanisms of disease transmission.

Dose-response functions are mathematical expressions
that characterize the probability of an adverse health out-
come (e.g., infection) subsequent to an exposure. Dose-
response functions are fitted to adverse health outcomes
observed among animals or human volunteers exposed
to graded doses of infectious microbes. Though the
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conceptual models underlying dose-response functions
differ between microbes and chemical agents [12], the na-
ture of data and use of dose-response functions in risk as-
sessment are similar. Dose-response assessment — the
identification and/or development of a dose-response
function — is one step in the classical risk assessment para-
digm of: hazard identification, dose-response assessment,
exposure assessment, and risk characterization. This paper
focuses on the development of dose-response functions,
and discusses issues around the selection and interpret-
ation of dose-response functions in animal models and
exposure routes for human disease transmission. Com-
pletion of a QMRA requires substantial additional in-
formation and analysis.

Absent a dose-response function, it is possible to apply
the concept of the quantum of infection to estimate the
risk of infection. This approach is commonly used for
Mycobacterium tuberculosis, but has been applied for
other infectious microbes transmitted through the inhal-
ation of airborne microbes [5,13-15]. The quantum of in-
fection is an unspecified number of microbes that has the
effect of causing infection [16]. If the rate of emission is
also measured in quanta of infection, such as when the
emission rate is estimated from observed disease or tuber-
cule formation [17], then it is possible to estimate risk
without an explicit dose-response function. For example,
the Wells-Riley equation may be applied. The Wells-Riley
equation estimates the probability of infection among sus-
ceptible people as an exponential function of the rate at
which quanta of infection are emitted into a well-mixed,
ventilated room [18]. Given a single infectious source
emitting g quanta per hour, the probability of infection in
a susceptible person breathing at rate p m® per hour is a
function of time (¢ hours):

P(t) = l-exp(-qpt/Q) (1)

where Q is the volumetric airflow rate in the room (m®
per hour). As shown in Equation 1, the traditional
Wells-Riley model has not included physical processes
that remove infectious agents from air — e.g., loss of in-
fectivity and gravitational settling, but the equation can
be modified to address these factors [19]. The model need
not be limited to steady-state conditions [20]. A greater
limitation of the Wells-Riley equation is exclusive con-
sideration of inhalation exposures. Respiratory infections,
however, depending upon the microbe, may arise via
multiple routes, motivating the need for dose-response
functions.

The U.S. Centers for Disease Control and Prevention
(CDC) defines three routes of disease transmission:
airborne, contact, and droplet [21]. Airborne transmis-
sion involves infectious microbes in small particles that re-
main infectious over time, allowing dispersal of infectious
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microbes through the air over long distances. Contact
transmission involves the transfer of infectious microbes
from one infected person to another, though the transmis-
sion may be indirect, via a contaminated object. Droplet is
a form of direct contact transmission involving the trans-
fer of infectious microbes in droplets (e.g., relatively large
particles) projected from the respiratory tract to the
mucosal surfaces of a susceptible person, generally over
short distances. These definitions do not represent the
full spectrum of pathways by which diseases are trans-
ferred. An obvious gap is that droplet-generating activ-
ities also produce small particles that can be inhaled in
proximity to the infectious person, not just at a long dis-
tance. Brosseau and Jones have suggested that aerosol
transmission replace, or at least bridge, the definitions of
droplet and airborne transmission [22]. In addition, the
route of disease transmission refers to the primary route
(s) for an infectious agent, though selected settings — e.g.,
laboratories or healthcare settings — may create opportun-
ities for infection through atypical routes [23]. Accurate
representations of the transmission routes are necessary
for QMRA, as they drive the assessment of exposure and
selection of dose-response function.

The objective of this study is to identify dose-response
functions for selected infectious agents capable of causing
respiratory infections: Bordatella pertussis, rhinovirus,
respiratory syncytial virus, and group A Streptococcus.
To our knowledge, dose-response functions for these mi-
crobes have not been published to date, though relevant
data exist. These four microbes persist as threats to public
health, such that identification of dose-response functions
could facilitate exploration of disease transmission and in-
terventions through risk assessment.

Methods

Data selection

Studies were compiled over several years as a result of
QMRA research activities related to these and other path-
ogens, not through a systematic review. Studies were
identified through searches of the PubMed and Web of
Science databases and by cross-referencing cited refer-
ences. The databases were queried again prior to draft-
ing this article.

