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Abstract

Background: Climates are changing rapidly, producing warm climate conditions globally not
previously observed in modern history. Malaria is of great concern as a cause of human mortality
and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly
competent suite of mosquito vector species.

Methods: | derive spatially explicit estimates of human populations living in regions newly suitable
climatically for populations of two key Anopheles gambiae vector complex species in Africa over the
coming 50 years, based on ecological niche model projections over two global climate models, two
scenarios of climate change, and detailed spatial summaries of human population distributions.

Results: For both species, under all scenarios, given the changing spatial distribution of appropriate
conditions and the current population distribution, the models predict a reduction of 11.3-30.2%
in the percentage of the overall population living in areas climatically suitable for these vector
species in coming decades, but reductions and increases are focused in different regions: malaria
vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa.

Conclusion: Climate change effects on African malaria vectors shift their distributional potential
from west to east and south, which has implications for overall numbers of people exposed to these
vector species. Although the total is reduced, malaria is likely to pose novel public health problems
in areas where it has not previously been common.

Background

Malaria is a vector-borne anthroponosis, transmitted in
large part by Anopheles mosquitoes, that endangers more
than 2.5 x 102 humans annually [1]. Its transmission cycle
has been modeled in great detail [2,3], but application of
such process-based models has generally been limited to
local and regional scales [4,5], given challenges in spa-
tially explicit parameter estimation. An alternative
approach that offers broadest applicability is that of focus-
ing on vector species' geographic distributions via ecolog-
ical niche modeling techniques now well tested [6-8]

within frameworks for reconstructing the geographic
dimensions of disease transmission [9].

Implications of climate change for malaria transmission
across Africa have been the subject of numerous commen-
taries [10-12] and a few attempted analyses [13-18]. One
analysis [18] developed a global picture of climate change
effects on malaria transmission, but relied on country-
level classifications of risk, and did not discern the fine
details of mosquito-species-specific distributional shifts.
To date, then, specific climate change scenarios have yet to
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be applied to derivation of detailed projections of chang-
ing patterns of potential for malaria transmission based
on mosquito vector species' distributions across Africa.

Ecological niche modeling uses nonrandom associations
between known occurrences of species and digital geospa-
tial data layers summarizing relevant environmental
parameters to reconstruct the suite of environmental con-
ditions under which the species is able to maintain popu-
lations without immigrational subsidy [19]. Modeled
niches are generally conservative over considerable time
periods [20,21], offering considerable predictive power
regarding distributional ecology of species, including
when environmental conditions are changing [8,22]. Pre-
vious studies have used these techniques to illuminate
distributions of mosquito species under diverse circum-
stances [17,23-28]; perhaps most importantly, mosquito
species' distributions are known to be highly sensitive to
climatic variations, including on very short time scales
[26]. Here, I integrate detailed climate change scenarios
for the two most significant Africa-wide mosquito vector
species based on ecological niche models and detailed
spatial summaries of present-day human population dis-
tribution [29,30] to calculate shifting patterns of potential
human exposure to malaria across Africa to be expected
over the coming half-century.

Methods

Occurrence data for vector species were derived from a
recent detailed compilation [31] that was the basis of pre-
vious analyses [16,28]; in the present study, I focused on
the two species with broad, continentwide distributions
in the Anopheles gambiae complex: A. gambiae sensu stricto
and A. arabiensis, for which 581 and 501 occurrence
records were available, respectively. These data are based
on sampling that was intense in some countries, and neg-
ligible or absent in others - as such, an extrapolative
approach to their analysis becomes key. As such, I related
the occurrence data to a suite of environmental data
including dimensions of climate (annual mean tempera-
ture, mean monthly maximum temperature, mean
monthly minimum temperature, annual precipitation;
from [32]) and topography (slope, aspect, compound
topographic index; from [33]). The relationship between
the occurrence data and the environmental data sets -
effectively the basis for the niche model - thus interpo-
lates into unsampled regions based on the environmental
characteristics of those regions, and thereby offers
improved predictive ability regarding distributions. All
environmental data sets were resampled to 0.1° spatial
resolution for analysis.

