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Abstract

important drug-resistant bacterial infections.

specimens are delayed.

Background: Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems
for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-
varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically

Methods: Using TVA algorithm, six distinct time series were modelled, each one representing the number of
episodes per single 'ESKAPE’ (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa and Enterobacter species) infecting pathogen, that had occurred monthly
between 2002 and 2011 calendar years at the Universita Cattolica del Sacro Cuore general hospital.

Results: Monthly moving averaged numbers of observed and forecasted ESKAPE infectious episodes were found to
show a complete overlapping of their respective smoothed time series curves. Overall good forecast accuracy was
observed, with percentages ranging from 82.14% for E. faecium infections to 90.36% for S. aureus infections.

Conclusions: Our approach may regularly provide physicians with forecasted bacterial infection rates to alert them
about the spread of antibiotic-resistant bacterial species, especially when clinical microbiological results of patients’
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Background

Despite advances in diagnostic, therapeutic and vaccin-
ation countermeasures, infectious diseases still are one
of major challenges worldwide [1], which engage a lot of
biomedical research and public health efforts to under-
stand, treat, control and prevent them [2]. In particular,
infections caused by antibiotic-resistant bacteria such as
the ‘ESKAPE’ pathogens (Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa and Enterobacter
species), which are effectively capable of ‘escaping’ the
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biocidal action of antimicrobials, continue to rise and
cause significant morbidity and mortality [3].

This makes the management of bacterial infections very
difficult not only for hospitalized patients but also other-
wise healthy non-hospitalized patients [4,5] and, in the
same time, poses the need for continuously re-evaluating
global infectious disease surveillance systems [6]. To sup-
port infectious disease and/or infection control specialists
locally, computerized data on the isolation of clinically
relevant microbial species and their drug-resistance pro-
files are usually available from microbiology laboratory in-
formation systems. Thus, the patients’ outcomes may be
optimized by adequate initial antibiotic therapy that would
be selected on the basis of local resistance patterns [2], al-
though it should also be important to improve the ability
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to predict likely infecting pathogens when empirical ther-
apies need to be prescribed [4].

As surveillance data are often measured repeatedly at
equal intervals of time, autoregressive integrated moving
average (ARIMA) models, also termed Box-Jenkins
models [7], which use time series analyses [8], appear to
be powerful tools to monitor and predict the incidence
of several infectious diseases, including dengue [9], mal-
aria [10], haemorrhagic fever with renal syndrome [11]
and hepatitis E [12], as well as the influenza-related mor-
tality [13]. Furthermore, by using an extension of the
ARIMA method called transfer function [8], a temporal
relationship between antimicrobial use and resistance was
demonstrated for the ceftazidime and Gram-negative ba-
cilli and the imipenem and P. aeruginosa combinations
[14]. Employing ARIMA or autoregressive moving aver-
age (ARMA) models for time series forecasts has be-
come increasingly popular, but the major limitation
with their use is the pre-assumed linearity of the models
[15], that often leads to combining them with other stat-
istical techniques [12].

The objective of this study was to evaluate a time
series method using a time-varying auto-adaptive (TVA)
algorithm for forecasting drug-resistant bacterial infec-
tions, through use of the data collected in a large Italian
hospital microbiology laboratory. By this approach, we
were able to predict the frequency on a monthly basis of
single ESKAPE infectious episodes in inpatient or out-
patient healthcare settings.

Methods

Study setting

General Hospital ‘Agostino Gemelli’ from the Univer-
sita Cattolica del Sacro Cuore (Rome, Italy) is a 1500-
bed tertiary care facility, which comprises a full range
of medical and surgical specialties, a paediatric unit, a
maternity unit, a cardiovascular surgery unit and four
(general, neonatal, paediatric and post-surgical) inten-
sive care units. It was opened in 1964 as the referral
hospital for a healthcare area of approximately 200
000 inhabitants, and in 2004 it was enlarged to en-
close a multifunctional platform, in which are housed
centralized diagnostic laboratories, operating rooms
and the Emergency Department. The entire structure
admits ~50 000 patients per year.