One author (RMJ) reviewed all studies to assess whether
studies met the data conditions for dose-response analysis.
Data met the following conditions for dose-response
analysis: i) at least three dose levels were used, and ii)
the number doses with response rate other than 0% or
100% was equal to or greater than the number of dose-
response model parameters. These conditions are consist-
ent with recommendations by Haas et al. [12]. Qualitatively,
data were also evaluated for relevance for human expo-
sures, with consideration for the route of exposure and
outcome studied.
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The infectious microbes

Bordetella pertussis is a bacterium that causes the disease
pertussis, commonly known as whooping cough. B.
pertussis cells adhere to cilia of epithelial cells in the
upper respiratory tract, initiating symptoms of infection
[24,25]. Transmission is generally recognized through the
droplet and contact routes [21], but recent animal models
suggest that transmission may also occur through the air-
borne route [26]. As a result, infectivity studies involving
aerosol inhalation or deposition into the respiratory
tract were judged relevant to disease transmission among
humans.

Group A Streptoccocus (GAS) include a number of
species, the most common being Streptococcus pyogenes.
GAS infections may involve the upper respiratory tract
(pharyngitis) or the skin (impetigo), and invasive disease
can develop [27,28]. Here respiratory infection is consid-
ered, associated with droplet transmission [21].

Rhinoviruses are a cause of the common cold. Infection
occurs primarily in the upper respiratory tract, though the
high temperature in the lower respiratory tract does not
fully prevent rhinovirus replication [29]. Studies among
human volunteers have found transmission to occur when
exposed susceptible volunteers do and do not touch
their face [30,31]. These data suggest transmission may
occur through contact and/or airborne routes, though
only droplet transmission is recognized by the CDC
[21]. Given these infection sites, experimental exposure
to rhinovirus through aerosol and intranasal instillation
were judged relevant to natural human infection.

Respiratory syncytial virus (RSV) is a cause of the com-
mon cold. In the cotton rat model, virus replication was
observed in the alveoli and bronchioles subsequent to in-
tranasal inoculation with RSV [32]. Transmission studies
among human volunteers confirmed infection resulting
from direct close contact with RSV-infected infants and
contact with the eyes and nose after handling RSV-
contaminated objects [33]. While the related study of
inhalation exposure did not show transmission [33], the
result does not preclude transmission through the
airborne route due to the potential for low exposure.
Virus replication in the alveoli and bronchioles of the
cotton rat [32] suggests that inhalation and deposition
of RSV in these regions could produce infection. The
CDC, however, recognizes only the contract transmission
route for RSV [21].

Dose-response models

Two mechanistic dose-response models were considered:
the exponential and beta-Poisson models [12]. The expo-
nential model is a one-hit model, where the probability
of infection (or other outcome) given mean dose, d, is
expressed
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Py(d) = 1-exp(~dk) 2)

and k (0<k<1) is the independent and identical prob-
ability that an infectious agent survives in the host and
initiates infection. The beta-Poisson model is related to
the exponential model, but the probability that an infec-
tious agent survives in the host and initiates infection
follows a beta distribution. The beta-Poisson model is
expressed

d -a
Pi(d) =1- [1 +} (3)
B
where, d is the mean dose, and o and [} are parameters
of the beta distribution [34]. The median infectious dose,
N, is estimated from o and (3 as:

Nso (4)

T ol

Dose-response model fit and evaluation

All analyses were implemented using in-house code writ-
ten by both authors for the R Project for Statistical Com-
puting. Code is available upon request.

Dose-response models were fitted to data using the
method of maximum likelihood. Given an experiment
with i =1, 2, ..., D dose levels, n; subjects are given mean
dose d; and x; subjects (0 < x; < n;) exhibit the response.
The maximum likelihood estimate of the proportion of
responding subjects is p; = 2_1 The likelihood function is

Lik(®) = [T, (2 )p(1-p)"™ (5)

where 0 is the dose-response model parameter, and p; is
the probability of response at dose d; based on the
model of choice [12]. For the exponential model, for ex-
ample, 0 =k and p; = 1 — exp(-dk). The most-likely value
of 6 maximizes the likelihood function, and minimizes
the negative of the log-likelihood function. The latter ap-
proach was implemented using the optim function.
Confidence intervals were generated by bootstrapping:
Model parameters, 0, were estimated by the method of
maximum likelihood to a population randomly sampled
with replacement from the study population [12,35]. Given
B =5,000 bootstrapped populations, 6 was estimated B