Ecological niche models were generated using the Genetic
Algorithm for Rule-Set Prediction (GARP) [34], a niche-
modeling approach that has been the basis for most pre-

http://www.biomedcentral.com/1471-2334/9/59

vious niche modeling applications to disease geography
[9]. GARP is an evolutionary-computing method that
builds ENMs based on non-random associations between
known occurrence points for species and sets of GIS cov-
erages describing the ecological landscape. Occurrence
data are used as follows: 50% of occurrence data points
are set aside for an independent test of model quality
(extrinsic testing data), 25% are used for developing mod-
els (training data), and 25% are used for tests of model
quality internal to GARP (intrinsic testing data). Distribu-
tional data are converted to raster layers by the GARP pro-
gram; then, by random sampling from areas of known
presence (training and intrinsic test data) and areas of
'‘pseudoabsence’ (areas lacking known presences), two
data sets are created, each of 1250 points; these data sets
are used for rule generation and model testing, respec-
tively.

The first rule is created by applying a method chosen ran-
domly from a set of inferential tools (i.e., atomic rules that
specify particular environmental value combinations as
suitable, logistic regression, bioclimatic range rules,
negated bioclimatic range rules [34]). The genetic algo-
rithm consists of specially defined operators (e.g., crosso-
ver, mutation) that modify the initial rules, and thus the
result are models that have "evolved" - after each modifi-
cation, the quality of the rule is tested (to maximize both
significance and predictive accuracy) and a size-limited set
of best rules is retained. Because rules are tested based on
independent data (intrinsic test data), performance values
reflect the expected performance of the rule, an independ-
ent verification that gives a more reliable estimate of true
rule performance. The final result is a set of rules that can
be projected onto a map to produce a potential geo-
graphic distribution for the species under investigation.

Following recent recommendations [35], for each species,
I developed 100 replicate random-walk GARP models,
and filtered out 90% based on consideration of error sta-
tistics, as follows. The 'best subsets' methodology consists
of an initial filter removing models that omit (omission
error = predicting absence in areas of known presence)
heavily based on the extrinsic testing data, and a second
filter based on an index of commission error (= predicting
presence in areas of known absence), in which models
predicting very large and very small areas are removed
from consideration. Specifically, in DesktopGARP, I used
a "soft" omission threshold of 20%, and 50% retention
based on commission considerations; the result was 10
'best subsets' models (binary raster data layers) that were
summed to produce a best estimate of geographic predic-
tion. I took as a prediction of suitable conditions those
areas for which >8 of the 10 replicate models predicted
potential for presence, and a prediction of unsuitable con-
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ditions those areas for which <4 of the 10 replicate models
predicted potential for presence.

Future climate conditions were reconstructed based on
two general circulation models (GCMs) that have been
used to simulate future climates: those of the Hadley Cen-
tre (HadCM3) [36] and the Canadian Center (CGCM1)
[37]. From each GCM, I analyzed two greenhouse gas
emissions scenarios: the B2 scenario, which is a relatively
conservative estimate of climate change, and the A2 sce-
nario, which is more extreme in the climates recon-
structed. As they are based on a 30 yr average around
2055, these models do not take into account potential
effects of increased climate variability (El Nifio events, in
particular) on species' distributions. Because these future
climate data are provided at a very coarse native spatial
resolution (2.5 x 3.75°), I calculated expected changes in
temperature (°C) and precipitation (mm) under each sce-
nario from the relatively coarse raw model results; these
expected changes were applied to the original IPCC cur-
rent climate data layers to provide a final pixel resolution
of ~30 x 30 km for future-climate data layers. Models
developed based on present-day occurrence patterns and
environmental variation were projected to these 4 views
of likely future climate conditions.