In 1998, a multidisciplinary team, composed of a
small, technically focused, clinical group of microbiol-
ogists, hygienists, epidemiologists and physicians, was
formed with tasks of the infection prevention and
control and, recently, the antimicrobial stewardship.
Members of this group share the reports on local mi-
crobial ecology data, which are collected at the hos-
pital level (see below) in order to adapt patient care to
the infection risk.
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Microbiological data set

This study was conducted using local data that were
exported daily from the clinical microbiology laboratory
information system, by means of VIGIguard™ Active Sur-
veillance Epidemiology software (bioMérieux Diagnostics
Search, Marcy I'Etoile, France), and were reported into a
customized database. Data included the patient identi-
fiers, hospital wards or outpatient services, types of spe-
cimen, species of isolates and antimicrobial susceptibility
patterns of the isolates. With respect to the last-named
data, minimum inhibitory concentrations were deter-
mined and interpreted according to the Clinical and La-
boratory Standards Institute breakpoints [16]. Duplicate
or multiple isolates were disregarded, and only the first
one of each species per patient was maintained into the
database and used for our analysis. With regards to the
specimen sources, bacterial isolates were recovered from
non-invasive (lower respiratory tract or urine) and inva-
sive (blood or cerebrospinal fluid) specimens.

Study design, time series and forecasting algorithm

This study was ecologically designed, and utilized no pa-
tients’ identities (names and hospital codes) or personal
information. Overall microbiology laboratory data were
retrieved from January 2002 to July 2011, and those with
respect to the six ESKAPE microorganisms were ex-
tracted and their daily numbers, summed per month,
were used for one-step-ahead forecasting purposes.
Thus, data utilized for the analysis included monthly
time series of isolates of E. faecium, S. aureus, K. pneu-
moniae, A. baumannii, P. aeruginosa and Enterobacter
species, all of which representing single drug-resistant
infectious episodes. The first 36 months of data (January
2002 to December 2004) were used as the training set,
whereas all remaining data were used to evaluate the
forecasting method. We computed optimal single-series
forecasts for the ESKAPE infection occurrence, using a
univariate method where forecasts are dependent only
on present and past values of the single series being
forecasted, possibly augmented by a function of time
such as a linear trend [17]. For each time series, forecast
accuracy was assessed at the horizon of 30 days in ad-
vance, which, to our view, would reflect the ongoing na-
ture of healthcare surveillance policies. Data from each
time series were treated as individual time series and
analysed and evaluated separately. No present and past
values of other (predictor or explanatory) variables were
assessed.

Before our attempt to forecast each time series, we
conducted preliminary descriptive analyses of the data to
identify relevant features, such as autocorrelation, sea-
sonal patterns, trend, outliers and any other notable
fluctuations, in the series. Also, we evaluated whether or
not each time series was stationary (i.e., whether or not
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basic statistical properties such as the mean and variance
of the series remained constant through time). Initial
data analysis was conducted via the visualization of time
plots and correlograms and the computation of basic de-
scriptive statistics.

As it is known, a forecasting method may arise from
identifying a particular model for the given data and
finding optimal forecasts conditional on that model, or
it may simply be an algorithmic rule and need not de-
pend on an underlying probability model [17]. A detailed
description of our forecasting method that uses a TVA
algorithm was reported previously, although it has been
otherwise applied [18]. Here, we recall the essence of
this algorithm, which is derived from an original
physics-based theoretical approach, i.e., every physical
phenomenon is described by a characteristic time par-
ameter that is valid for the temporal interval during
which it is observed [18]. Consequently, if fix, ¢) repre-
sents a certain time-dependent observation, its average
value must be transformed as follows:

t

lim ;JZ flx,t)dt —>'[

T—o0

f(x, t)dx
t—T(t)

where T(f) represents the characteristic time parameter
that, in turn, depends on the phenomenon fix,f) ob-
served in a defined time window. As 7(¢) can be applied
to time series analysis, TVA algorithm allows to deter-
mine, for each point of the time series, a 7(¢) value that
is able to forecast the next value [18].

For each time series, an autocorrelation function graph
was obtained to assess whether the observations showed
a short- or long-time dependence, or whether they
showed a seasonal pattern, in accordance with the
formula:

N-k
(% = %) (we4x — %)
=1
re = N
Z (% - %)°
=1

where x, indicates the point of the time series consid-
ered at time t; r; expresses the degree of correlation be-
tween the value detected at time ¢ and the value
detected at ¢ + &, that is, x4, N indicates the total num-
ber of infections in the series analysed; and x represents
the average value of the series calculated on the N. As
each point x, of the series is typically composed of three
components, that is, seasonal (S,), trend (7}), and casual
(U,), according to x,=S,+ T, + U,, the time moving ave-
rage (MA) was chosen as a filter to remove the com-
ponent U, thus maintaining unchanged the other
components, in a sub-interval Q of N infections
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k

according to the equation xj :é kz x, where Q is a
=k-Q

function of the single series analysed.