—

times, 6 = {él, 92, e é5_000}. For the exponential models,

the 95% confidence interval (CI) for the parameter « is
simply the 2.5™ and 97.5™ percentile of the ordered param-

eter estimates 5 For the beta-Poisson models, the parame-
ters (o, B) or (a, Nso) are jointly distributed [12]. The joint

distribution of the 6 can be represented graphically. The
95%CI in the response was determined by calculating the

response at each dose using each of the B values of 6, and
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equating the 95%CI with the 2.5™ and 97.5™ percentile of
the ordered response values. The 95%CI for the response is
displayed graphically.

Small sample sizes prevented consistent application
of Pearson’s x’-test to evaluate model fit. Instead,
model fit was evaluated with a permutation test with
100,000 permutations of the Boolean responses [4,36].
The p-value is the proportion of permutations that
yield a log-likelihood larger than that observed with the
original data. A large p-value (p >0.05) indicates that
the exposure has no effect on the outcome because
shuffling the exposures yields log-likelihoods as large or
larger as the observed data. Comparison between models
was based on Akaike’s Information Criterion, AIC =2k —
2In(L), where k is the number of parameters in the dose-
response model, and In(L) is the log-likelihood [37,38].
The AIC penalizes models with more parameters.

Results

Bordetella pertussis

Owing to an interest in vaccine development, the infect-
ivity of B. pertussis has been evaluated in many animal
models, but only three studies in the mouse model met
the data selection criteria. The data are presented in
Additional file 1: Table S1.

Halperin et al. [39] exposed 10-day old BALB/C mice
to B. pertussis strain 18323 through aerosol inoculation
and intranasal instillation. In the aerosol study, the unit
of dose was the concentration of B. pertussis cells per
mL of inoculum aerosolized into the exposure chamber.
Unfortunately, the concentration of cells in liquid cannot
be translated into an airborne concentration or number
of inhaled cells, the units of dose relevant to human
exposure in the context of disease transmission. As a
result, dose-response functions were not fitted to the
aerosol study by Halperin et al. [39]. The dose via in-
tranasal instillation was the number of CFU deposited
into the nares. Outcomes documented included mor-
tality and positive lung culture upon autopsy: The two
outcomes were combined in this analysis to yield a sin-
gle outcome, infection.

Pittman et al. [40] deposited B. pertussis strain 18323
into the external nares of anesthetized mice (Ham/ICR
and Anglia strains) aged four weeks or 6-7 days. The out-
come was death, occurring > 2 hours and < 24 or 30 days
after inoculation. Experiments with mice aged four weeks
were pooled because they used the same methods.

Sato et al. [41] exposed mice (DDY and ICR strains) to
aerosols of B. pertussis Tohama phase I strain during 30
minutes of aerosol generation and 20 minutes of cham-
ber evacuation. Dose was reported as the concentration
of B. pertussis in the inoculum aerosolized, but in this
analysis the dose used was the number of viable cells in
the lungs after aerosol exposure, which was determined
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by autopsy 20 minutes subsequent to exposure. The
number of viable cells in the lungs is more directly
comparable to human exposure: the fraction of airborne
cells that are inhaled and deposit in the lung differ among
animals and humans owing to anatomy, respiration rate,
animal orientation, etc., but the deposited dose measured
in animals can be compared to estimated deposition in the
human respiratory tract [42].

For the intranasal studies, AIC recommends the
beta-Poisson over the exponential functions (Table 1),
which is consistent with graphical display of the models
(Additional file 1: Figures S1-S3). In the aerosol study by
Sato et al. [41], the two models are functionally equivalent
(Additional file 1: Figure S4), and AIC recommends the
exponential model because it has only one, rather than
two, parameters.

Comparing the two intranasal dose-response studies
with mortality outcome, B. pertussis appears to be more
infectious among younger mice. In the exponential func-
tions, this is indicated by larger values of k (Table 1). In
the better-fit beta-Poisson functions, infectivity is most
readily compared by the Njo, which equals 102 CFU
and 51,900 CFU for the 6 day old and 4 week old mice,
respectively. As expected, the probability of infection is
lower than the probability of mortality: For the infection
outcome, N5o=0.632 CFU. B. pertussis appears substan-
tially less infectious through aerosol exposure, for which
Nso = 5.16 x 10° CFU. Differences in infectivity with age
have been observed for other organisms, like influenza, in
animal models and epidemics [43].