Finally, I calculated human populations living within the
potential distributions of these competent malaria vectors
across sub-Saharan Africa based on the LandScan database
[29,30], a 1 km resolution summary of present-day
human population distributions globally. It should be
noted that [ make the explicit assumption of stability of
human population distributions - although future popu-
lation projections are available [38], they are overly coarse
spatially to be greatly informative in this analysis, so this
point remains as a future challenge for improvement. For
each greenhouse gas emissions scenario, I averaged the
results of the two climate models to yield single estimates
of future potential distribution under that scenario. Inter-
secting the model predictions with the Landscan dataset, I
calculated present-day numbers of people living in areas
coinciding with potential distributional areas of each
mosquito species, and present-day numbers of people liv-
ing in areas converting from unsuitable to suitable or vice
versa.

Results

Anopheles gambiae and A. arabiensis, the two most impor-
tant malaria vectors in Africa, have broad distributions
across Africa [28] (Fig. 1). I do not present detailed valida-
tions of model predictions across Africa in the present day
because I had published such analyses in an earlier study
based on precisely the same occurrence data set [28] - suf-
fice it to say that model predictions were quite robust,
offering confidence in the areas identified as suitable ver-
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Human distributions and modeled present and
future malaria vector distributions in Africa. Maps
showing the basic panorama of human distribution across
Africa, as well as modeled present and future distributions of
the two major malaria vectors across Africa, Anopheles gam-
biae and A. arabiensis. Human population is shown as white —
0-25 persons, gray 26—441, pink 442-857, red 858-1273,
dark red >1273. Mosquito species distributions: gray = areas
modeled as suitable both at present and in future projec-
tions; blue = areas presently modeled as suitable, but that are
not projected as suitable under future conditions; red =
areas expected to become newly suitable for mosquito spe-
cies under future conditions.

sus unsuitable. Projections of the ecological niche model
onto likely future climate conditions indicated that both
mosquito species are likely to see less suitable conditions
for their populations across portions of West Africa, where
temperature increases of 1.5-2.7°C are likely to be mani-
fested (Fig. 2). In contrast, both species are likely to see
improving conditions in regions of southern Africa, in
areas where annual mean temperatures are increasing suf-
ficiently to permit these species to establish populations

(Fig. 2).

Present-day human populations coinciding spatially with
the inferred geographic distributions of these vector spe-
cies presently total 389,155,713 for A. gambiae and
520,289,130 for A. arabiensis over 10.5 x 10°and 14.5 x
10¢ km?, respectively. Under the two greenhouse gas sce-
narios, >30 million people are living in areas projected to
see increasing exposure to A. gambiae, and >14 million
people are living in areas projected to see increased expo-
sure to A. arabiensis. At the same time, however, 78-111
million people are living in areas projected to see reduced
exposure to A. gambiae, and 135-171 million people are
living in areas projected to see reduced exposure to A. ara-
biensis (Table 1). These changing patterns are distributed
unevenly across the continent: reduced exposure across
West Africa and the Sahel, but increased potential for
exposure in East Africa and southern Africa (Fig. 1).

Discussion

This study illustrates the complexities of effects of chang-
ing climate conditions on spatial patterns of the potential
for disease transmission. Ecological niche models were
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Figure 2

Suitability changes in key regions. Change in suitability
(on a scale of -10 to +10, with +10 indicating maximum
improvement of suitability between present and future) for
Anopheles gambiae in West Africa and South Africa. In West
Africa, the key conditions are for decline in suitability,
whereas in South Africa, focus should be on increasing suita-
bility.

Table I: Human malaria vector exposure trends
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developed for the two most significant and broadly dis-
tributed malaria vectors in Africa and projected onto two
greenhouse gas emissions scenarios for each of two global
climate models. Clearly, a first priority is to expand these
analyses from the two most broadly distributed species in
the Anopheles gambiae complex to the broader suite of
potential vectors across the continent, as, for instance, A.
funestus, A. nili, and A. moucheti are competent vectors in
Cameroun [39]. The present analysis was of necessity
restricted to the A. gambiae complex for lack of access to
high-quality, continentwide occurrence data for other spe-
cies. A further limitation of this study is its analysis based
on present-day human population levels and distribu-
tions, for lack of detailed information on future status;
similarly, I neglect the effects of urbanization and inter-
ventions on mosquito vector distributions and malaria
transmission rates.