The forecast of monthly infections was carried out
on both the original, not filtered series {x;} and the
series after application of the time filters {*;}. In the
former case, the value’s tendency was derived by the

k-1
inverse of above equation, that is, % = Qx} - Z X

£5%-Q
where X; is the forecast produced at step k for
the average time series {x;}. To assess forecast accuracy,
we also computed the mean absolute error (MAE)
and the mean absolute percentage error (MAPE)
parameters, according to the following equations:

1 = 1 = Vk+1 - Fy

MAE = ﬁZWkH - Fi| MAPE = NZ 100 —~——
k=0 k=0 k1

where F; represents the forecasting value, calculated at

step k, of the series {X;} for the value V recorded at step

k +1, that is, Vi, 1. A lower MAPE value indicates a bet-

ter fit of the time series data.

)

Ethical review

The present study was reviewed by the institutional re-
view committee of the Universita Cattolica del Sacro
Cuore, and it was found that utilization of clinical la-
boratory surveillance data did not require oversight by
an ethics committee.

Results

Data characteristics

A total of 33 185 non-duplicate bacterial isolates, that
were found to be in vitro resistant to one or more anti-
microbials, were obtained from single infectious episodes
of inpatients and outpatients between January 2002 and
July 2011, as reported into the clinical microbiology la-
boratory database. As accounting for 92.6% of above epi-
sodes, Escherichia coli (29.6%), P. aeruginosa (15.6%), S.
aureus (13.1%), A. baumannii (12.4%), K. pneumoniae
(6.9%), Proteus mirabilis (4.1%), Enterobacter species
(3.9%), Stenotrophomonas maltophilia (3.6%) and E. fae-
cium (3.4%) were the most frequently isolated species dur-
ing the study time period. Among drug-resistant ESKAPE
isolates, 75.9% of E. faecium isolates were resistant to
vancomycin, 91.7% of S. aureus isolates to methicillin,
95.0% of K. pneumoniae isolates to extended-spectrum
cephalosporins, 80.8% of A. baumannii isolates to carba-
penems, 47.3% of P. aeruginosa isolates to carbapenems
and extended-spectrum cephalosporins, and 85.6% of En-
terobacter species (E. cloacae, E. aerogenes, E. agglomerans
and E. sakazaki) isolates to extended-spectrum cephalo-
sporins. Therefore, starting from the original database, we
chose to obtain 6 distinct ESKAPE time series, each one
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corresponding to the number of episodes per single infect-
ing species that had occurred monthly during the 9-year
time period.

TVA algorithm for ESKAPE infection forecasting
Autocorrelation analysis of these monthly aggregated
data revealed that each of individual ESKAPE infection
series exhibited randomness or, at least, a behaviour
consistent with the presence of short-term correlation
between an infectious episode and the next ones. A rep-
resentative correlogram is depicted in Figure 1, showing
that one or more of autocorrelations were significantly
non-zero. To reduce autocorrelation to white noise, time
MAs were used for all of ESKAPE infections. Thus, we
plotted the smoothed frequencies of bacterial isolates
that were derived by a time MA transformation, i.e., the
value plotted for a specific month was the average of the
value observed that month, the previous month(s) and
the next month(s). Figure 2 shows an example of the
smoothed series plots obtained for E. faecium, S. aureus,
K. pneumoniae, A. baumannii, P. aeruginosa and Entero-
bacter species infections, by using 3-, 4-, 6- or 12-month
MAs as appropriate.

Therefore, a forecasting TVA algorithm was built
starting from the hypothesis that each value within a
generic time series is influenced by the values occurred
previously and that it, in turn, will influence future
values. After a random-span time window was defined a
priori, the time series values were clustered, and to each
cluster was associated a value derived from computing
the probability function. The resulting cluster values
were ordered and the first ranking number was consid-
ered as the most likely value for the next trial.

Using the TVA algorithm, we predicted the monthly
numbers of drug-resistant infections caused by each of
ESKAPE bacteria during the study period. Graphical
representations of the results, of which an example is
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given in Figure 3, show plots of observed frequencies
that overlapped those of forecasted frequencies. Table 1
summarizes the TVA algorithm forecasting perfor-
mances obtained with all the ESKAPE time series ana-
lysed. As it can see, an overall good forecast accuracy
was achieved, with percentages ranging from a value of
82.14% for E. faecium infections to a value of 90.36% for
S. aureus infections.