Group A streptococci (GAS)

Owing to the focus on respiratory infection, human dose-
response studies using intradermal injection [44] and wound
inoculation [45] were not evaluated. Exposure though
the respiratory tract has only been studied among mice,
by Wessels and Bronze [46], who administered GAS (M
type 24 strain Vaughn) via intranasal instillation. The
study outcomes were mortality and infection, where in-
fection was defined by pharyngeal swab culture positive
for GAS (Additional file 1: Table S2). Experiments in-
volving the mutant strain were not used.

For both outcomes, AIC recommends the beta-Poisson
model (Table 1). Confidence intervals are narrower for
the mortality-based dose-response models than for the
infection-based models (Additional file 1: Figures S5
and S6). As indicated by N5, higher doses are required
to obtain 50% mortality than 50% infectivity (Table 1).

Rhinovirus

Aerosol infectivity studies of human volunteers have little
information for dose-response modeling because they ob-
served 100% of volunteers to become infected: Exposures
were > 16 TCIDs, [47] and > 17 TCIDs rhinovirus NIH
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Table 1 Fitted dose-response models for selected agents
Exponential Model Beta-Poisson Model

Host Exposure (unit) Outcome Ref K (95%Cl) AIC? p-valueb o, B (Nso) AlC? p-valueb

Bordetella pertussis

Mouse (10 day old) Intranasal (CFU) Infection  [39] 114%x1078 607 0 0.086, 2000 509 0431
(647x107%,373x107%) (0632)

Mouse (4 week old) Intranasal (CFU) Mortality  [40] 628%x10°° 589 0 0239,891x10° 473 0972
485x107% 875x1079) (51900)

Mouse (6 day old) Intranasal (CFU) Mortality  [40] 383x 107 158 0 0.556, 252 242 0
(152x107%,1.04x 1079 (102)

Mouse (21 day old) Aerosol (CFU inhaled) Mortality — [41] 215%x10° 825 0 3.34,1.19x 10° 100 0
(1.10x107%,576 x 107) (516 10°)

Group A Streptococcus

Mouse Intranasal (CFU) Infection  [46] 1.05%x107° 728 0.088 0341, 1260 156 0308
(3.19x1077,204x107% (5460)

Mouse Intranasal (CFU) Mortality [46]  138x107° 922 0 0762,1.98x10° 101  <0.001
459% 1077, 7.44x107%) (134x10%)

Rhinovirus

Human Intranasal (TCIDs) Infection  [51] 1.00 14 0 0.725,0.173 128 0
(0484, 1.00) (0.108)

Human (antibody-free) Intranasal (TCIDsp) Infection  [50] 0.366 752 0.009 0.701,0.111 169 0427
(0.125, 1.00) (0.066)

Human (antibody-free, Intranasal (TCIDsq) Infection  [50,51] 0.428 899 0 0.697,0.121 258 0

pooled) 0154, 1.00) 0071)

Human (antibody <4) Intranasal (TCIDsp) Infection  [50] 0.138 123 0 0374, 0076 240 0358
(0.074, 0.420) (0.014)

Respiratory Syncytial Virus

Human Intranasal (TCIDsp) Infection  [55] 098x%10™° 592 0002 1.14, 6610 769 0034
(241x107% 508 x107% (7900)

Human (pooled) Intranasal (TCIDs) Infection  [54,55] 2.34x 107 203 0014 0217, 1380 160 0.080
(1.18x107%, 442 107°) (590)

Human (pooled) Intranasal (TCIDs) Infection  [53-55] 2.86x107° 955 0572 0.026,859% 107® 396 0999
(165x 107,560 x 107) (227x107")

AIC is Akaike’s Information Criterion.
Pp-value is for the permutation test.

1734 [48]. Two of three intranasal infectivity studies
identified met the inclusion criteria and were evaluated
(Additional file 1: Table S3) [49-51].

Hendley et al. [50] inoculated volunteers with varied
levels of serum antibodies intranasally with rhinovirus
type 39. Higher infectivity was observed among volunteers
with lower antibody levels prior to inoculation (Tables 1
and S3), which makes sense because higher antibody levels
are indicative of immunity. Regardless of pre-inoculation
antibody level (antibody-free or <4), AIC recommends the
beta-Poisson dose-response models (Table 1), which quali-
tatively provide a better representation of the data than the
exponential model (Additional file 1: Figures S7 and S8).