In the previous global analysis [18], as in my more
detailed analysis, increasing malaria risk was projected in
East Africa and decreasing malaria risk was projected for
West Africa, so the general pictures presented by the two
analyses are parallel, but the detail offered in the present
study is considerably greater. Nonetheless, my results
require careful examination and exploration, because
overall reductions in potential for human exposure none-
theless are achieved by reductions in some regions and
increases in others.

Ecological niche models reconstruct patterns of associa-
tion between species' occurrences and environmental var-
iation across space and time [40], and offer a predictive
understanding of distributional patterns that can extend
over changing environmental conditions. They require
testing and validation prior to use [41], however, which in
the present case has been the subject of a detailed, pub-
lished analysis demonstrating excellent predictivity of dis-
tributional patterns of the vector species even across
broad, unsampled regions [28]. These tests, as well as
more general validations of the analytical framework

Species Greenhouse gas

Area exposed (km2) Human population

Area no longer Human population no

scenario explosed exposed (km?2) longer exposed
Anopheles gambiae ~ Present 10,508,761 389,155,713 10,508,761 389,155,713

B2 +11.47% +8.44% -18.60% -28.73%

A2 +11.42% +8.74% -27.51% -20.03%
Anopheles arabiensis Present 14,528,957 520,289,130 14,528,957 520,289,130

B2 +2.03% +2.77% -26.44% -32.95%

A2 +1.96% +2.70% -39.46% -26.07%

Summary of overall tendencies in human exposure to two species of malaria vectors across Africa under two scenarios of greenhouse gas
concentrations and consequent climate change, showing transitions from low-risk suitability categories to high-risk categories and vice versa, and

the human population numbers that are associated.
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[7,42-44], increase confidence that projections of niche
dimensions across periods of environmental change will
also have predictive power. That mosquito species are
likely to respond to changing climates is quite probable,
particularly in light of recent studies demonstrating that
mosquito distributions in time and space respond to the
same sets of stimuli [26].

The climate change picture regarding shifting patterns of
malaria vector distributions across Africa is complex. In
general, future expectations are that, while fewer people
live in areas that will be suitable for malaria vectors across
West Africa, more people will be living in exposed areas in
East Africa and southern Africa. Because West Africa is
more densely populated than parts of eastern and south-
ern Africa, a net decrease in potential for human exposure
to these vectors results. For A. gambiae, 78-112 million
fewer people are projected to be in suitable areas for the
vector species, as compared with 33-34 million people
living in areas becoming suitable; for A. arabiensis, reduc-
tions in potential for exposure are more dramatic: 136-
171 million in areas no longer suitable, but only 14 mil-
lion in areas newly suitable. The spatial distribution of
these shifts, however, is perhaps the most intriguing
result: malaria transmission risk is likely to shift eastward
and southward, establishing new foci in areas presently
lacking intense malaria transmission.

Adding still more complexity are comparisons of the two
greenhouse gas emissions scenarios. The A2 scenario
emphasizes a heterogeneous world, with regional self-reli-
ance and preservation of local identities, which results in
continuously increasing population, regional economic
development and slower technological change. The B2
scenario, on the other hand, is one of local solutions to
economig, social and environmental sustainability, global
population increases at rates lower than A2. Curiously,
though, the more extreme (in terms of climate change) A2
scenario is associated with 20-30% less human exposure
to malaria across Africa, given its more extreme projected
effects on Anopheles distributions, particularly in West
Africa. The difference between the two scenarios is thus
not so much in terms of how many people live in areas
newly suitable for malaria vectors, but rather in terms of
how many fewer people live in areas no longer suitable.

Conclusion

Scientific results regarding implications of climate change
are usually pessimistic in nature. This analysis departs
somewhat from that theme - malaria vector species are
expected to undergo distributional shifts in the face of
changing climates that will leave fewer people overall in
areas suitable for the important vector species. The net
reduction nonetheless includes increasing malaria vector
presence in areas of eastern and southern Africa that are
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not presently exposed to these species. As such, the picture
is one of complex rearrangement of malaria transmission
across Africa with climate change.
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