Discussion

As a widely applicable, multidisciplinary science, fore-
casting is an important activity for statisticians, econo-
mists, operational researchers, management scientists
and decision scientists, as well as it has become an es-
sential that drives decision-making in many fields of eco-
nomic, industrial and scientific planning [17]. In the
healthcare setting, forecasting has been explored as a
method to improve emergency department services,
where accurate forecasts of demand can guide the allo-
cation of human and physical resources to allow an effi-
cient patient flow [19,20]. This, in turn, may minimize
patient care delays and improve the overall quality of
care. Likewise, emergence and re-emergence of infec-
tious diseases with pandemic potential has led to grow-
ing interest in their analysis [21], so now a large amount
of infectious disease data is routinely collected by labora-
tories, healthcare providers and government agencies in
an effort to prevent, detect and manage infectious diseases
outbreaks. In this context, one-step-ahead forecasts, espe-
cially when syndromic information is incorporated into
the forecasting model, can be used to detect high-risk
areas for outbreaks and, consequently, to develop efficient
targeted surveillance [22].

While the time series analysis is used to extract mean-
ingful statistics and other characteristics of data, time
series forecasting is able to predict future values of the
series based on its historical values. However, with time-
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Autocorrelations were computed for data values at varying time lags.
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Figure 1 Correlogram of the time series of drug-resistant E. faecium infections observed between January 2002 and July 2011.
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Figure 2 Observed and moving averaged numbers of drug-resistant E. faecium infectious episodes during the 9-year study period. The
smoothed time series, represented in bold, was obtained using a 3-month moving average transformation.

series data, the modelling process is complicated by the
need to model not only the interdependence between
the series, but also the serial dependence within the
component series [17]. Several technical resources are
available to guide analysts in building and interpreting
correlation models [23,24], as well as review articles
[8,25,26] and biomedical examples are also available
[27,28]. Thus, good forecasting depends on finding a
suitable model for a given time series but, despite a
plenty of software available to make it easy to fit the
class of linear stochastic processes, namely ARIMA
models, it is still difficult to know when to use an
ARIMA model and how to choose which ARIMA model
to use. ARIMA models have long been applied in various
medical specialties [8,29], until to recently predict the
infectious disease incidence due to its structured model-
ling basis and acceptable forecasting performance [9-12].
However, obtaining an ARIMA model that closely fit a

type of time series data requires that different ARIMA
models are simultaneously constructed and checked for
their goodness-of-fit prior to reach the satisfactory final
model [11,12,14]. To this regard, it is noteworthy that an
artificial neural network [17] was used in combination
with an ARIMA model to take into account the linear
and nonlinear behaviours of time series data, in order to
forecast hepatitis E infections in Shanghai [12]. Accord-
ingly, in a recent comparison of the models’ forecasting
accuracy, the multivariate seasonal ARIMA model (SAR-
IMA), an expanded form of ARIMA, was shown to be
the most appropriate for forecasting the number of pa-
tients admitted to the emergency department per day, as
it was built to incorporate explanatory variables affecting
that number [20].

The present study describes the development of TVA
algorithm as a simple and reliable tool to predict future
trends of drug-resistant ESKAPE infections. We noticed
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Figure 3 Monthly moving averaged numbers of observed (black symbols) and forecasted (purple symbols) drug-resistant E. faecium
infectious episodes. A complete overlapping between the smoothed series curves was observed for the entire study period (years 2002-2011).
Shown is, for convenience, the interval time between September 2004 and May 2011.
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Table 1 Monthly forecasting of “ESKAPE” infections: assessment parameters and performance of the time-varying

auto-adaptive algorithm

Bacterial species No. of recorded infections (years 2002-2011) Time MA (months)® MAPE® Accuracy rate (%)
E. faecium 1,142 3 9.22 8214
S. aureus 4,332 4 5.15 90.36
K. pneumoniae 2,284 12 3.09 89.61
A. baumannii 4,106 12 3.18 84.93
P. aeruginosa 5,165 3 494 87.95
Enterobacter species 1,293 6 7.23 84.34

Abbreviations: MA, moving average; MAPE, mean absolute percentage error.