In contrast, AIC recommends the exponential model
for intranasal infectivity of rhinovirus type 16 observed
by D’Alessio et al. [51]. The maximum likelihood estimate
of the exponential model parameter is k=1, indicating
that each rhinovirus can initiate infection. As k must
be less than or equal to one, the upper 95% confidence
interval coincides with the maximum likelihood estimate
(Additional file 1: Figure S9).

The two studies used different strains of rhinovirus —
types 16 and 39, and the values of k and N5, suggest that
type 16 may be more infectious than type 39 (Table 1).
When data for the two rhinoviruses among antibody-free
volunteers were pooled, the fitted dose-response functions
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had k and N5, values between those observed for each
rhinovirus type (Table 1, Additional file 1: Figure S10).

Respiratory syncytial virus

While numerous animal models have been used to study
RSV infection [52], none met the data selection criteria.
Of the studies with human volunteers [53-56], only one
study met the data selection criteria: Hall et al. [55] inocu-
lated human volunteers with RSV strain A2 in through the
nose or eyes (Additional file 1: Table S4). Two other stud-
ies [53,54] were considered for pooling with Hall et al. be-
cause they used RSV strain A2 and a similar study design
(Additional file 1: Table S4).

For the Hall et al. [55] data alone, the two dose-response
models are functionally equivalent (Additional file 1:
Figure S11), and AIC recommends the exponential
model (Table 1). However, when pooled with Lee et al.
[54], the beta-Poisson model is recommended by AIC
(Table 1, Additional file 1: Figure S12). The addition of ob-
servations by Mills et al. [53] offered no improvement,
as indicated by the increased p-value and AIC (Table 1,
Additional file 1: Figure S13).

Discussion
In disease transmission, the critical step is that an infec-
tious microbe moves through the environment to a site
in a susceptible person where it is capable of initiating
infection. To accurately quantify risk of infection, a dose-
response function should be based on experimental data
that represent this process. In studies with human vol-
unteers, this means the exposure conditions and doses
administered should reflect natural transmission condi-
tions. In studies with animal models, there are additional
host-specific concerns. In ideal situations, the infection
sites are in similar anatomical locations in the animal
model and humans, and the fraction of airborne microbes
that reach the infection sites is the same, or can be cor-
rected for based on geometry of the respiratory tract,
animal orientation, respiratory rate and other factors.
Often, the conditions are not ideal, and important un-
certainties are introduced to the extrapolation of an
animal-based dose-response function to humans.
Intranasal instillation is an exposure route commonly
used in animal models and human subjects, but it is
difficult to interpret for natural disease transmission.
Intranasal instillation involves the introduction of a small
volume of fluid containing infectious microbes into the
nares: Given sufficient fluid volume, instilled materials
have been shown to move to the lungs [57,58]. The disease
transmission routes that best align with exposures through
intranasal instillation are unclear. In contact transmission,
infectious microbes likely deposit on the exterior of the
nares and/or on the mucous membranes just inside the
nares, surfaces readily accessible to the hands. In droplet
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transmission, particles containing infectious microbes may
project onto or into the nares. In airborne transmission,
inhaled particles may deposit throughout the respiratory
tract, including the head airways [42]. While the depos-
ition patterns of inhaled particles in the human respiratory
tract is well understood [42], the dispersion of the infec-
tious microbes in the head airways subsequent to contact
and droplet exposure is unknown. Thus, it is particularly
difficult to equate the dose administered through intra-
nasal instillation with exposures through the contact and
droplet routes.

Mice were the animal models used in experimental in-
fectivity studies for B. pertussis and GAS (Table 1); and
are one of many animal models used to study the infectiv-
ity and pathogenesis of infectious microbes, the toxicity of
chemicals, and disease. The selection of an animal model
considers a variety of factors, including: similarity of the
respiratory tract, microbe tropism, immune system and
response, and symptom presentation between the animal
model and humans (see for example the discussion of
guinea pigs and ferrets for influenza [59,60]). The presen-
tation of symptoms in the animal model is very important
in studies of disease transmission among animals since
the route of transmission should be as similar to that in
humans as possible; but is likely less important in evaluat-
ing a dose-response function. Unfortunately, unless studies
have been performed in both humans and animal models
it is not possible to evaluate the equivalency.