“The time MA was identified using the autocorrelation function graph, as detailed in Methods.
PMAPE value was calculated based on observed values and fitted values from 2002 to 2011.

that the noise of each time series analysed (e.g., absence
of periodicity, presence of instrumental errors and non-
uniformity of measures) did not influence the TVA algo-
rithm’s forecasting capability. Also, the TVA-algorithm
forecast performance on filtered time series (i.e., purged
of their casual components) was higher than 80%, as
documented by MAPE measurements that gave good es-
timates of the actual time series (Table 1). Consistent
with other studies [11,14], MAs were here used as an
easy and intuitive means, even though more sophisti-
cated techniques, such as exponential and/or adaptive
MAs, Kalman filters, Holt-Winter filters [17], would
have to be employed to refine the forecast results. Thus,
it is surprising that such a simple algorithm is capable of
producing such good predictions, but this is possible
because infectious episodes are outbreaks and, there-
fore, are self-exciting processes which would be ex-
pected to cluster at high values. How TVA algorithm
performs as we go into the future it needs to be ex-
plored. To strengthen our findings, ARMA models of
order (2,3), (1,3), (1,1), (2,1), (1,2) and (1,1) (the figures
indicate autoregressive and moving average terms) were
constructed using the training set 36-month data to
provide adequate model fit for monthly ESKAPE infec-
tions due to E. faecium, S. aureus, K. pneumoniae, A.
baumannii, P. aeruginosa and Enterobacter species, re-
spectively. However, these models allowed forecast ac-
curacies of 61.11% (E. faecium), 48.65% (S. aureus),
67.17% (K. pneumoniae), 73.02% (A. baumannii),
63.01% (P. aeruginosa) and 53.42% (Enterobacter species)
(data not shown), that were much lower than those ob-
tained using TVA algorithm (Table 1).

As ideally forecasts are an integral part of the planning
system, and not a separate exercise [17], it is desirable
that a relatively simple forecasting method, which is
widely understood, can allow people who will actually
use the forecasts (ie., hospital epidemiologists) to sug-
gest control action. Thus, while a forecast of an increas-
ing death rate for a particular disease may lead to
preventive action to try to reduce the spread of the dis-
ease [30], an abnormally high methicillin-resistant S.

aureus (MRSA) infection rate at the hospital or unit level
(i.e., medical intensive care unit) may lead to an education-
based intervention to increase compliance with hand-
disinfection procedures [31], or to abolish individual-level
MRSA  decolonization programs [32]. Alternatively, the
forecast can be used as a target value [17]. In this sense, it
may permit to continuously monitor, and eventually
correct, hospital antimicrobial stewardship programs,
that have proven highly successful in improving patient
outcomes, reducing adverse events (including Clostri-
dium difficile), reducing re-admission rates and even re-
ducing antibiotic resistance [33].

Therefore, our method could be practically imple-
mented in a clinical setting to provide attending physi-
cians with forecasted rates of drug-resistant bacterial
infections on a regular basis. This in order to alert them
about the spread of bacterial species displaying resist-
ance to one or more antimicrobials, and, in the mean-
time, to help them in the empirical prescription of
antimicrobials when the microbiology (culture and/or
susceptibility testing) results of clinical specimens are
not yet available.

Our findings may have important clinical repercus-
sions. The challenge of antimicrobial resistance continue
to grow locally and globally, and this necessitates a sig-
nificant shift in mind-set about the infection control,
which is now considered to be vital to aid prevent the
spread of resistant microorganisms [34]. To this regard,
surveillance and feedback of results to clinicians is cru-
cial to performance improvement in managing both
healthcare- and non-healthcare-associated drug-resistant
infections [35]. Therefore, surveillance data should pos-
sibly be accurate and consistent to effectively monitor
trends and outbreaks, particularly for infections caused by
MRSA, vancomycin-resistant enterococci and multidrug-
resistant Gram-negative bacteria, including Acinetobacter
and Pseudomonas species [36].

Conclusion
Surveillance systems must include microbiology laboratory
reporting of the isolation of clinically significant pathogens
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with relevant drug susceptibilities included [35], but it
would also be advisable that the use of computer-based
searches of laboratory records is supported from math-
ematical modelling and prediction, such as the TVA
algorithm described here. While the success of such a
method, when implemented, will greatly depend on
accessible and regularly updated surveillance reports,
further studies are yet needed to provide a large-scale
evaluation of this potentially useful epidemiological
tool.
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