The objective of this study was to fit dose-response
models for selected microbes capable of infecting the re-
spiratory tract, so as to facilitate QMRA. Multiple func-
tions were identified for B. pertussis, GAS, rhinovirus,
and RSV (Table 1). Though statistical criteria, such as AIC,
indicate the relative performance of two dose-response
functions fitted to a specific data set (exponential or
beta-Poisson), the selection of a dose-response function
from among those fitted to multiple data sets is a
context-specific decision that depends upon the specific
question to be addressed through the risk assessment.
There are many dimensions in the interpretation of dose-
response functions fitted to data from animal models and
human volunteers for natural disease transmission that
are more important than questions about the study design
(e.g., number of subjects, etc.) and statistical measures of
model fit. These dimensions include, but are not limited:
tropism of the microbe for the host species, anatomical
location of sites susceptible to infection, and the unit of
exposure and its relation to the number of infectious
microbes that reach sites susceptible to infection.

Owing to the importance of the risk assessment con-
text, the fact that few of the dose-response functions
yielded an objectively good representation of the data
(see Figures in Additional file 1), differences between
strains, and uncertainty about extrapolation of animal-
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based dose-response functions to human disease trans-
mission, we have declined to recommend a single dose-
response function for each of the infectious microbes in
this study (Table 1). Future work to understand infection
processes in more detail for these microbes is necessary,
not only for the sake of general knowledge, but also be-
cause the diversity of plausible dose-response functions
for each microbe may yield different estimates of infection
risk, and different risk management conclusions. Two key
data gaps are the fate of microbes deposited onto the facial
mucous membranes by contact and droplet spray, and
the relative distribution of infection sites in the respira-
tory tract of animal hosts and humans. Work with influ-
enza virus demonstrates the feasibility of the later studies
(see [61]).

Frequently, the beta-Poisson model was preferred over
the exponential model (Table 1). This is reassuring because
the beta-Poisson model allows for biologically-plausibility
inter-individual variability in host susceptibility and virus
infectivity. Exponential models were preferred when few
subjects and few unique doses were tested: In these
conditions, there is insufficient data to characterize
inter-individual variability and a model with fewer pa-
rameters is preferred by AIC.

Despite the limitations identified for the fitted dose-
response functions (Table 1), the availability of these func-
tions makes it possible to apply QMRA to explore
questions of significance to public health decision-making.
For example, QMRA can be used in conjunction with ex-
posure models and epidemiologic models to explore the
effectiveness of infection control interventions in health-
care settings, including personal protective equipment
(PPE) and work practices, like patient isolation and hand
hygiene. PPE are specialized clothing or equipment worn
by workers or other susceptible people to prevent expos-
ure, including: gloves, gowns, eye protection, respirators,
facemasks, etc. Infection control interventions are recom-
mended based on observational studies that indicate asso-
ciation of the intervention(s) with lower risk of infection
[21], and while the effectiveness of most interventions
are biologically plausible, quantitative measures of effect-
iveness against specific infectious microbes and contract
transmission routes that would help to prioritize inter-
ventions are often not available [62]. The limitations of
the dose-response functions can be addressed in QMRA
through uncertainty analysis, and/or by focusing on the
change in risk resulting from interventions rather than the
absolute value of risk.

QMRA is an important tool for understanding and miti-
gating infection risk. While limitations of dose-response
functions have been described for these agents, there are
also significant limitations and uncertainties about other
aspects of QMRA, including exposure assessment. Quan-
titative measurements of infectious microbe emission and
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exposure are extremely limited, so the parameterization
and verification of exposure models are difficult. Nonethe-
less, QMRA provides a transparent, systematic process
by which to understand and evaluate risks posed by in-
fectious microbes. With the new dose-response functions
presented herein, the application of QMRA to pertussis,
GAS pharyngitis, and viruses causing the common cold
can begin.

Conclusions

Dose-response functions were fitted for B. pertussis, GAS,
rhinovirus, and RSV; though all functions have limitations
associated with the use of an animal model, intranasal
instillation, susceptibility of the hosts, etc. The persist-
ence of these microbes as threats to public health, how-
ever, motivate application of QMRA to understand the
magnitude of infection risks and identify effective controls
to reduce risk. Using the dose-response functions fitted in
this study, QMRA can begin to be applied.

Additional file

Additional file 1: Supplementary materials. The supplementary materials
contains the dose-response data analyzed and graphical prescutations
of model fit.
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